Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,141)

Search Parameters:
Keywords = phyto-chemicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4142 KiB  
Article
Repeated Administration of Guar Gum Hydrogel Containing Sesamol-Loaded Nanocapsules Reduced Skin Inflammation in Mice in an Irritant Contact Dermatitis Model
by Vinicius Costa Prado, Bruna Rafaela Fretag de Carvalho, Kauani Moenke, Amanda Maccangnan Zamberlan, Samuel Felipe Atuati, Ana Clara Perazzio Assis, Evelyne da Silva Brum, Raul Edison Luna Lazo, Andréa Inês Horn Adams, Luana Mota Ferreira, Sara Marchesan Oliveira and Letícia Cruz
Pharmaceutics 2025, 17(8), 1029; https://doi.org/10.3390/pharmaceutics17081029 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum [...] Read more.
Background/Objectives: Dermatitis is frequently treated with dexamethasone cutaneous application, which causes adverse effects mainly when it is chronically administered. Sesamol is a phytochemical compound known for its anti-inflammatory activity and low toxicity. Therefore, this study reports the optimization of a guar gum hydrogel with enhanced physicochemical and microbiological stability, providing an effective dosage form for topical application of sesamol nanocapsules to treat irritant contact dermatitis. Methods: Nano-based hydrogel containing 1 mg/g sesamol was prepared by adding the nanocapsule suspension to form a 2.5% (w/v) guar gum dispersion. Dynamic rheological analysis indicates that the formulations exhibit a non-Newtonian flow with pseudoplastic behavior. Hydrogels were evaluated by Fourier-transformed infrared (FTIR) spectroscopy, and, following spectrum acquisition, an unsupervised chemometrics model was developed to identify crucial variables. Additionally, the physicochemical and microbiological stability of the hydrogel was evaluated over a 60-day period. Results: ATR-FTIR spectra of all hydrogels evaluated are very similar after preparation and 60 days of storage. However, it showed a slight increase in average diameter and PDI and decreased pH values after 60 days. Microbiological assessment demonstrated that the hydrogel met the requirements for the microbial count over 60 days. The dermatitis model was induced by repeated applications of croton oil in the right ears of mice. The effectiveness of the hydrogels was evaluated by assessing ear edema and migration of polymorphonuclear cells. The nano-based hydrogel exhibited anti-inflammatory properties similar to those of dexamethasone. Conclusions: Therefore, the nano-based hydrogel containing sesamol exhibits therapeutic potential for treating cutaneous inflammatory diseases. Full article
Show Figures

Figure 1

33 pages, 732 KiB  
Review
Transforming By-Products into Functional Resources: The Potential of Cucurbitaceae Family Seeds in Cosmetics
by Carla Sousa, Carla Guimarães Moutinho, Márcia Carvalho, Carla Matos and Ana Ferreira Vinha
Seeds 2025, 4(3), 36; https://doi.org/10.3390/seeds4030036 (registering DOI) - 7 Aug 2025
Abstract
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical [...] Read more.
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical composition and evaluating their functional value in natural cosmetic development. Although these fruits are widely consumed, industrial processing generates substantial seed by-products that are often discarded. These seeds are rich in polyunsaturated fatty acids, proteins, carbohydrates, and phytochemicals, positioning them as sustainable raw materials for value-added applications. The incorporation of seed-derived extracts into cosmetic formulations offers multiple skin and hair benefits, including antioxidant activity, hydration, and support in managing conditions such as hyperpigmentation, acne, and psoriasis. They also contribute to hair care by improving oil balance, reducing frizz, and enhancing strand nourishment. However, challenges such as environmental instability and low dermal permeability of seed oils have prompted interest in nanoencapsulation technologies to improve delivery, stability, and efficacy. This review summarizes current scientific findings and highlights the potential of Cucurbitaceae seeds as innovative and sustainable ingredients for cosmetic and personal care applications. Full article
17 pages, 848 KiB  
Article
Influence of Various Fruit Preservation Methods on the Phenolic Composition and Antioxidant Activity of Prunus spinosa L. Fruit Extract
by Valentina Sallustio, Joana Marto, Lidia Maria Gonçalves, Manuela Mandrone, Ilaria Chiocchio, Michele Protti, Laura Mercolini, Barbara Luppi, Federica Bigucci, Angela Abruzzo and Teresa Cerchiara
Plants 2025, 14(15), 2454; https://doi.org/10.3390/plants14152454 (registering DOI) - 7 Aug 2025
Abstract
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the [...] Read more.
Wild edible plants, historically valued for their medicinal properties, can be a sustainable source of food, cosmetics, and pharmaceuticals. The blue berries of Prunus spinosa L., known as blackthorns, have antioxidant, astringent, and antimicrobial benefits. To preserve these properties after harvesting, understanding the best storage methods is essential. In this study, blackthorns were preserved using different methods (air-drying, freezing, or freeze-drying) to determine the optimal procedure for preserving their antioxidant activity. The fruits were extracted using a 50:50 (V/V) mixture of ethanol and water. The different extracts were phytochemically characterized for their phenolic content and antioxidant activity. The Folin–Ciocalteu test revealed total phenolic contents of 7.97 ± 0.04, 13.99 ± 0.04, and 7.39 ± 0.08 (mg GAE/g raw material) for the three types of extracts, respectively. The total flavonoid contents were 2.42 ± 0.16, 3.14 ± 0.15, and 2.32 ± 0.03 (mg QE/g raw material), respectively. In line with the polyphenol analysis, the antioxidant activity as determined by DPPH method was higher for the frozen extract, with a value of 91.78 ± 0.80%, which was confirmed by the ROS test on keratinocytes. These results show that both air-drying and freeze-drying processes negatively impact the preservation of antioxidant activity in blackthorns, suggesting that freezing may be the best preservation method before bioactive compound extraction. Full article
(This article belongs to the Special Issue Bioactives from Plants: From Extraction to Functional Food Innovation)
12 pages, 468 KiB  
Article
Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis
by Olivio Fernandes Galãoa, Patrícia Valderrama, Luana Caroline de Figueiredo, Oscar Oliveira Santos Júnior, Alessandro Franscisco Martins, Rafael Block Samulewski, André Luiz Tessaro, Elton Guntendorfer Bonafé and Jesui Vergilio Visentainer
AppliedChem 2025, 5(3), 19; https://doi.org/10.3390/appliedchem5030019 - 7 Aug 2025
Abstract
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition [...] Read more.
Soybean (Glycine max (L.) Merrill) is a major oilseed crop rich in phytosterols and tocopherols, compounds associated with functional and nutritional properties of vegetable oils. This study aimed to apply, for the first time, Independent Component Analysis (ICA) to discriminate the composition of phytosterols (β-sitosterol, campesterol, stigmasterol) and tocopherols (α, β, γ, δ) in 20 soybean genotypes—14 non-transgenic and six transgenic—cultivated in two major producing regions of Paraná state, Brazil (Londrina and Ponta Grossa). Lipophilic compounds were extracted from soybean seeds, quantified via gas chromatography and HPLC, and statistically analyzed using ICA with the JADE algorithm. The extracted independent components successfully differentiated soybean varieties based on phytochemical profiles. Notably, transgenic cultivars from Ponta Grossa exhibited higher levels of total tocopherols, including α- and β-tocopherol, while conventional cultivars from both regions showed elevated phytosterol content, particularly campesterol and stigmasterol. ICA proved to be a powerful unsupervised method for visualizing patterns in complex compositional data. These findings highlight the significant influence of genotype and growing region on the nutraceutical potential of soybean, and support the use of multivariate analysis as a strategic tool for cultivar selection aimed at enhancing functional quality in food applications. Full article
Show Figures

Graphical abstract

41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
19 pages, 2315 KiB  
Article
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South [...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

18 pages, 1689 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

10 pages, 221 KiB  
Article
The Effect of Water- and Ultrasonic Bath Systems on Bioactive Compounds and Fatty Acid Compositions of Unroasted and Roasted Pumpkin Seeds
by Isam A. Mohamed Ahmed, Mehmet Musa Özcan, Nurhan Uslu, Emad Karrar and Fahad Aljuhaimi
Foods 2025, 14(15), 2740; https://doi.org/10.3390/foods14152740 - 5 Aug 2025
Abstract
In this study, the effects of water bath and ultrasonic bath systems on bioactive properties, phenolic components and fatty acid profiles of unroasted and roasted pumpkin seeds were investigated. It is thought that determining the bioactive components, phenolic constituents and fatty acid profiles [...] Read more.
In this study, the effects of water bath and ultrasonic bath systems on bioactive properties, phenolic components and fatty acid profiles of unroasted and roasted pumpkin seeds were investigated. It is thought that determining the bioactive components, phenolic constituents and fatty acid profiles of unroasted and roasted pumpkin seeds will lead to the establishment of usage norms according to their composition characteristics. Total phenolic quantities of the pumpkin seed extracts obtained by water bath extraction of the seeds were defined to be between 7.58 (control) and 11.55 (25 min) and 10.20 (control) and 17.18 mg GAE/100 g (50 min), respectively. Phenolic content increased by 50% after 50 min of ultrasonic extraction, indicating the efficiency of this method. Also, total flavonoid amounts increased about 55% after 25 min of ultrasonic extraction, indicating the efficiency of this method. It was observed that the catechin contents of unroasted pumpkin seeds obtained in water and ultrasonic baths decreased significantly at the 50th minute of extraction compared to the control. The antioxidant activity values (DPPH) of roasted pumpkin seeds treated in water- and ultrasonic bath systems increased by approximately 10% compared to the control at 50 min of sonication in both systems, respectively. Also, the 3,4-dihydroxybenzoic acid amounts of the extracts obtained by both extraction systems of roasted pumpkin seeds were determined between 9.85 (50 min) and 17.22 mg/100 g (control) and 11.17 (25 min) and 13.74 mg/100 g (50 min), respectively. The linoleic acid amounts of unroasted pumpkin seed oils extracted in water- and ultrasonic baths varied between 52.34 (50 min) and 53.33% (control) to 52.90 (50 min) and 53.04% (control), respectively. The linoleic acid values of the roasted pumpkin seed oils were established to be between 52.30 (50 min) and 52.84 (25 min) and 52.32 (50 min) and 53.46% (25 min), respectively. In general, the phenolic compound amounts of roasted pumpkin seeds were higher than those of unroasted ones. The fatty acid amounts of pumpkin seed oils extracted with an ultrasonic bath were generally slightly higher than those extracted with a water bath. In future studies, changes in the phytochemical and bioactive properties of pumpkin seed oils obtained by applying different roasting techniques and extraction methods will be investigated. Full article
(This article belongs to the Section Food Engineering and Technology)
20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 - 5 Aug 2025
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

Back to TopTop