A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
Abstract
1. Introduction
2. Results
2.1. Evaluation of the Total Polyphenol Content (TPC)
2.2. Evaluation of the Total Anthocyanin Content (TAC)
2.3. Qualitative Profile of Polyphenols and Saponins in Cynara cardunculus L. subsp. scolymus Extracts by UHPLC-ESIMS−
2.4. (Semi-)Quantitative Determination of Main Polyphenols and Saponins in Cynara cardunculus L. subsp. scolymus Extracts by UHPLC-ESIMS−
2.5. Qualitative Profile of Anthocyanins in Cynara cardunculus L. subsp. scolymus Extracts by UHPLC-ESIMS+
2.6. Semi-Quantitative Determination of Main Anthocyanins in Cynara cardunculus L. subsp. scolymus Extracts by UHPLC-ESIMS+
2.7. Antioxidant Activity Assays
2.7.1. DPPH Assay
2.7.2. FRAP Test
2.8. Determination of Cytotoxicity by MTT Assay
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Biological Material, Artichoke Collection and Sample Preparation
4.3. Total Polyphenol Content (TPC)
4.4. Total Monomeric Anthocyanin Content (TAC)
4.5. Free Radical-Scavenging Assay (DPPH Assay)
4.6. Ferric Reducing Power Activity (FRAP Assay)
4.7. Cytotoxicity Test (MTT Assay)
4.7.1. Cell Cultures
4.7.2. MTT Assay
4.8. Chemical Profiling by UHPLC-ESIMS/MS
4.8.1. Biological Material Extraction
4.8.2. UHPLC-MS/MS Analysis of Polyphenols and Saponins
4.8.3. UHPLC-MS/MS Analysis of Anthocyanins
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gostin, A.-I.; Waisundara, V.Y. Edible Flowers as Functional Food: A Review on Artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- De Falco, B.; Incerti, G.; Amato, M.; Lanzotti, V. Artichoke: Botanical, Agronomical, Phytochemical, and Pharmacological Overview. Phytochem. Rev. 2015, 14, 993–1018. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe Artichoke: A Functional Food and Source of Nutraceutical Ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Gebhardt, R.; Fausel, M. Antioxidant and Hepatoprotective Effects of Artichoke Extracts and Constituents in Cultured Rat Hepatocytes. Toxicol. Vitr. 1997, 11, 669–672. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic Acids and Other Cinnamates—Nature, Occurrence, Dietary Burden, Absorption and Metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum. Nutr. Dordr. Neth. 2015, 70, 441–453. [Google Scholar] [CrossRef]
- Saénz Rodriguez, T.; García Giménez, D.; de la Puerta Vázquez, R. Choleretic Activity and Biliary Elimination of Lipids and Bile Acids Induced by an Artichoke Leaf Extract in Rats. Phytomedicine Int. J. Phytother. Phytopharm. 2002, 9, 687–693. [Google Scholar] [CrossRef]
- Coinu, R.; Carta, S.; Urgeghe, P.P.; Mulinacci, N.; Pinelli, P.; Franconi, F.; Romani, A. Dose-Effect Study on the Antioxidant Properties of Leaves and Outer Bracts of Extracts Obtained from Violetto Di Toscana Artichoke. Food Chem. 2007, 101, 524–531. [Google Scholar] [CrossRef]
- Rondanelli, M.; Castellazzi, A.M.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Naso, M.; Nichetti, M.; Tagliacarne, C.; Valsecchi, C.; et al. Natural Killer Response and Lipo-Metabolic Profile in Adults with Low HDL-Cholesterol and Mild Hypercholesterolemia: Beneficial Effects of Artichoke Leaf Extract Supplementation. Evid. Based Complement. Alternat. Med. 2019, 2019, 2069701. [Google Scholar] [CrossRef]
- Fantini, N.; Colombo, G.; Giori, A.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Carai, M.A.M. Evidence of Glycemia-Lowering Effect by a Cynara scolymus L. Extract in Normal and Obese Rats. Phytother. Res. PTR 2011, 25, 463–466. [Google Scholar] [CrossRef]
- Villarini, M.; Acito, M.; Di Vito, R.; Vannini, S.; Dominici, L.; Fatigoni, C.; Pagiotti, R.; Moretti, M. Pro-Apoptotic Activity of Artichoke Leaf Extracts in Human Ht-29 and Rko Colon Cancer Cells. Int. J. Environ. Res. Public Health 2021, 18, 4166. [Google Scholar] [CrossRef]
- Porro, C.; Benameur, T.; Cianciulli, A.; Vacca, M.; Chiarini, M.; De Angelis, M.; Panaro, M.A. Functional and Therapeutic Potential of Cynara scolymus in Health Benefits. Nutrients 2024, 16, 872. [Google Scholar] [CrossRef]
- Kraft, K. Artichoke Leaf Extract—Recent Findings Reflecting Effects on Lipid Metabolism, Liver and Gastrointestinal Tracts. Phytomedicine Int. J. Phytother. Phytopharm. 1997, 4, 369–378. [Google Scholar] [CrossRef]
- Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic Acids and Flavonoids in the Immature Inflorescence of Globe Artichoke, Wild Cardoon, and Cultivated Cardoon. J. Agric. Food Chem. 2010, 58, 1026–1031. [Google Scholar] [CrossRef]
- Spanò, R.; Gena, P.; Linsalata, V.; Sini, V.; D’Antuono, I.; Cardinali, A.; Cotugno, P.; Calamita, G.; Mascia, T. Spotlight on Secondary Metabolites Produced by an Early-Flowering Apulian Artichoke Ecotype Sanitized from Virus Infection by Meristem-Tip-Culture and Thermotherapy. Antioxidants 2024, 13, 852. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Corrado, G.; Colla, G.; Cardarelli, M.; Pascale, S.D.; Rouphael, Y. Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars. Molecules 2020, 25, 3795. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Tucci, M.; Palma, M.D.; Pepe, R.; Nazzaro, F. Polyphenolic Composition in Different Parts of Some Cultivars of Globe Artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G.; Knödler, M.; Carle, R.; Schieber, A. Influence of Genotype, Harvest Time and Plant Part on Polyphenolic Composition of Globe Artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem. 2010, 119, 1175–1181. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauro, R.; Mauromicale, G. Variation of Phenolic Content in Globe Artichoke in Relation to Biological, Technical and Environmental Factors. Ital. J. Agron. 2009, 4, 181–189. [Google Scholar] [CrossRef]
- Montesano, V.; Negro, D.; Sonnante, G.; Laghetti, G.; Urbano, M. Polyphenolic Compound Variation in Globe Artichoke Cultivars as Affected by Fertilization and Biostimulants Application. Plants 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Didonna, A.; Renna, M.; Santamaria, P. Traditional Italian Agri-Food Products: A Unique Tool with Untapped Potential. Agriculture 2023, 13, 1313. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Pizza, C.; Piacente, S. Metabolite Profiling of “Green” Extracts of Cynara cardunculus subsp. scolymus, Cultivar “Carciofo Di Paestum” PGI by 1H NMR and HRMS-Based Metabolomics. Molecules 2022, 27, 3328. [Google Scholar] [CrossRef]
- Pagano, I.; Piccinelli, A.L.; Celano, R.; Campone, L.; Gazzerro, P.; De Falco, E.; Rastrelli, L. Chemical Profile and Cellular Antioxidant Activity of Artichoke By-Products. Food Funct. 2016, 7, 4841–4850. [Google Scholar] [CrossRef]
- Cerulli, A.; Cuozzo, R.; Melis, M.P.; Serreli, G.; Deiana, M.; Masullo, M.; Piacente, S. In-Depth LC-ESI/HRMS-Guided Phytochemical Analysis and Antioxidant Activity Analysis of Eco-Sustainable Extracts of Cynara cardunculus (Carciofo Di Paestum PGI) Leaves. Plants 2024, 13, 3591. [Google Scholar] [CrossRef] [PubMed]
- de Falco, B.; Incerti, G.; Pepe, R.; Amato, M.; Lanzotti, V. Metabolomic Fingerprinting of Romaneschi Globe Artichokes by NMR Spectroscopy and Multivariate Data Analysis. Phytochem. Anal. PCA 2016, 27, 304–314. [Google Scholar] [CrossRef]
- Fratianni, F.; Pepe, R.; Nazzaro, F. Polyphenol Composition, Antioxidant, Antimicrobial and Quorum Quenching Activity of the “Carciofo Di Montoro” (Cynara cardunculus var. scolymus) Global Artichoke of the Campania Region, Southern Italy. Food Nutr. Sci. 2014, 05, 2053–2062. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Collaborators. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Ahmady, S.H.; Elian, F.S.; Wessjohann, L.A. Metabolomics Driven Analysis of Artichoke Leaf and Its Commercial Products via UHPLC–q-TOF-MS and Chemometrics. Phytochemistry 2013, 95, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Persike, M.; Carle, R.; Schieber, A. Characterization and Quantification of Anthocyanins in Selected Artichoke (Cynara scolymus L.) Cultivars by HPLC–DAD–ESI–MS n. Anal. Bioanal. Chem. 2006, 384, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Kammerer, D.; Carle, R.; Schieber, A. Identification and Quantification of Caffeoylquinic Acids and Flavonoids from Artichoke (Cynara scolymus L.) Heads, Juice, and Pomace by HPLC-DAD-ESI/MSn. J. Agric. Food Chem. 2004, 52, 4090–4096. [Google Scholar] [CrossRef]
- Romani, A.; Pinelli, P.; Cantini, C.; Cimato, A.; Heimler, D. Characterization of Violetto Di Toscana, a Typical Italian Variety of Artichoke (Cynara scolymus L.). Food Chem. 2006, 95, 221–225. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Bruno, A.; D’Antuono, I.; Linsalata, V.; Cardinali, A.; Neilson, A.P. In Vitro Evidences of the Globe Artichoke Antioxidant, Cardioprotective and Neuroprotective Effects. J. Funct. Foods 2023, 107, 105674. [Google Scholar] [CrossRef]
- D’Antuono, I.; Garbetta, A.; Linsalata, V.; Minervini, F.; Cardinali, A. Polyphenols from Artichoke Heads (Cynara cardunculus (L.) subsp. scolymus Hayek): In Vitro Bio-Accessibility, Intestinal Uptake and Bioavailability. Food Funct. 2015, 6, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Le Bot, M.; Thibault, J.; Pottier, Q.; Boisard, S.; Guilet, D. An Accurate, Cost-Effective and Simple Colorimetric Method for the Quantification of Total Triterpenoid and Steroidal Saponins from Plant Materials. Food Chem. 2022, 383, 132597. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, K.; Matsubara, H.; Sano, Y. Inhibitory Effect of the Flowers of Artichoke (Cynara cardunculus) on TPA-Induced Inflammation and Tumor Promotion in Two-Stage Carcinogenesis in Mouse Skin. J. Nat. Med. 2010, 64, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Yasukawa, K. Antitumor-Promoting and Anti-Inflammatory Activities of Triterpenoids and Sterols from Plants and Fungi. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Bioactive Natural Products (Part F); Elsevier: Amsterdam, The Netherlands, 2001; Volume 25, pp. 43–87. [Google Scholar]
- Križková, L.; Mučaji, P.; Nagy, M.; Krajčovič, J. Triterpenoid Cynarasaponins from Cynara cardunculus L. Reduce Chemically Induced Mutagenesis in Vitro. Phytomedicine 2004, 11, 673–678. [Google Scholar] [CrossRef]
- Neamțu, A.-A.; Maghiar, T.A.; Turcuș, V.; Maghiar, P.B.; Căpraru, A.-M.; Lazar, B.-A.; Dehelean, C.-A.; Pop, O.L.; Neamțu, C.; Totolici, B.D.; et al. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 6783–6804. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Villela Castrejón, J.; Serna-Saldívar, S.O.; Jacobo-Velázquez, D.A. Anticancer Potential of Dihydrocaffeic Acid: A Chlorogenic Acid Metabolite. CyTA-J. Food 2020, 18, 245–248. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Jiang, Y.; Kusama, K.; Satoh, K.; Takayama, E.; Watanabe, S.; Sakagami, H. Induction of Cytotoxicity by Chlorogenic Acid in Human Oral Tumor Cell Lines. Phytomedicine Int. J. Phytother. Phytopharm. 2000, 7, 483–491. [Google Scholar] [CrossRef]
- Hernandes, L.C.; Machado, A.R.T.; Tuttis, K.; Ribeiro, D.L.; Aissa, A.F.; Dévoz, P.P.; Antunes, L.M.G. Caffeic Acid and Chlorogenic Acid Cytotoxicity, Genotoxicity and Impact on Global DNA Methylation in Human Leukemic Cell Lines. Genet. Mol. Biol. 2020, 43, e20190347. [Google Scholar] [CrossRef]
- Vélez, M.D.; Pedroza-Díaz, J.; Santa-González, G.A. Data on the Cytotoxicity of Chlorogenic Acid in 3D Cultures of HT-29 Cells. Data Brief 2023, 50, 109527. [Google Scholar] [CrossRef]
- Mileo, A.M.; Di Venere, D.; Linsalata, V.; Fraioli, R.; Miccadei, S. Artichoke Polyphenols Induce Apoptosis and Decrease the Invasive Potential of the Human Breast Cancer Cell Line MDA-MB231. J. Cell. Physiol. 2012, 227, 3301–3309. [Google Scholar] [CrossRef] [PubMed]
- Suberu, J.O.; Romero-Canelón, I.; Sullivan, N.; Lapkin, A.A.; Barker, G.C. Comparative Cytotoxicity of Artemisinin and Cisplatin and Their Interactions with Chlorogenic Acids in MCF7 Breast Cancer Cells. ChemMedChem 2014, 9, 2791–2797. [Google Scholar] [CrossRef] [PubMed]
- Ramli, B.; Mokred, M.R.; Hamiani, A.; Benzine, S.B.; Bendeddouche, C.K.; Lao, M.T.; Fauconnier, M.-L.; Bouzidi, N.K. Chlorogenic Acid with Cytotoxic Activity and Other Constituents from Anacyclus Valentinus from Algeria: Scientific Paper. J. Serbian Chem. Soc. 2025, 90, 163–173. [Google Scholar] [CrossRef]
- Atalay, A.; Bender, O. Evaluation of Anti-Proliferative and Cytotoxic Effects of Chlorogenic Acid on Breast Cancer Cell Lines by Real-Time, Label-Free and High-Throughput Screening. Marmara Pharm. J. 2018, 22, 173–179. [Google Scholar] [CrossRef]
- Kamalakararao, K.; Duddukuri, G.R.; Muthulingam, M.; Gopalakrishnan, V.K.; Hagos, Z.; Palleti, J.; Karri, K. Effect of Isolated Bioactive Flavonoid Apigenin-7-o-β-d-Glucuronide Methyl Ester on Cyclooxygenase-2 Gene Expression in the Breast Cancer MCF-7 Cell Lines. Drug Invent. Today 2018, 10, 3552–3555. [Google Scholar]
- Liu, M.-M.; Ma, R.-H.; Ni, Z.-J.; Thakur, K.; Cespedes-Acuña, C.L.; Jiang, L.; Wei, Z.-J. Apigenin 7-O-Glucoside Promotes Cell Apoptosis through the PTEN/PI3K/AKT Pathway and Inhibits Cell Migration in Cervical Cancer HeLa Cells. Food Chem. Toxicol. 2020, 146, 111843. [Google Scholar] [CrossRef]
- Sokkar, H.H.; Abo Dena, A.S.; Mahana, N.A.; Badr, A. Artichoke Extracts in Cancer Therapy: Do the Extraction Conditions Affect the Anticancer Activity? Future J. Pharm. Sci. 2020, 6, 78. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Seasonal Variation in Bioactive Properties and Phenolic Composition of Cardoon (Cynara Cardunculus var. Altilis) Bracts. Food Chem. 2021, 336, 127744. [Google Scholar] [CrossRef]
- Khedr, A.I.M.; Farrag, A.F.S.; Nasr, A.M.; Swidan, S.A.; Nafie, M.S.; Abdel-Kader, M.S.; Goda, M.S.; Badr, J.M.; Abdelhameed, R.F.A. Comparative Estimation of the Cytotoxic Activity of Different Parts of Cynara scolymus L.: Crude Extracts versus Green Synthesized Silver Nanoparticles with Apoptotic Investigation. Pharmaceutics 2022, 14, 2185. [Google Scholar] [CrossRef]
- Rotondo, R.; Cruz, P.S.; Masin, M.; Bürgi, M.; Girardini, J.; García, S.M.; Rodríguez, G.R.; Furlan, R.L.E.; Escalante, A.M. Artichoke Extracts with Potential Application in Chemoprevention and Inflammatory Processes. Braz. J. Pharm. Sci. 2022, 58, e19238. [Google Scholar] [CrossRef]
- Colombo, R.; Moretto, G.; Pellicorio, V.; Papetti, A. Globe Artichoke (Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties. Foods 2024, 13, 1427. [Google Scholar] [CrossRef]
- Olas, B. An Overview of the Versatility of the Parts of the Globe Artichoke (Cynara scolymus L.), Its By-Products and Dietary Supplements. Nutrients 2024, 16, 599. [Google Scholar] [CrossRef] [PubMed]
- Laghezza Masci, V.; Alicandri, E.; Antonelli, C.; Paolacci, A.R.; Marabottini, R.; Tomassi, W.; Scarascia Mugnozza, G.; Tiezzi, A.; Garzoli, S.; Vinciguerra, V.; et al. Cynara cardunculus L. var. scolymus L. Landrace “Carciofo Ortano” as a Source of Bioactive Compounds. Plants 2024, 13, 761. [Google Scholar] [CrossRef]
- Laghezza Masci, V.; Mezzani, I.; Alicandri, E.; Tomassi, W.; Paolacci, A.R.; Covino, S.; Vinciguerra, V.; Catalani, E.; Cervia, D.; Ciaffi, M.; et al. The Role of Extracts of Edible Parts and Production Wastes of Globe Artichoke (Cynara cardunculus L. var. scolymus (L.)) in Counteracting Oxidative Stress. Antioxidants 2025, 14, 116. [Google Scholar] [CrossRef]
- Mileo, A.M.; Di Venere, D.; Abbruzzese, C.; Miccadei, S. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line. Oxid. Med. Cell. Longev. 2015, 2015, 363827. [Google Scholar] [CrossRef]
- Miccadei, S.; Venere, D.D.; Cardinali, A.; Romano, F.; Durazzo, A.; Foddai, M.S.; Fraioli, R.; Mobarhan, S.; Maiani, G. Antioxidative and Apoptotic Properties of Polyphenolic Extracts from Edible Part of Artichoke (Cynara scolymus L.) on Cultured Rat Hepatocytes and on Human Hepatoma Cells. Nutr. Cancer 2008, 60, 276–283. [Google Scholar] [CrossRef]
- Genovese, C.; Brundo, M.V.; Toscano, V.; Tibullo, D.; Puglisi, F.; Raccuia, S.A. Effect of Cynara Extracts on Multiple Myeloma Cell Lines. Acta Hortic. 2016, 1147, 113–118. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Salekzamani, S.; Ebrahimi-Mameghani, M.; Rezazadeh, K. The Antioxidant Activity of Artichoke (Cynara scolymus): A Systematic Review and Meta-Analysis of Animal Studies. Phytother. Res. 2019, 33, 55–71. [Google Scholar] [CrossRef]
- Gaafar, A.; Salama, Z.; El-Baz, F. Antioxidant and AntiproliferativeEffects on Human Liver HePG2Epithelial Cells from Artichoke (Cynara scolymus L.) By- Products. J. Nat. Sci. Res. 2013, 3, 17–24. [Google Scholar]
- Shallan, M.A.; Ali, M.A.; Meshrf, W.A.; Marrez, D.A. In Vitro Antimicrobial, Antioxidant and Anticancer Activities of Globe Artichoke (Cynara cardunculus Var. scolymus L.) Bracts and Receptacles Ethanolic Extract. Biocatal. Agric. Biotechnol. 2020, 29, 101774. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Phenolic Acids and Flavonoids in Leaf and Floral Stem of Cultivated and Wild Cynara cardunculus L. Genotypes. Food Chem. 2011, 126, 417–422. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Galvano, F.; La Fauci, L.; Lazzarino, G.; Fogliano, V.; Ritieni, A.; Ciappellano, S.; Battistini, N.C.; Tavazzi, B.; Galvano, G. Cyanidins: Metabolism and Biological Properties. J. Nutr. Biochem. 2004, 15, 2–11. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, H.; Wu, W.; Wang, W.; Li, W. Research on Anthocyanins from Rubus “Shuofeng” as Potential Antiproliferative and Apoptosis-Inducing Agents. Foods 2023, 12, 1216. [Google Scholar] [CrossRef]
- Cahyana, Y.; Mills, C.E.; Huda, S.; Gordon, M.H. Factors Affecting Cellular Uptake of Anthocyanins: The Role of pH, Glucose and Anthocyanin Structure. Nutrients 2022, 14, 4807. [Google Scholar] [CrossRef]
- Ho, M.-L.; Chen, P.-N.; Chu, S.-C.; Kuo, D.-Y.; Kuo, W.-H.; Chen, J.-Y.; Hsieh, Y.-S. Peonidin 3-Glucoside Inhibits Lung Cancer Metastasis by Downregulation of Proteinases Activities and MAPK Pathway. Nutr. Cancer 2010, 62, 505–516. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Bucknall, M.; Arcot, J. Effect of Different Anthocyanidin Glucosides on Lutein Uptake by Caco-2 Cells, and Their Combined Activities on Anti-Oxidation and Anti-Inflammation In Vitro and Ex Vivo. Molecules 2018, 23, 2035. [Google Scholar] [CrossRef]
- Chen, P.-N.; Chu, S.-C.; Chiou, H.-L.; Chiang, C.-L.; Yang, S.-F.; Hsieh, Y.-S. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Nutr. Cancer 2005, 53, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.S.; Nguyen, H.P.; Shen, S.; Schug, K.A. General Method for Extraction of Blueberry Anthocyanins and Identification Using High Performance Liquid Chromatography–Electrospray Ionization-Ion Trap-Time of Flight-Mass Spectrometry. J. Chromatogr. A 2009, 1216, 4728–4735. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Tommonaro, G.; Abbamondi, G.R.; Nicolaus, B.; Poli, A.; D’Angelo, C.; Iodice, C.; De Prisco, R. Productivity and Nutritional Trait Improvements of Different Tomatoes Cultivated with Effective Microorganisms Technology. Agriculture 2021, 11, 112. [Google Scholar] [CrossRef]
- Lúcio, M.; Nunes, C.; Gaspar, D.; Ferreira, H.; Lima, J.L.F.C.; Reis, S. Antioxidant Activity of Vitamin E and Trolox: Understanding of the Factors That Govern Lipid Peroxidation Studies In Vitro. Food Biophys. 2009, 4, 312–320. [Google Scholar] [CrossRef]
- Frangu, A.; Ashrafi, A.M.; Sýs, M.; Arbneshi, T.; Metelka, R.; Adam, V.; Vlček, M.; Richtera, L. Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2020, 10, 2497. [Google Scholar] [CrossRef]
- Hidalgo, G.-I.; Almajano, M. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Yahia, I.; Zaouali, Y.; Ciavatta, M.; Ligresti, A.; Jaouadi, R.; Boussaid, M.; Cutignano, A. Polyphenolic Profiling, Quantitative Assessment and Biological Activities of Tunisian Native Mentha rotundifolia (L.) Huds. Molecules 2019, 24, 2351. [Google Scholar] [CrossRef] [PubMed]
TPC | TAC | DPPH | DPPH | FRAP | |
---|---|---|---|---|---|
mg/g DW | mg/100 g DW | g eq TROLOX/ | IC50 μg/mL | μmol Fe2+ eq/ | |
100 g DW | 100 g DW | ||||
H | 1.20 ± 0.06 b | 1.50 ± 0.04 b | 3.01 ± 0.01 b | 73.89 ± 2.61 a | 2118.44 ± 0.90 a |
E | 3.40 ± 0.20 a | 12.70 ± 0.02 a | 5.88 ± 0.04 a | 37.34 ± 0.54 c | 1802.28 ± 1.07 c |
S | 0.75 ± 0.04 c | - | 2.66 ± 0.01 c | 69.23 ± 1.24 b | 1890.38 ± 1.56 b |
Compound | H | E | S | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Exact Mass | Measured m/z | MS/MS | Rt | mg/100 g | SD | mg/100 g | SD | mg/100 g | SD | |
DW | DW | DW | ||||||||
Chlorogenic acid * | 353.0873 | 353.0888 | 191.0556 | 1.85 | 35.62 b | 3.67 | 43.7 b | 1.90 | 153.11 a | 59.71 |
p-Coumaroyl quinic acid | 337.0934 | 337.0938 | 191.0556 | 2.24 | 31.59 a | 3.57 | 8.94 c | 0.43 | 15.03 b | 3.30 |
3,5-Dicaffeoyl quinic acid * | 515.1195 | 515.1204 | 353.0882/191.0556 | 3.23 | 5.84 b | 1.26 | 9.04 b | 0.66 | 31.91 a | 15.69 |
Luteolin-7-O-rutinoside | 593.1506 | 593.1522 | 285.0408 | 2.78 | 0.30 b | 0.09 | 1.16 a | 0.09 | 1.74 a | 0.84 |
Luteolin-7-O-glucuronide | 461.0720 | 461.0735 | 285.0409 | 2.96 | 31.39 a | 3.46 | 19.03 b | 0.52 | 4.45 c | 0.89 |
Luteolin-7-O-glucoside | 447.0933 | 447.0938 | 285.0409 | 2.98 | 2.19 | 0.46 | 3.76 | 0.30 | 2.70 | 1.30 |
Apigenin-7-O-rutinoside | 577.1563 | 577.1570 | 269.0460 | 3.26 | 8.04 a | 1.50 | 3.35 b | 0.17 | 0.25 c | 0.02 |
Apigenin-7-O-glucoside | 431.0978 | 431.0987 | 269.0460 | 3.49 | 20.80 a | 2.31 | 3.38 b | 0.17 | 1.42 b | 0.19 |
Apigenin-7-O-glucuronide | 445.0776 | 445.0782 | 269.0460 | 3.52 | 103.95 a | 5.00 | 71.52 b | 2.74 | 45.82 c | 3.67 |
Apigenin | 269.0455 | 269.0458 | 151.0026/117.0332 | 5.72 | 1.72 b | 0.38 | 1.10 b | 0.40 | 13.14 a | 3.30 |
Cynarasaponin J # | 941.4752 | 941.4767 | 779.4255/629.3701/471.3501 | 5.71 | 11.64 b | 3.56 | <LOQ | 193.68 a | 45.59 | |
Cynarasaponin F/I # | 779.4223 | 779.4237 | 717.4263/629.3701/471.3501 | 5.95 | 17.48 b | 4.46 | <LOQ | 108.21 a | 27.59 | |
Cynarasaponin E # | 809.4329 | 809.4336 | 647.3750/471.3501 | 6.11 | 1.11 b | 0.42 | <LOQ | 69.84 a | 24.27 | |
Cynarasaponin A/H #,† | 925.4832 | 925.4818 | 763.4285/613.3754/455.3527 | 6.57, 6.84 | 29.02 b | 9.24 | 2.02 b | 0.09 | 891.90 a | 149.11 |
Compound | H | E | S | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Exact Mass | Measured m/z | MS/MS | Rt | mg/100 g DW | SD | mg/100 g DW | SD | mg/100 g DW | SD | |
Cyanidin malonylglycoside | 535.1082 | 535.1088 | 287.0549 | 3.52 | 0.39 b | 0.22 | 2.25 a | 0.03 | 1.98 a | 0.97 |
Cyanidin malonylglycoside 2 | 535.1082 | 535.1088 | 287.0549 | 3.63 | 0.10 b | 0.08 | 2.39 a | 0.43 | nd | |
Peonidin glycoside | 463.1235 | 463.1239 | 301.0708 | 3.69 | nd | 0.68 | 0.33 | nd | ||
Peonidin malonylglycoside | 549.1239 | 549.1250 | 301.0708 | 4.29 | nd | 0.56 | 0.43 | nd | ||
Peonidin glycoside 2 | 463.1235 | 463.1239 | 301.0708 | 4.99 | 0.21 b | 0.06 | 0.85 a | 0.09 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tommonaro, G.; De Simone, G.; Iodice, C.; Allarà, M.; Cutignano, A. A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region. Molecules 2025, 30, 3285. https://doi.org/10.3390/molecules30153285
Tommonaro G, De Simone G, Iodice C, Allarà M, Cutignano A. A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region. Molecules. 2025; 30(15):3285. https://doi.org/10.3390/molecules30153285
Chicago/Turabian StyleTommonaro, Giuseppina, Giulia De Simone, Carmine Iodice, Marco Allarà, and Adele Cutignano. 2025. "A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region" Molecules 30, no. 15: 3285. https://doi.org/10.3390/molecules30153285
APA StyleTommonaro, G., De Simone, G., Iodice, C., Allarà, M., & Cutignano, A. (2025). A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region. Molecules, 30(15), 3285. https://doi.org/10.3390/molecules30153285