Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Pistachio
2.3. Physicochemical Parameters of Soils
2.4. Elemental Analysis
Quantification of Elements by Q-ICP-MS
2.5. Total Phenolic Content (TP)
2.6. Identification of Phenolic Compounds in Pistachio Skin by UPLC-PDA-HESI II-Orbitrap-MS/MS
2.7. Antioxidant Activity
2.7.1. Free Radical Scavenging Activity on DPPH
2.7.2. Ferric Reducing Antioxidant Power (FRAP)
2.8. Statistical Analysis
- Linear Discriminant Analysis (LDA)
- Canonical Correlation Analysis (CCA)
- Generalized Procrustes Analysis (GPA)
3. Results
3.1. Pistachio Kernel Morphological and Chemical Characterization
3.2. Soils Physicochemical Measurement
3.3. Multi-Elemental Composition
3.4. Yield Extracts and Total Phenolic Content (TP)
3.5. Antioxidant Capacity
3.6. Generalized Procrustes Analysis (GPA)
3.7. UPLC-PDA-HESI II-Orbitrap-MS/MS: Compounds Identified in Pistachio Skin
4. Discussion
4.1. Total Phenolic Content
4.2. Kernel Mineral Composition and Its Relation to Antioxidant Properties
4.3. Soil Physicochemical Parameters
4.4. Antioxidant Capacity and Phenolic Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Interempresas Media, S.L. Origen Y Producción del Pistacho. Available online: https://www.frutas-hortalizas.com/Frutas/Origen-produccion-Pistacho.html (accessed on 21 July 2025).
- (INTA) Instituto Nacional de Tecnología Agropecuaria. El INTA Realizó La Primera Zonificación Agroclimática Del Pistachero. Available online: https://www.argentina.gob.ar/noticias/el-inta-realizo-la-primera-zonificacion-agroclimatica-del-pistachero (accessed on 20 July 2025).
- Argentina Forbes Quiénes Lideran el Boom del Pistacho en. Argentina. Available online: https://www.forbesargentina.com/money/quienes-lideran-boom-pistacho-argentina-n66120 (accessed on 20 July 2025).
- Fabani, M.P.; Luna, L.; Baroni, M.V.; Monferran, M.V.; Ighani, M.; Tapia, A.; Wunderlin, D.A.; Feresin, G.E. Pistachio (Pistacia vera Var Kerman) from Argentinean Cultivars. A Natural Product with Potential to Improve Human Health. J. Funct. Foods 2013, 5, 1347–1356. [Google Scholar] [CrossRef]
- Penci, M.C.; Martinez, M.L.; Fabani, M.P.; Feresin, G.E.; Tapia, A.; Ighani, M.; Ribotta, P.D.; Wunderlin, D.A. Matching Changes in Sensory Evaluation with Physical and Chemical Parameters. Food Bioproc. Tech. 2013, 6, 3305–3316. [Google Scholar] [CrossRef]
- Martínez, M.L.; Fabani, M.P.; Baroni, M.V.; Huaman, R.N.M.; Ighani, M.; Maestri, D.M.; Wunderlin, D.; Tapia, A.; Feresin, G.E. Argentinian Pistachio Oil and Flour: A Potential Novel Approach of Pistachio Nut Utilization. J. Food Sci. Technol. 2016, 53, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
- Zalazar-García, D.; Feresin, G.E.; Rodriguez, R. Optimal Operational Variables of Phenolic Compound Extractions from Pistachio Industry Waste (Pistacia Vera Var. Kerman) Using the Response Surface Method. Biomass Convers. Biorefin. 2022, 12, 3761–3770. [Google Scholar] [CrossRef]
- Piñeiro, M.; Parera, V.; Ortiz, J.E.; Llalla-Cordova, O.; Manrique, S.; Castro, B.; Ighani, M.; Luna, L.C.; Feresin, G.E. Agro-Industrial Waste from Pistacia Vera: Chemical Profile and Bioactive Properties. Plants 2025, 14, 1420. [Google Scholar] [CrossRef]
- Beede, R.; Brown, P.; Kallsen, C.; Weinbaum, S. Diagnosing and Correcting Nutrient Deficiencies. In Pistachio Production Manual; Division of Agriculture and Natural Resources, University of California: Oakland, CA, USA, 2005; pp. 147–157. [Google Scholar]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2022, 11, 18. [Google Scholar] [CrossRef]
- United States Department of Agriculture. USDA Nutrient Database for Standard Reference; United States Department of Agriculture: Washington, DC, USA, 2005.
- Moreno-Rojas, J.M.; Velasco-Ruiz, I.; Lovera, M.; Ordoñez-Díaz, J.L.; Ortiz-Somovilla, V.; De Santiago, E.; Arquero, O.; Pereira-Caro, G. Evaluation of Phenolic Profile and Antioxidant Activity of Eleven Pistachio Cultivars (Pistacia vera L.) Cultivated in Andalusia. Antioxidants 2022, 11, 609. [Google Scholar] [CrossRef]
- Karimi, S.; Tavallali, V. Interactive Effects of Soil Salinity and Boron on Growth, Mineral Composition and CO2 Assimilation of Pistachio Seedlings. Acta Physiol. Plant. 2017, 39, 242. [Google Scholar] [CrossRef]
- Yarahmadi, J.; Amini, A. Determining Land Suitability for Pistachio Cultivation Development Based on Climate Variables to Adapt to Drought. Theor. Appl. Climatol. 2021, 143, 1631–1642. [Google Scholar] [CrossRef]
- Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. Distribution of Fatty Acids and Phytosterols as a Criterion to Discriminate Geographic Origin of Pistachio Seeds. Food Chem. 2007, 104, 403–408. [Google Scholar] [CrossRef]
- Catalán, L.; Alvarez-Ortí, M.; Pardo-Giménez, A.; Gómez, R.; Rabadán, A.; Pardo, J.E. Pistachio Oil: A Review on Its Chemical Composition, Extraction Systems, and Uses. Eur. J. Lipid Sci. Technol. 2017, 119, 1600126. [Google Scholar] [CrossRef]
- Seferoglu, S.; Seferoglu, H.G.; Tekintas, F.E.; Balta, F. Biochemical Composition Influenced by Different Locations in Uzun Pistachio Cv. (Pistacia vera L.) Grown in Turkey. J. Food Compos. Anal. 2006, 19, 461–465. [Google Scholar] [CrossRef]
- Tsantili, E.; Takidelli, C.; Christopoulos, M.; Lambrinea, E.; Rouskas, D.; Roussos, P. Physical, Compositional and Sensory Differences in Nuts among Pistachio (Pistachia vera L.) Varieties. Sci. Hortic. 2010, 125, 562–568. [Google Scholar] [CrossRef]
- Rabadán, A.; Pardo, J.E.; Gómez, R.; Alvarruiz, A.; Álvarez-Ortí, M. Usefulness of Physical Parameters for Pistachio Cultivar Differentiation. Sci. Hortic. 2017, 222, 7–11. [Google Scholar] [CrossRef]
- Anderson, K.A.; Smith, B.W. Chemical Profiling To Differentiate Geographic Growing Origins of Coffee. J. Agric. Food Chem. 2002, 50, 2068–2075. [Google Scholar] [CrossRef]
- Fernández Linares, L.; Rojas Avelizapa, N.; Roldan Carrillo, T.; Islas, M.; Zerraga Martinez, H.; Hernandez Uribe, R.; Reyes Avila, R.; Flores Hernandez, D.; Arce Ortega, J. Manual de Técnicas de Análisis de Suelos Aplicadas a la Remediación de Sitios Contaminados; Instituto Nacional de Ecología, Ed.; Instituto Mexicano De Petróleo: Mexico City, Mexico, 2006. [Google Scholar]
- ICH International Council for Harmonisation. Q2 (R1): Validation of Analytical Procedures: Text and Methodology—Guidance for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Re; ICH International Council for Harmonisation: Geneva, Switzerland, 2005; Volume 2. [Google Scholar]
- Horwitz, W.; Albert, R. The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision. J. AOAC Int. 2006, 89, 1095–1109. [Google Scholar] [CrossRef]
- Heldrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Simirgiotis, M.J.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic Compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) Analyzed by UHPLC–Q/Orbitrap/MS/MS and Its Antioxidant Properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Areche, C.; Sepúlveda, B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC–Q/Orbitrap/MS/MS). Molecules 2016, 21, 92. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gómez, J.; Simirgiotis, M.J.; Kruse, M.S.; Gamarra-Luques, C.; Lima, B.; Zaragosa, J.; Piñeiro, M.; Tapia, A.; Coirini, H.; Rey, M. Oxalis Erythrorhiza Gillies Ex Hooker et Arnott (Oxalidaceae): Chemical Analysis, Biological In Vitro and In Vivo Properties and Behavioral Effects. Antioxidants 2024, 13, 1494. [Google Scholar] [CrossRef]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant Activity and Phenolic Profile of Pistachio (Pistacia vera L., Variety Bronte) Seeds and Skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
- CXS 1993-1995; Codex Alimentarius Commission General Standard for Contaminants and Toxins in Food and Feed. FAO/WHO: Rome, Italy, 1995.
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Determination of Phenolic Composition and Antioxidant Activity in Fruits, Rhizomes and Leaves of the White Strawberry (Fragaria chiloensis Spp. Chiloensis Form Chiloensis) Using HPLC-DAD–ESI-MS and Free Radical Quenching Techniques. J. Food Compos. Anal. 2010, 23, 545–553. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Paini, M.; Casazza, A.A.; Perego, P. Effect of Encapsulating Agent on Physical-Chemical Characteristics of Olive Pomace Polyphenols-Rich Extracts. Chem. Eng. Trans. 2015, 43, 97–102. [Google Scholar] [CrossRef]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition Attributes and Health Effects of Pistachio Nuts. Br. J. Nutr. 2015, 113, S79–S93. [Google Scholar] [CrossRef]
- Xiao, J. Dietary Flavonoid Aglycones and Their Glycosides: Which Show Better Biological Significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef] [PubMed]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and Total Phenolics in 10 Different Nut Types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Messant, M.; Hennebelle, T.; Guérard, F.; Gakière, B.; Gall, A.; Thomine, S.; Krieger-Liszkay, A. Manganese Excess and Deficiency Affects Photosynthesis and Metabolism in Marchantia Polymorpha. Plant Biol. 2022. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants: A Comprehensive Review. Arch. Toxicol. 2025, 99, 1893–1997. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Sanden, B.L.; Ferguson, L.; Reyes, H.C.; Grattan, S.R. Effect of Salinity on Evapotranspiration and Yield of San Joaquin Valley Pistachios. Acta Hortic. 2004, 664, 583–589. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Luo, L.; Zhang, Y.; Huang, K.; Guan, X. Millet Quinic Acid Relieves Colitis by Regulating Gut Microbiota and Inhibiting MyD88/NF-ΚB Signaling Pathway. Foods 2025, 14, 2267. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, Y.; Guan, T.; Zhang, Y.; Huang, K.; Zhang, Z.; Cao, W.; Guan, X. Quinic Acid Alleviates High-Fat Diet-Induced Neuroinflammation by Inhibiting DR3/IKK/NF-ΚB Signaling via Gut Microbial Tryptophan Metabolites. Gut Microbes 2024, 16, 2374608. [Google Scholar] [CrossRef]
- Jang, S.A.; Park, D.W.; Kwon, J.E.; Song, H.S.; Park, B.; Jeon, H.; Sohn, E.H.; Koo, H.J.; Kang, S.C. Quinic Acid Inhibits Vascular Inflammation in TNF-α-Stimulated Vascular Smooth Muscle Cells. Biomed. Pharmacother. 2017, 96, 563–571. [Google Scholar] [CrossRef]
- Ghasemi-Dehnoo, M.; Lorigooini, Z.; Amini-Khoei, H.; Sabzevary-Ghahfarokhi, M.; Rafieian-Kopaei, M. Quinic Acid Ameliorates Ulcerative Colitis in Rats, through the Inhibition of Two TLR4-NF-ΚB and NF-ΚB-INOS-NO Signaling Pathways. Immun. Inflamm. Dis. 2023, 11, e926. [Google Scholar] [CrossRef]
- Mortelé, O.; Jörissen, J.; Spacova, I.; Lebeer, S.; van Nuijs, A.L.N.; Hermans, N. Demonstrating the Involvement of an Active Efflux Mechanism in the Intestinal Absorption of Chlorogenic Acid and Quinic Acid Using a Caco-2 Bidirectional Permeability Assay. Food Funct. 2021, 12, 417–425. [Google Scholar] [CrossRef]
- Stoeva, S.; Hvarchanova, N.; Georgiev, K.D.; Radeva-Ilieva, M. Green Tea: Antioxidant vs. Pro-Oxidant Activity. Beverages 2025, 11, 64. [Google Scholar] [CrossRef]
- Tan, A.; Scortecci, K.C.; Boylan, F. A Review on Flavonoids as Anti-Helicobacter Pylori Agents. Appl. Sci. 2025, 15, 3936. [Google Scholar] [CrossRef]
Crop1 | Crop2 | Crop3 | |
---|---|---|---|
Length (mm) | 15.8 ± 0.8 a | 15.3 ± 0.7 ab | 15.2 ± 0.9 b |
Width (mm) | 10.5 ± 0.5 a | 10.0 ± 0.5 a | 10.3 ± 0.7 a |
Nut weight per unit (g) | 1.15 ± 0.06 b | 1.0 ± 0.1 a | 1.0 ± 0.2 a |
Yield extracts (% w/w) | |||
PEE | 44 ± 3 b | 45 ± 2 ab | 46 ± 2 a |
MeOH-H+E | 12 ± 1 a | 13.3 ± 0.8 a | 12.3 ± 0.9 a |
Total phenolic content (mg GAE/100 g DW) | 273 ± 21 b | 234 ± 22 a | 276 ± 14 b |
Element (mg/g) | Crop1 | Crop2 | Crop3 |
---|---|---|---|
Fe | 18 ± 2 ab | 19 ± 3 b | 16 ± 1 a |
Ca | 17 ± 2 a | 15 ± 2 a | 19 ± 2 b |
Al | 15 ± 1 c | 13 ± 2 b | 11 ± 1 a |
Mg | 7.5 ± 0.8 a | 7.5 ± 0.7 a | 6.7 ± 0.7 a |
K | 6.5 ± 0.8 c | 5 ± 1 b | 4.2 ± 0.5 a |
Na | 1.8 ± 0.4 b | 2.2 ± 0.9 b | 0.78 ± 0.06 a |
Mn | 0.26 ± 0.04 a | 0.27 ± 0.02 a | 0.26 ± 0.04 a |
Sr | 0.15 ± 0.03 a | 0.18 ± 0.02 b | 0.17 ± 0.02 ab |
Rb | 0.06 ± 0.02 b | 0.037 ± 0.008 a | 0.029 ± 0.004 a |
Zn | 0.042 ± 0.003 b | 0.036 ± 0.003 a | 0.035 ± 0.004 a |
V | 0.028 ± 0.002 a | 0.025 ± 0.002 a | 0.025 ± 0.004 a |
Cu | 0.012 ± 0.001 a | 0.012 ± 0.002 a | 0.012 ± 0.002 a |
Pb | 0.018 ± 0.005 b | 0.016 ± 0.004 b | 0.012 ± 0.002 a |
Element (µg/g) | Crop1 | Crop2 | Crop3 |
Se | 4.4 ± 0.3 c | 3.6 ± 0.4 b | 2.9 ± 0.3 a |
As | 9 ± 1 c | 6.5 ± 0.5 b | 5.1 ± 0.8 a |
Ni | 5.8 ± 0.7 b | 7.6 ± 0.8 c | 4.8 ± 0.8 a |
Co | 4.8 ± 0.6 a | 5.5 ± 0.6 b | 4.4 ± 0.6 a |
Cd | 0.19 ± 0.06 b | 0.13 ± 0.04 a | 0.13 ± 0.02 a |
K/Rb | 102 ± 17 a | 118 ± 11 b | 139 ± 17 c |
Ca/Sr | 116 ± 28 b | 85 ± 11 a | 108 ± 12 b |
Element | Crop1 | Crop2 | Crop3 |
---|---|---|---|
K | 946 ± 78 a | 1064 ± 33 a | 1007 ± 114 a |
Ca | 121 ± 2 a | 131 ± 5 a | 129 ± 8 a |
Mg | 116 ± 9 a | 129 ± 3 a | 120 ± 10 a |
Na | 8 ± 1 a | 9 ± 1 a | 13 ± 2 b |
Zn | 3.0 ± 0.2 b | 2.8 ± 0.1 ab | 2.7 ± 0.1 a |
Fe | 3.2 ± 0.7 a | 2.5 ± 0.1 a | 2.7 ± 0.2 a |
Cu | 1.71 ± 0.05 a | 1.63 ± 0.04 a | 1.6 ± 0.1 a |
Mn | 0.81 ± 0.06 b | 0.89 ± 0.03 b | 0.64 ± 0.08 a |
Rb | 0.39 ± 0.03 b | 0.27 ± 0.01 a | 0.34 ± 0.04 b |
Sr | 0.40 ± 0.03 a | 0.78 ± 0.05 b | 0.41 ± 0.04 a |
K/Rb | 2464 ± 355 a | 3827 ± 153 c | 3004 ± 299 b |
Ca/Sr | 304 ± 24 b | 168 ± 13 a | 321 ± 16 b |
Peak # | Uv Max | Tentative Identification | Molecular Formula | Retention Time | Theoretical Mass | Measured Mass | Accuracy (ppm) | Other Ions |
---|---|---|---|---|---|---|---|---|
1 | 227 | 3-O-caffeoylquinic acid | C15H17O9− | 1.33 | 353.0878 | 353.0894 | 4.53 | 191.0361 (quinic acid C7H11O6−) |
2 | 241 | Quinic acid | C7H11O6− | 1.68 | 191.0190 | 191.0191 | 0.52 | 111.0078 |
3 | 241 | Quinic acid isomer | C7H11O6− | 2.24 | 191.0190 | 191.0192 | 1.05 | 111.0078 |
4 | 227 | Gallic acid | C7H5O5− | 3.48 | 169.0142 | 169.0135 | 4.14 | 125.02 [M-H]−Pirogalol) (C6H5O3)− |
5 | 229 | Gallic acid | C7H5O5− | 8.08 | 169.0142 | 169.0136 | 3.55 | 125.02 [M-H]−(Pirogalol or Floroglucinol) (C6H5O3)− |
6 | 241, 279 | Procyanidin dimer | C30H25O12− | 9.72 | 577.1352 | 577.1340 | 2.07 | 289.07 [M-H]−(Catechin monomer C7H11O6−) |
7 | 240, 279 | Procyanidin dimer | C30H25O12− | 9.99 | 577.1352 | 577.1340 | 1.73 | 289.07 [M-H]−(Catechin monomer C7H11O6−) |
8 | 241, 279 | Procyanidin tetramer | C60H49O24− | 10.05 | 1153.2619 | 1153.2505 | 9.88 | 865.19 [M-H]− (Catechin trimerC45H37O18−) 577.13 [M-H]−(Catechin dimerC30H25O12−) 289.07 [M-H]−(Catechin monomerC15H13O6−) |
9 | 240 | Procyanidin trimer | C45H37O18− | 10.80 | 865.1985 | 865.1940 | 5.20 | 577.13 [M-H]− (CatechindimerC30H25O12−) 289.07 [M-H]−(Catechin monomer C15H13O6−) |
10 | 239, 279 | (+)-Catechin | C15H13O6− | 10.87 | 289.0718 | 289.0715 | 1.03 | 245.04 [M-H]− ((Z)-6-((3,5-dihydroxyphenoxy)methylene)-4-hydroxy-3-oxocyclohexa-1,4-dien-1-ideC15H9O5−) |
11 | 239, 279 | Procyanidin tetramer isomer | C60H49O24− | 10.96 | 1153.2619 | 1153.2505 | 9.885 | 865.19 [M-H]− (Catechin trimerC45H37O18−) 577.13 [M-H]−(CatechindimerC30H25O12−) 289.07 [M-H]− (Catechin monomer C15H13O6−) |
12 | 243, 279 | Procyanidin dimer | C30H25O12− | 12.07 | 577.1352 | 577.1340 | 1.73 | 289.07 [M-H]−(Catechin monomer C7H11O6−) |
13 | 248, 281 | Eriodictyol-O-hexoside | C21H21O11− | 12.69 | 449.1975 | 449.1982 | 1.55 | 287.06 [M-H]−(EriodictyolC15H11O6−) |
14 | 280 | Kaempferol-3-glucoside | C45H37O18− | 12.65 | 447.0933 | 447.0929 | 0.89 | 285.0405 [M-H]− (3,7-dihydroxy-2-(4-hidroxyphenyl)-4-oxo-4h-chromen-5-olateC15H9O6−) |
15 | 281 | Cyanidin-O-glucoside | C21H21O11+ | 12.74 | 449.1078 | 449.1085 | 1.55 | 287.0550 [M+H]+ (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromenyliumC15H11O6+) |
16 | 278 | (+)-Catechin | C15H13O6− | 14.37 | 289.0718 | 289.0713 | 1.72 | 245 |
17 | 282 | Cyanidin-O-galactoside | C21H21O11+ | 16.19 | 449.1078 | 449.1082 | 0.89 | 287.0550 [M+H]+ (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromenyliumC15H11O6+) |
18 | 258, 272 | Quercetin | C15H9O7− | 17.95 | 301.0365 | 301.0353 | 3.98 | |
19 | 272 | Quercetin-O-glucoside | C21H19O12− | 17.96 | 463,0882 | 463,0877 | 1.08 | 300.0281 [M-2H]2−5,7-dihidroxy-2-(3-hydroxy-4-oxidophenyl)-4-oxo-4H-chromen-3-olateC15H8O72−) |
20 | 272 | Kaempferol-3-glucoside isomer | C45H37O18− | 18.82 | 447.0933 | 447.0929 | 0.89 | 285.0405 [M-H]− (3,7-dihydroxy-2-(4-hidroxyphenyl)-4-oxo-4h-chromen-5-olateC15H9O6−) |
21 | 278 | Quercetin-O-galactoside | C21H19O12− | 19.02 | 463,0882 | 463,0877 | 1.08 | 300.0281 [M-2H]2−5,7-dihidroxy-2-(3-hydroxy-4-oxidophenyl)-4-oxo-4H-chromen-3-olateC15H8O72−) |
22 | 267 | Quercetin isomer | C15H9O7− | 19.07 | 301.0365 | 301.0348 | 5.64 | |
23 | 272 | Rutin | C27H29O16− | 19.26 | 609.1461 | 609.1449 | 1.97 | 301.0339 (Quercetin C15H9O7−) |
24 | 278, 325 | Myricetin | C15H9O8− | 19.88 | 317.0303 | 317.0301 | 0.63 | |
25 | 282 | Eriodictyol | C21H21O8− | 20.29 | 287,0561 | 287,0559 | 0.70 | 151.0391 (C7H3O42−) 133.0443 (C8H5O22−) |
26 | 279 | Genistin | C21H21O10− | 20.70 | 433.1140 | 433.1138 | 0.46 | 271.0965 (C16H15O4+) 5-Hydroxy-3-(4-hydroxyphenyl)-7-methyl-4-oxochroman-1-ylium |
27 | 275 | Daidzein | C15H11O4− | 20.83 | 255.0506 | 253.0503 | 1.17 | - |
28 | 278 | Quercetin isomer | C15H9O7− | 21.01 | 301.0365 | 301.0352 | 4.31 | |
29 | 279 | Naringenin | C15H11O5− | 21.24 | 271.0606 | 271.0608 | 0.74 | 243.0659 ([M-H]−-CO) |
30 | 268 | Luteolin | C13H11O7− | 21.35 | 285.0405 | 285.0401 | 2.8349 | 151.0029 (C7H3O42−) 133.0287 (C8H5O22−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalazar-García, D.; Simirgiotis, M.J.; Gómez, J.; Tapia, A.; Fabani, M.P. Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts. Horticulturae 2025, 11, 925. https://doi.org/10.3390/horticulturae11080925
Zalazar-García D, Simirgiotis MJ, Gómez J, Tapia A, Fabani MP. Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts. Horticulturae. 2025; 11(8):925. https://doi.org/10.3390/horticulturae11080925
Chicago/Turabian StyleZalazar-García, Daniela, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia, and María Paula Fabani. 2025. "Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts" Horticulturae 11, no. 8: 925. https://doi.org/10.3390/horticulturae11080925
APA StyleZalazar-García, D., Simirgiotis, M. J., Gómez, J., Tapia, A., & Fabani, M. P. (2025). Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts. Horticulturae, 11(8), 925. https://doi.org/10.3390/horticulturae11080925