Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Sampling
2.3. Total Lipids, Phytosterol, and Tocopherol Analysis
2.4. Statistical and Chemometric Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICA | Independent Component Analysis |
IC | Independent Component |
PCA | Principal Component Analysis |
PUFA | Polyunsaturated Fatty Acids |
HPLC | High Performance Liquid Chromatography |
FID | Flame Ionization Detector |
GC | Gas Chromatography |
MTBE | Methyl tert-Butyl Ether |
DAD | Diode Array Detector |
Cfa | Humid Subtropical Climate (Köppen classification) |
Cfb | Temperate Oceanic Climate (Köppen classification) |
References
- Guinazi, M.; Miranda Milagres, R.C.R.; Pinheiro-SanT’Ana, H.M.; Chaves, J.B.P. Tocoferois e tocotrienois em óleos vegetais e ovos. Quim. Nova 2009, 32, 2098–2103. [Google Scholar] [CrossRef]
- Murithi, H.M.; Beed, F.; Tukamuhabwa, P.; Thomma, B.P.H.J.; Joosten, M.H.A.J. Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi. Plant Pathol. 2016, 65, 176–188. [Google Scholar] [CrossRef]
- Konda, A.R.; Nazarenus, T.J.; Nguyen, H.; Yang, J.; Gelli, M.; Swenson, S.; Shipp, J.M.; Schmidt, M.A.; Cahoon, R.E.; Ciftci, O.N.; et al. Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metab. Eng. 2020, 57, 63–73. [Google Scholar] [CrossRef]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns—A review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef]
- Clemente, T.E.; Cahoon, E.B. Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef]
- Korošec, T.; Tomažin, U.; Horvat, S.; Keber, R.; Salobir, J. The diverse effects of α- and γ-tocopherol on chicken liver transcriptome. Poult. Sci. 2017, 96, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid determination of phytosterols by NIRS and chemometric methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Plant metabolites and nutritional quality of vegetables. J. Food Sci. 2008, 73, 48–65. [Google Scholar] [CrossRef]
- Brufau, G.; Canela, M.A.; Rafecas, M. Phytosterols: Physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr. Res. 2008, 28, 217–225. [Google Scholar] [CrossRef]
- Lagarda, M.J.; García-Llatas, G.; Farré, R. Analysis of phytosterols in foods. J. Pharm. Biomed. Anal. 2006, 41, 1486–1496. [Google Scholar] [CrossRef]
- Ferguson, J.J.A.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. Fat type in phytosterol products influences their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Prog. Lipid Res. 2016, 64, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.A.; Whitaker, B.D.; Hicks, K.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 2002, 41, 457–500. [Google Scholar] [CrossRef] [PubMed]
- Talati, R.; Sobieraj, D.M.; Makanji, S.S.; Phung, O.J.; Coleman, C.I. The comparative efficacy of plant sterols and stanols on serum lipids: A systematic review and meta-analysis. J. Am. Diet. Assoc. 2010, 110, 719–726. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.Å. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef]
- Das, A.; Parvin, M.; Kahhar, M. Multiple nodular swelling in both upper and lower limbs. J. Bangladesh Coll. Physicians Surg. 2014, 32, 53–54. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Britz, S.J.; Kremer, D.F. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max [L.] Merr.). J. Agric. Food Chem. 2002, 50, 6058–6063. [Google Scholar] [CrossRef]
- Wu, Z.; Rodgers, R.P.; Marshall, A.G. Characterization of vegetable oils: Detailed compositional fingerprints derived from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Agric. Food Chem. 2004, 52, 5322–5328. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Bonafé, E.G.; Silva, B.C.; Montanher, P.F.; Santos Júnior, O.O.; Boeing, J.S.; Visentainer, J.V. Antioxidant capacity, total phenolic content, fatty acids and correlation by principal component analysis of exotic and native fruits from Brazil. J. Braz. Chem. Soc. 2013, 24, 797–804. [Google Scholar] [CrossRef]
- Mishra, P.; Cordella, C.B.Y.; Rutledge, D.N.; Barreiro, P.; Roger, J.M.; Diezma, B. Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration. J. Food Eng. 2016, 168, 7–15. [Google Scholar] [CrossRef]
- Galão, O.F.; Carrão-Panizzi, M.C.; Gontijo Mandarino, J.M.; Santos Júnior, O.O.; Maruyama, S.A.; Figueiredo, L.C.; Bonafe, E.G.; Visentainer, J.V. Differences of fatty acid composition in Brazilian genetic and conventional soybeans (Glycine max (L.) Merrill) grown in different regions. Food Res. Int. 2014, 62, 589–594. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, G.S.M.J.E.; Bauer-Plank, C.G.; Louter, A.J.H.; Van der Ham, M.; Boerma, J.A.; Van Rooijen, J.J.M.; Zandbelt, P.A. Fast and accurate method for total 4-desmethyl sterol(s) content in spreads, fat-blends, and raw materials. J. Am. Oil Chem. Soc. 2002, 79, 273–278. [Google Scholar] [CrossRef]
- Sadler, G.; Davis, J.; Dezman, D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Cardoso, J.F.; Souloumiac, A. Blind beamforming for non-Gaussian signals. IEEE Proc. F Radar Signal Process. 1993, 140, 362–370. [Google Scholar] [CrossRef]
- Kassouf, A.; Maalouly, J.; Chebib, H.; Rutledge, D.N.; Ducruet, V. Chemometric tools to highlight non-intentionally added substances (NIAS) in polyethylene terephthalate (PET). Talanta 2013, 115, 928–937. [Google Scholar] [CrossRef]
- Rutledge, D.N.; Jouan-Rimbaud Bouveresse, D. Corrigendum to “Independent Components Analysis with the JADE algorithm” [Anal. Chem. 2013, 50, 22–32]. TrAC Trends Anal. Chem. 2015, 67, 220. [Google Scholar] [CrossRef]
- Rutledge, D.N.; Jouan-Rimbaud Bouveresse, D. Independent Components Analysis with the JADE algorithm. TrAC Trends Anal. Chem. 2013, 50, 22–32. [Google Scholar] [CrossRef]
- Dolde, D.; Vlahakis, C.; Hazebroek, J. Tocopherols in breeding lines and effects of planting location, fatty acid composition, and temperature during development. J. Am. Oil Chem. Soc. 1999, 76, 349–355. [Google Scholar] [CrossRef]
- Yamaya, A.; Endo, Y.; Fujimoto, K.; Kitamura, K. Effects of genetic variability and planting location on the phytosterol content and composition in soybean seeds. Food Chem. 2007, 102, 1071–1075. [Google Scholar] [CrossRef]
- Nurmi, T.; Lampi, A.M.; Nyström, L.; Piironen, V. Effects of environment and genotype on phytosterols in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2010, 58, 9314–9323. [Google Scholar] [CrossRef] [PubMed]
- Haddada, F.M.; Manaï, H.; Oueslati, I.; Daoud, D.; Sánchez, J.; Osorio, E.; Zarrouk, M. Fatty acid, triacylglycerol, and phytosterol composition in six Tunisian olive varieties. J. Agric. Food Chem. 2007, 55, 10941–10946. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Topcu, A.; Karabulut, I.; Vural, H.; Hayaloglu, A.A. Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. J. Agric. Food Chem. 2007, 55, 10787–10794. [Google Scholar] [CrossRef]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- San Andrés, M.P.; Otero, J.; Vera, S. High performance liquid chromatography method for the simultaneous determination of α-, γ- and δ-tocopherol in vegetable oils in presence of hexadecyltrimethylammonium bromide/n-propanol in mobile phase. Food Chem. 2011, 126, 1470–1474. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem. 2014, 161, 296–304. [Google Scholar] [CrossRef]
- Climate-Data.org. Clima Ponta Grossa: Temperatura, Tempo e Dados Climatológicos Ponta Grossa. Available online: https://pt.climate-data.org/america-do-sul/brasil/parana/ponta-grossa-4493/ (accessed on 27 May 2020).
- Britannica. Köppen Climate Classification|Description, Map, & Chart. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 27 May 2020).
- Climate-Data.org. Clima Londrina: Temperatura, Tempo e Dados Climatológicos Londrina. Available online: https://pt.climate-data.org/america-do-sul/brasil/parana/londrina-4183/ (accessed on 27 May 2020).
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Warner, K. Effects on the flavor and oxidative stability of stripped soybean and sunflower oils with added pure tocopherols. J. Agric. Food Chem. 2005, 53, 9906–9910. [Google Scholar] [CrossRef]
- Fagan, M.M.; Harris, P.; Adams, A.; Pazdro, R.; Krotky, A.; Call, J.; Duberstein, K.J. Form of vitamin E supplementation affects oxidative and inflammatory response in exercising horses. J. Equine Vet. Sci. 2020, 91, 103103. [Google Scholar] [CrossRef]
- Grela, E.R.; Günter, K.D. Fatty acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Piskula, M.K.; Zielinski, H.; Kozlowska, H.; Frias, J.; Vidal-Valverde, C. Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. Eur. Food Res. Technol. 2006, 223, 495–502. [Google Scholar] [CrossRef]
- Boschin, G.; Arnoldi, A. Legumes are valuable sources of tocopherols. Food Chem. 2011, 127, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
Conventional Cultivar | Campesterol | Stigmasterol | β-Sitosterol | Total Phytosterol |
1 Embrapa-48 | 68.55 ± 0.70 1 | 67.26 ± 0.90 d1 | 160.87 ± 0.56 c | 296.68 ± 1.27 1 |
2 BRS 184 | 57.29 ± 0.19 ef | 57.08 ± 0.23 f3 | 145.14 ± 0.45 f2 | 259.50 ± 0.54 f |
3 BRS 213 | 59.36 ± 0.26 de3 | 82.12 ± 0.42 | 145.22 ± 1.07 f2 | 286.70 ± 1.17 c2 |
4 BRS 232 | 85.84 ± 0.17 | 92.35 ± 0.31 | 177.47 ± 0.65 1 | 355.67 ± 0.74 |
5 BRS 233 | 61.50 ± 0.73 cd2 | 83.48 ± 0.30 | 225.32 ± 0.77 | 370.30 ± 1.10 |
6 BRS 257 | 56.71 ± 0.46 f | 67.60 ± 0.55 d1 | 122.94 ± 0.68 6 | 247.24 ± 0.98 h3 |
7 BRS 258 | 29.72 ± 0.62 | 40.30 ± 0.17 m | 100.76 ± 0.45 7 | 170.78 ± 0.78 o6 |
8 BRS 259 | 63.00 ± 2.41 c2 | 67.08 ± 0.63 d1 | 154.55 ± 0.74 d | 284.63 ± 2.59 c2 |
9 BRS 260 | 33.67 ± 0.78 m12 | 37.93 ± 0.46 7 | 97.77 ± 0.57 m8 | 128.70 ± 1.07 |
10 BRS 261 | 35.42 ± 0,78 m12 | 41.47 ± 0.76 lm6 | 93.36 ± 0.74 9 | 170.24 ± 1.31 o6 |
11 BRS 262 | 39.33 ± 0.57 l,10,11 | 45.86 ± 0.31 | 132.54 ± 0.70 4 | 217.73 ± 0.95 |
12 BRS 267 | 44.86 ± 0.17 j5,6 | 58.98 ± 0.20 f | 151.65 ± 0.53 | 255.49 ± 0.59 g |
13 BRS 268 | 44.13 ± 0.31 jk5,6,7 | 32.63 ± 0.15 | 97.90 ± 0.36 m8 | 174.67 ± 0.49 |
14 BRS 282 | 57.28 ± 0.47 ef | 61.42 ± 0.37 2 | 135.88 ± 1.22 h3 | 254.58 ± 1.35 g |
Transgenic cultivar | Campesterol | Stigmasterol | β-Sitosterol | Total phytosterol |
15 BRS 242RR | 50.00 ± 0.36 i4 | 51.72 ± 0.16 | 135.83 ± 0.32 h3 | 237.55 ± 0.5 4 |
16 BRS 244RR | 53.49 ± 0.20 g | 49.91 ± 0.19 j4 | 144.98 ± 0.19 f2 | 248.38 ± 0.33 h3 |
17 BRS 245RR | 37.88 ± 0.29 l,11 | 41.90 ± 0.46 l6 | 126.52 ± 0.26 5 | 206.30 ± 0.60 5 |
18 BRS 246RR | 42.06 ± 0.31 k8,9 | 49.91 ± 0.19 j4 | 141.22 ± 0.16 | 233.19 ± 0.39 |
19 BRS 255RR | 52.70 ± 0.20 gh | 57.72 ± 0.16 fg3 | 159.90 ± 0.20 c | 270.32 ± 0.32 |
20 BRS 256RR | 50.89 ± 0.28 hi4 | 55.56 ± 0.31 | 156.13 ± 0.16 d | 262.57 ± 0.44 f |
Conventional Cultivar | Campesterol | Stigmasterol | β-Sitosterol | Total Phytosterol |
21 Embrapa-48 | 68.48 ± 0.59 jk1 | 61.89 ± 0.31 g2 | 113.18 ± 1.08 | 243.56 ± 1.27 |
22 BRS 184 | 44.00 ± 0.20 jk5,6,7,8 | 48.15 ± 0.22 jk | 107.07 ± 0.15 k | 199.23 ± 0.64 m |
23 BRS 213 | 62.68 ± 0.22 f2 | 64.74 ± 0.42 f | 98.10 ± 0.43 8 | 225.52 ± 0.64 j |
24 BRS 232 | 61.86 ± 0.32 2 | 64.71 ± 0.18 f | 122.56 ± 0.36 h6 | 249.13 ± 0.29 3 |
25 BRS 233 | 73.21 ± 0.09 d1 | 77.44 ± 0.25 | 176.50 ± 0.36 1 | 327.15 ± 0.51 |
26 BRS 257 | 88.59 ± 0.12 | 67.22 ± 0.44 1 | 186.33 ± 0.24 | 412.14 ± 0.51 |
27 BRS 258 | 43.01 ± 0.74 k6,7,8 | 49.11 ± 0.18 ij4 | 89.14 ± 0.66 | 181.26 ± 1.07 n |
28 BRS 259 | 59.35 ± 0.28 3 | 61.36 ± 0.32 g2 | 125.36 ± 0.42 5 | 246.07 ± 0.59 3 |
29 BRS 260 | 37.70 ± 0.20 m11 | 37.20 ± 0.30 m7 | 93.76 ± 0.26 9 | 168.66 ± 0.44 6 |
30 BRS 261 | 37.63 ± 0.25 m11 | 41.98 ± 0.19 6 | 100.90 ± 0.20 7 | 180.52 ± 0.37 n |
31 BRS 262 | 34.03 ± 0.71 12 | 36.17 ± 0.31 m7 | 96.20 ± 0.60 8 | 166.40 ± 0.98 |
32 BRS 267 | 40.37 ± 0.81 k9,10 | 48.30 ± 0.36 jk | 133.50 ± 0.46 f4 | 222.17 ± 0.99 k |
33 BRS 268 | 42.70 ± 0.20 k7,8 | 47.58 ± 0.30 k | 108.38 ± 0.28 jk | 198.67 ± 0.45 m |
34 BRS 282 | 81.13 ± 0.58 | 69.96 ± 0.22 | 144.87 ± 0.15 2 | 295.95 ± 0.63 1 |
Transgenic cultivar | Campesterol | Stigmasterol | β-Sitosterol | Total phytosterol |
35 BRS 242RR | 73.56 ± 0.48 d | 75.62 ± 0.63 | 163.98 ± 1.07 | 313.17 ± 1.33 |
36 BRS 244RR | 72.51 ± 0.26 d | 65.62 ± 0.80 f | 147.39 ± 0.45 | 285.52 ± 0.95 2 |
37 BRS 245RR | 78.20 ± 0.56 | 72.36 ± 0.82 | 189.27 ± 0.42 | 339.83 ± 1.07 |
38 BRS 246RR | 45.99 ± 0.20 5 | 57.07 ± 0.21 3 | 134.85 ± 0.91 f3 | 237.91 ± 0.95 4 |
39 BRS 255RR | 44.43 ± 0.25 j5,6,7 | 49.62 ± 0.53 i4 | 109.00 ± 0.20 j | 203.05 ± 0.62 5 |
40 BRS 256RR | 50.61 ± 0.51 4 | 49.18 ± 0.40 ij4 | 123.72 ± 0.86 h6 | 223.51 ± 1.08 jk |
Conventional Cultivar | α-tocopherol | β-tocopherol | γ-tocopherol | δ-tocopherol | Total Tocopherols |
1 Embrapa-48 | 11.19 ± 0.25 ef | 18.90 ± 0.59 bcd1 | 46.67 ± 0.23 bcde1 | 14.73 ± 0.81 defg | 91.49 ± 1.06 defg |
2 BRS 184 | 10.78 ± 0.59 fg1 | 6.80 ± 0.40 g2 | 45.08 ± 0.11 defg | 15.74 ± 0.65 cde1 | 78.41 ± 0.97 kl2 |
3 BRS 213 | 10.32 ± 0.14 g | 18.70 ± 0.70 bcd | 44.37 ± 0.07 efgh | 16.38 ± 2.03 bcde2 | 89.77 ± 2.15 fgh3 |
4 BRS 232 | 12.53 ± 0.25 c | 8.10 ± 0.20 g | 48.09 ± 1.10 abcd | 12.97 ± 0.59 ghi3 | 81.69 ± 1.29 ijk |
5 BRS 233 | 11.35 ± 0.23 ef2 | 11.90 ± 0.6 1efg | 41.95 ± 0.90 gh | 15.48 ± 0.96 efg | 80.68 ± 1.47 jkl |
6 BRS 257 | 12.91 ± 0.06 bcd | 9.50 ± 0.11 fg | 45.08 ± 0.23 defg | 16.12 ± 0.63 bcde4 | 83.61 ± 0.68 hij |
7 BRS 258 | 10.96 ± 0.07 efg | 16.71 ± 0.20 bcde3 | 42.64 ± 0.60 gh | 19.00 ± 0.56 a | 89.31 ± 0.85 fgh |
8 BRS 259 | 10.91 ± 0.11 efg3 | 20.50 ± 0.50 bc | 50.76 ± 2.12 a | 16.77 ± 0.75 bc | 98.94 ± 2.3 1bc |
9 BRS 260 | 12.71 ± 0.03 cd | 20.92 ± 0.90 bc | 47.53 ± 0.70 abcde | 13.71 ± 0.50 fghi | 94.87 ± 1.25 cdef |
10 BRS 261 | 12.78 ± 0.07 cd4 | 23.03 ± 0.30 b | 34.81 ± 0.26 i | 16.68 ± 0.16 bcd | 87.30 ± 0.43 ghi4 |
11 BRS 262 | 13.67 ± 0.61 ab1,2 | 15.34 ± 0.30 cdef | 47.99 ± 1.12 abcd | 12.35 ± 0.22 i | 89.35 ± 1.33 fgh |
12 BRS 267 | 14.09 ± 0.11 a1 | 33.80 ± 0.80 a | 46.31 ± 0.19 cdef2 | 13.37 ± 0.08 fghi | 107.57 ± 0.83 a |
13 BRS 268 | 10.79 ± 0.08 fg15,1 | 12.33 ± 0.30 defg | 42.95 ± 3.01 fgh | 10.27 ± 0.24 i | 76.34 ± 3.04 l |
14 BRS 282 | 13.20 ± 0.07 bcd1,2 | 7.34 ± 0.20 g | 41.22 ± 1.23 h | 15.32 ± 0.05 cdef | 77.08 ± 1.25 kl |
Transgenic cultivar | α-tocopherol | β-tocopherol | γ-tocopherol | δ-tocopherol | Total tocopherols |
15 BRS 242RR | 12.51 ± 0.07 d | 19.32 ± 0.30 bc | 42.41 ± 0.7 gh | 16.33 ± 0.12 bcde5 | 90.57 ± 0.77 efg |
16 BRS 244RR | 13.11 ± 0.07 bcd | 22.51 ± 0.50 b | 45.14 ± 0.98 defg | 14.50 ± 0.12 efgh | 95.26 ± 0.77 cde |
17 BRS 245RR | 13.47 ± 0.06 abc | 8.01 ± 0.20 g | 50.04 ± 1.25 ab3 | 17.82 ± 0.48 ab6 | 89.34 ± 1.11 fgh |
18 BRS 246RR | 13.43 ± 0.23 abc | 7.03 ± 0.20 g | 36.01 ± 0.98 i | 12.54 ± 0.27 hi | 69.01 ± 1.36 m |
19 BRS 255RR | 11.61 ± 0.22 e | 21.4 ± 0.40 b | 49.64 ± 0.61 abc | 14.43 ± 0.12 efgh | 97.08 ± 1.06 bcd |
20 BRS 256RR | 11.13 ± 0.40 ef5 | 32.21 ± 2.50 a | 41.64 ± 0.53 h | 16.89 ± 0.07 bc | 101.87 ± 0.77 b |
Conventional Cultivar | α-tocopherol | β-tocopherol | γ-tocopherol | δ-tocopherol | Total Tocopherols |
21 Embrapa-48 | 13.58 ± 0.56 a | 18.70 ± 0.32 bcd1 | 36.56 ± 0.50 jk | 17.18 ± 0.15 bcdef4 | 94.60 ± 0.86 c1 |
22 BRS 184 | 11.10 ± 0.40 efg1 | 7.41 ± 0.40 fg2 | 38.27 ± 0.13 ij | 15.24 ± 0.11 h | 83.93 ± 1.28 ghi |
23 BRS 213 | 12.17 ± 0.19 bcd | 22.62 ± 0.12 abc | 47.78 ± 0.56 abc | 18.53 ± 0.97 ab | 88.66 ± 0.74 de3 |
24 BRS 232 | 11.15 ± 0.61 defg | 10.80 ± 0.60 efg | 39.52 ± 0.65 hi | 15.66 ± 0.22 gh | 69.52 ± 1.33 j |
25 BRS 233 | 11.26 ± 0.12 defg2 | 23.70 ± 0.40 ab | 42.71 ± 0.51 ef | 18.34 ± 0.58 abc | 93.84 ± 0.53 c |
26 BRS 257 | 11.88 ± 0.44 bcde | 6.75 ± 0.70 fg | 44.16 ± 1.12 de | 16.29 ± 0.06 fgh | 72.37 ± 0.98 j |
27 BRS 258 | 12.43 ± 0.11 b | 14.33 ± 1.10 def3 | 45.65 ± 0.02 cd | 16.99 ± 0.04 cdefg | 80.27 ± 1.12 i |
28 BRS 259 | 11.84 ± 0.26 bcde | 14.27 ± 1.70 def | 40.36 ± 0.06 ghi | 16.44 ± 0.09 defgh | 92.42 ± 2.05 cd |
29 BRS 260 | 10.99 ± 0.26 fg7 | 6.22 ± 0.30 g | 48.57 ± 0.61 a | 17.75 ± 0.18 abcde | 72.39 ± 0.79 j |
30 BRS 261 | 12.66 ± 0.11 ab4 | 10.54 ± 1.01 efg | 36.56 ± 0.50 jk | 17.18 ± 0.15 bcdef4 | 84.25 ± 1.28 fgh |
31 BRS 262 | 11.87 ± 0.41 bcde | 8.62 ± 0.60 efg | 38.27 ± 0.13 ij | 15.24 ± 0.11 h | 80.94 ± 1.34 hi |
32 BRS 267 | 12.46 ± 0.12 b | 18.82 ± 0.40 bcd | 47.78 ± 0.56 abc | 18.53 ± 0.97 ab | 93.92 ± 0.42 c |
33 BRS 268 | 12.67 ± 0.05 ab | 15.87 ± 0.80 cde | 39.52 ± 0.65 hi | 15.66 ± 0.22 gh | 85.34 ± 0.81 efg |
34 BRS 282 | 12.11 ± 0.10 bcde | 10.62 ± 0.80 efg | 42.71 ± 0.51 ef | 18.34 ± 0.58 abc | 89.05 ± 1.03 de |
Transgenic cultivar | α-tocopherol | β-tocopherol | γ-tocopherol | δ-tocopherol | Total tocopherols |
35 BRS 242RR | 19.91 ± 0.37 fg | 29.64 ± 1.20 a | 47.81 ± 0.84 abc | 17.87 ± 0.56 abcd5 | 115.23 ± 1.61 a |
36 BRS 244RR | 12.07 ± 0.02 bcde | 8.34 ± 0.40 efg | 41.95 ± 0.80 fg | 11.04 ± 0.18 ij | 73.40 ± 0.91 j |
37 BRS 245RR | 12.36 ± 0.05 bc | 22.45 ± 0.50 ab | 48.85 ± 1.25 a3 | 17.32 ± 0.21 abcdef6 | 101.01 ± 1.36 b |
38 BRS 246RR | 11.66 ± 0.11 bcdef | 14.03 ± 0.40 de | 45.56 ± 0.43 d | 16.25 ± 0.18 fgh | 92.52 ± 0.62 cd |
39 BRS 255RR | 10.50 ± 0.85 g | 12.26 ± 0.20 de | 40.85 ± 0.79 fgh | 18.56 ± 0.92 ab | 82.19 ± 2.18 ghi |
40 BRS 256RR | 11.31 ± 0.16 cdefg5 | 15.44 ± 1.60 cd | 42.63 ± 0.60 ef | 18.74 ± 1.26 | 88.14 ± 2.13 ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galãoa, O.F.; Valderrama, P.; de Figueiredo, L.C.; Júnior, O.O.S.; Martins, A.F.; Samulewski, R.B.; Tessaro, A.L.; Bonafé, E.G.; Visentainer, J.V. Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis. AppliedChem 2025, 5, 19. https://doi.org/10.3390/appliedchem5030019
Galãoa OF, Valderrama P, de Figueiredo LC, Júnior OOS, Martins AF, Samulewski RB, Tessaro AL, Bonafé EG, Visentainer JV. Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis. AppliedChem. 2025; 5(3):19. https://doi.org/10.3390/appliedchem5030019
Chicago/Turabian StyleGalãoa, Olivio Fernandes, Patrícia Valderrama, Luana Caroline de Figueiredo, Oscar Oliveira Santos Júnior, Alessandro Franscisco Martins, Rafael Block Samulewski, André Luiz Tessaro, Elton Guntendorfer Bonafé, and Jesui Vergilio Visentainer. 2025. "Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis" AppliedChem 5, no. 3: 19. https://doi.org/10.3390/appliedchem5030019
APA StyleGalãoa, O. F., Valderrama, P., de Figueiredo, L. C., Júnior, O. O. S., Martins, A. F., Samulewski, R. B., Tessaro, A. L., Bonafé, E. G., & Visentainer, J. V. (2025). Discrimination of Phytosterol and Tocopherol Profiles in Soybean Cultivars Using Independent Component Analysis. AppliedChem, 5(3), 19. https://doi.org/10.3390/appliedchem5030019