Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = pesticide use regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 213
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

37 pages, 397 KiB  
Article
Food Safety in the European Union: A Comparative Assessment Based on RASFF Notifications, Pesticide Residues, and Food Waste Indicators
by Radosław Wolniak and Wiesław Wes Grebski
Foods 2025, 14(14), 2501; https://doi.org/10.3390/foods14142501 - 17 Jul 2025
Viewed by 573
Abstract
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This [...] Read more.
Guaranteeing food safety in the European Union (EU) is a continuing issue affected by diverse national traditions, regulatory power, and consumer culture. Despite the presence of a harmonized regulatory context, there continues to be variability in performance among the 27 member states. This study gives an extensive comparative evaluation of EU food safety based on three indicators: Rapid Alert System for Food and Feed (RASFF) alerts, pesticide maximum-residue-limit (MRL) violation, and per capita food loss. Fuzzy TOPSIS, K-means clustering, and scenario-based sensitivity tests are used to give an extensive appraisal of the performance of member states. Alarming differences are quoted as findings of significance. The highest number of RASFF notifications (212) and percentage of pesticide MRL non-compliance (1.5%) were reported in 2022 by Bulgaria, whereas the lowest values were reported by Estonia and Lithuania—15–20 RASFF notifications and less than 0.6% MRL violation rates. A statistically significant correlation (r = 0.72, p < 0.001) between pesticide MRL violation and food safety warnings was confirmed in favor of pesticide regulation as the optimal predictor of food safety warnings. On the other hand, food loss did not significantly affect safety measures but indicated very high variation (from 76 kg/capita per year in Croatia to 142 kg/capita per year in Greece). These findings suggest that while food loss remains an environmental problem, pesticide control is more central to the protection of food safety. Targeted policy is what the research necessitates: intervention and stricter enforcement in low-income countries, and diffusion of best practice from successful states. The composite approach adds to EU food safety policy discourse through the combination of performance indicators and targeted regulatory emphasis. Full article
(This article belongs to the Section Food Quality and Safety)
33 pages, 1864 KiB  
Review
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
by Mohamed K. Abou El-Nasr, Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali and Mohamed A. Nasser
Plants 2025, 14(14), 2192; https://doi.org/10.3390/plants14142192 - 15 Jul 2025
Viewed by 480
Abstract
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering [...] Read more.
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering photosynthesis process and growth rate), heavy metals (induced toxicity, hindering physiological processes also lowering crop quantity and quality), and pathogens (induce diseases that may significantly affect plant health beside productivity). This review explores the integrated effects of these stressors on plant productivity and growth rate, emphasizing how each stressor exceptionally plays a role in physiological responses. Owing to developments in technology that outclass traditional breeding methods and genetic engineering techniques, powerful alleviation strategies are vital. New findings have demonstrated the remarkable role of nanoparticles in regulating responses to these environmental stressors. In this review, we summarize the roles and various applications of nanomaterials in regulating abiotic and biotic stress responses. This review discusses and explores the relationship between various types of nanoparticles (metal, carbon-based, and biogenic) and their impact on plant physiology. Furthermore, we assess how nanoparticle technology may play a role in practices of sustainable agriculture by reducing the amount of compounds used, providing them with a larger surface area, highly efficient mass transfer abilities, and controlled, targeted delivery of lower nutrient or pesticide amounts. A review of data from several published studies leads to the conclusion that nanoparticles may act as a synergistic effect, which can effectively increase plant stress tolerance and their nutritional role. Full article
Show Figures

Figure 1

16 pages, 458 KiB  
Review
Neonicotinoid-Induced Cytotoxicity: Insights into Cellular Mechanisms and Health Risks
by Yuqing Ma and Qiangwei Wang
Toxics 2025, 13(7), 576; https://doi.org/10.3390/toxics13070576 - 9 Jul 2025
Viewed by 441
Abstract
Neonicotinoids are extensively used in agricultural production, yet increasing evidence highlights their cytotoxic effects on various cell types. Research has demonstrated that these pesticides can significantly impair the viability and function of reproductive, adipose, neural, immune, and epithelial cells. The underlying mechanisms involve [...] Read more.
Neonicotinoids are extensively used in agricultural production, yet increasing evidence highlights their cytotoxic effects on various cell types. Research has demonstrated that these pesticides can significantly impair the viability and function of reproductive, adipose, neural, immune, and epithelial cells. The underlying mechanisms involve metabolic disturbances, mitochondrial dysfunction, and oxidative stress. These cellular effects raise serious concerns about the potential risks neonicotinoids pose to both human health and the environment. Further investigation is essential to fully understand their toxicological impact and to inform safer pesticide regulation and use. Full article
(This article belongs to the Special Issue Emerging Environmental Pollutants and Their Impact on Human Health)
Show Figures

Graphical abstract

28 pages, 786 KiB  
Article
Does the Improvement of Farmers’ Digital Literacy Restrain Their Opportunistic Behavior When They Choose Pest Control Methods in Certified Agro-Products?
by Xiujuan Cui, Jieyu Yang, Ziqian Fan and Yongqiang Wang
Agriculture 2025, 15(14), 1466; https://doi.org/10.3390/agriculture15141466 - 8 Jul 2025
Viewed by 317
Abstract
Information asymmetry leads to farmers’ opportunistic behavior of disobeying pest control regulations in certified vegetable areas, but the improvement of farmers’ digital literacy has become an important means to break through the constrained dilemma of pest control information and change farmers’ pest control [...] Read more.
Information asymmetry leads to farmers’ opportunistic behavior of disobeying pest control regulations in certified vegetable areas, but the improvement of farmers’ digital literacy has become an important means to break through the constrained dilemma of pest control information and change farmers’ pest control behaviors. Based on survey data from certified vegetable areas of Shaanxi, Gansu, and Ningxia provinces in China, this study used Heckman two-stage model to analyze the impact of the improvement of farmers’ digital literacy on opportunistic behavior in pest control. The results are as follows. Firstly, the improvement of farmers’ digital literacy can restrain their opportunistic behavior in pest control. Secondly, the improvement of farmers’ digital literacy restrain their opportunistic behavior through three paths, namely, enhancing the awareness of obeying pest control regulations for certified vegetables, reducing the cost and risk of pest control in obeying the certification standards. Thirdly, the traceable certification label plays a positive moderating role in the process of improving digital literacy to restrain farmers’ opportunistic behavior. Accordingly, this study suggests strengthening the training of farmers’ digital literacy, promoting the digitalized traceability system for certified vegetables, establishing examination mechanisms for online pesticide purchases and logistics distribution, and imposing severe penalties for opportunistic behaviors. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

13 pages, 1419 KiB  
Article
Acetamiprid-Induced Toxicity Thresholds and Population Sensitivity in Trichogramma dendrolimi: Implications for Pesticide Risk Assessment
by Yan Zhang, Jiameng Ren and Shenhang Cheng
Insects 2025, 16(7), 698; https://doi.org/10.3390/insects16070698 - 7 Jul 2025
Viewed by 973
Abstract
Trichogramma dendrolimi, a key egg parasitoid for lepidopteran pest control, faces potential risks from neonicotinoid insecticides like acetamiprid used in integrated pest management (IPM). This study evaluated acetamiprid’s acute and sublethal toxicity to T. dendrolimi and assessed population-level risks via species sensitivity [...] Read more.
Trichogramma dendrolimi, a key egg parasitoid for lepidopteran pest control, faces potential risks from neonicotinoid insecticides like acetamiprid used in integrated pest management (IPM). This study evaluated acetamiprid’s acute and sublethal toxicity to T. dendrolimi and assessed population-level risks via species sensitivity distribution (SSD). Acute toxicity assays using glass-vial residues revealed a 24 h LC50 of 0.12 mg a.i. L−1 for adults, three orders of magnitude below the maximum field rate (100 mg a.i. L−1). Sublethal exposure (1/2–1/100 LC50) significantly reduced parasitism and emergence rates (NOEC = 2.3 μg a.i. L−1) but did not affect offspring survival. Acetamiprid also shortened offspring development at 11.5–57.5 μg a.i. L−1. SSD analysis identified T. dendrolimi as the most sensitive parasitoid to acetamiprid (HC5/HC50) = 0.11/5.88 mg a.i. L−1), with field rates (30–100 mg a.i. L−1) indicating a potentially affected fraction (PAF) of 76.8–97.9%. These findings underscore the need to integrate sublethal effects into pesticide regulations to conserve parasitoid-mediated ecosystem services. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 1622 KiB  
Article
Neonicotinoid Residues in Tea Products from China: Contamination Patterns and Implications for Human Exposure
by Yulong Fan, Hongwei Jin, Jinru Chen, Kai Lin, Lihua Zhu, Yijia Guo, Jiajia Ji and Xiaming Chen
Toxics 2025, 13(7), 550; https://doi.org/10.3390/toxics13070550 - 29 Jun 2025
Viewed by 483
Abstract
Neonicotinoids (NEOs) are a class of systemic insecticides widely used in agriculture owing to their high efficacy and selectivity. As one of the most globally consumed beverages, tea may represent a potential dietary source of pesticide residues. However, limited research has examined NEO [...] Read more.
Neonicotinoids (NEOs) are a class of systemic insecticides widely used in agriculture owing to their high efficacy and selectivity. As one of the most globally consumed beverages, tea may represent a potential dietary source of pesticide residues. However, limited research has examined NEO contamination in tea and its implications for human exposure, highlighting the need for further investigation. Therefore, this study comprehensively evaluated the residue characteristics, processing effects, and human exposure risks of six NEOs—dinotefuran (DIN), imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), clothianidin (CLO), and thiacloprid (THI)—in Chinese tea products. According to the findings, the primary pollutants, ACE, DIN, and IMI, accounted for 95.65% of the total NEO residues in 137 tea samples, including green, oolong, white, black, dark, and herbal teas. The highest total target NEO (∑6NEOs) residue level was detected in oolong tea (mean: 57.86 ng/g). Meanwhile, IMI exhibited the highest residue level (78.88 ng/g) in herbal tea due to the absence of high-temperature fixation procedures. Concentrations of DIN in 61 samples (44.5%) exceeded the European Union’s maximum residue limit of 10 ng/g. Health risk assessment indicated that both the chronic hazard quotient (cHQ) and acute hazard quotient (aHQ) for adults and children were below the safety threshold (<1). However, children required special attention, as their exposure risk was 1.28 times higher than that of adults. The distribution of NEO residues was significantly influenced by tea processing techniques, such as full fermentation in black tea. Optimizing processing methods (e.g., using infrared enzyme deactivation) and implementing targeted pesticide application strategies may help mitigate risk. These results provide a scientific foundation for enhancing tea safety regulations and protecting consumer health. Full article
(This article belongs to the Special Issue Human Biomonitoring in Health Risk Assessment of Emerging Chemicals)
Show Figures

Graphical abstract

16 pages, 7959 KiB  
Article
Biocontrol Potential of Microfighter: A Zeolite-Based Product Enriched with Pseudomonas synxantha DSL65
by Elena Cudazzo, Lucia Morrone, Giacomo Ferretti, Barbara Faccini, Daniele Mirandola, Luca Fagioli and Annalisa Rotondi
Agronomy 2025, 15(7), 1563; https://doi.org/10.3390/agronomy15071563 - 27 Jun 2025
Viewed by 412
Abstract
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, [...] Read more.
Particle film technology is an environmentally sustainable crop protection method, offering an alternative to chemical pesticides for disease control. Copper-based compounds have long been central to the management of bacterial and fungal diseases, particularly in organic agriculture. However, due to their environmental persistence, their use has been increasingly restricted by European regulations, making the management of widespread diseases such as Olive Knot (Pseudomonas savastanoi pv. savastanoi) and Downy Mildew (Plasmopara viticola) more difficult. The LIFE Microfighter project addresses this problem by testing a novel Zeo-Biopesticide (ZBp), in which natural zeolite serves as a carrier for the beneficial bacterium Pseudomonas synxantha DLS65. Field trials conducted in high-rainfall areas of Emilia-Romagna (Italy) evaluated the product’s distribution and persistence on olive and grape leaves through ESEM (Environmental Scanning Electron Microscopy) observations, its ability to retain the microorganism, and its effectiveness for disease control. Results showed that ZBp significantly reduced Olive Knot incidence compared to both the untreated control and Cu-based treatments (p < 0.05), supporting its potential as an alternative for bacterial disease management, while showing no statistically significant difference compared to the control in either the incidence or severity of Downy Mildew (p > 0.05). Its persistence and adherence to plant surfaces, which could influence its overall field performance, were affected by environmental conditions, particularly rainfall. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 2063 KiB  
Article
Metabolic Disruptions in Zebrafish Induced by α-Cypermethrin: A Targeted Metabolomics Study
by Hang-Ji Ok, Ji-Woo Yu, Jung-Hoon Lee, Eun-Song Choi, Jong-Hwan Kim, Yoonjeong Jeon, Won Noh, Sung-Gil Choi, Jeong-Han Kim, Min-Ho Song and Ji-Ho Lee
Toxics 2025, 13(7), 529; https://doi.org/10.3390/toxics13070529 - 24 Jun 2025
Viewed by 624
Abstract
The widespread application of pesticides in agriculture has raised increasing concerns regarding their ecological impact, particularly in aquatic environments. Among these, α-cypermethrin, a highly active isomeric form of cypermethrin, has been extensively used due to its potent insecticidal efficacy and low mammalian toxicity. [...] Read more.
The widespread application of pesticides in agriculture has raised increasing concerns regarding their ecological impact, particularly in aquatic environments. Among these, α-cypermethrin, a highly active isomeric form of cypermethrin, has been extensively used due to its potent insecticidal efficacy and low mammalian toxicity. However, its toxicity to non-target aquatic organisms remains insufficiently understood at the metabolic level. In this study, a targeted metabolomics approach was employed to investigate the biochemical effects of α-cypermethrin in adult zebrafish. Acute toxicity was first determined to establish sublethal exposure concentrations (0.15 µg/L and 1.5 µg/L), followed by a 48 h exposure under a controlled flow-through system. GC-MS/MS-based analysis quantified 395 metabolites, and multivariate statistical models (principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA)) revealed clear dose-dependent metabolic alterations at two time points. Pathway analysis identified disruptions in glycolysis, glycerolipid metabolism, amino acid turnover, and glutathione pathways. Notably, glutamate depletion and associated reductions in GABA (4-Aminobutanoate) and TCA (Tricarboxylic acid) cycle intermediates suggest oxidative stress-induced metabolic bottlenecks. These results provide mechanistic insights into α-cypermethrin-induced toxicity and demonstrate the utility of metabolite-level biomarkers for environmental monitoring. This study contributes to a systems-level understanding of how sublethal pesticide exposure affects vertebrate metabolism, offering a basis for improved ecological risk assessment and pesticide regulation. Full article
(This article belongs to the Special Issue Toxic Pollutants and Ecological Risk in Aquatic Environments)
Show Figures

Graphical abstract

21 pages, 793 KiB  
Article
Development and Validation of LC–MS/MS and IC–HRMS Methods for Highly Polar Pesticide Detection in Honeybees: A Multicenter Study for the Determination of Pesticides in Honeybees to Support Pollinators and Environmental Protection
by Tommaso Pacini, Emanuela Verdini, Serenella Orsini, Katia Russo, Tabita Mauti, Mara Gasparini, Marialuisa Borgia, Barbara Angelone, Teresa D’Amore and Ivan Pecorelli
J. Xenobiot. 2025, 15(4), 95; https://doi.org/10.3390/jox15040095 - 20 Jun 2025
Cited by 1 | Viewed by 526
Abstract
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for [...] Read more.
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for pesticides in food and the environment. This study presents the development and validation of two complementary analytical methods (LC–MS/MS and IC–HRMS) for highly polar pesticide (HPP) detection and quantification in bee matrices. Both methods were validated according to document SANTE/11312/2021 v2. LC–MS/MS was validated with a limit of quantification (LOQ) of 0.005 mg/kg for all the analytes. Repeatability at 0.005, 0.010, 0.020, and 0.100 mg/kg showed RSDr from 1.6% to 19.7% and recoveries between 70% and 119%. Interlaboratory precision at 0.020 mg/kg across two labs showed RSDR from 5.5% to 13.6%, with recoveries between 91% and 103%. The IC–HRMS method achieved LOQs of 0.01 mg/kg (glufosinate, N-acetyl glufosinate, MPPA, glyphosate, N-acetyl glyphosate, N-acetyl AMPA) and 0.1 mg/kg (fosetyl, phosphonic acid, AMPA), with mean recoveries in repeatability conditions from 84% to 114% and RSDr from 2% to 14%. Intralaboratory precision showed mean recoveries from 87% to 119%, with RSDwR values between 10% and 18%. These methods enable accurate monitoring of HPP contamination, supporting risk assessment and sustainable agriculture. Full article
Show Figures

Graphical abstract

20 pages, 6360 KiB  
Article
Regulatory Effects of Companion Plants (Maize (Zea mays) and Perilla frutescens) on American Ginseng Growth and Microbiome in Root Rot-Infested Field
by Dan Luo, Dengqun Liao, Tingting Han, Changhao Ji, Chao He and Xianen Li
Plants 2025, 14(12), 1871; https://doi.org/10.3390/plants14121871 - 18 Jun 2025
Viewed by 441
Abstract
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture [...] Read more.
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture (CK), companion planting significantly improved AG growth and survival rate at wither stage, with AG-maize showing the superior efficacy- increasing root length and fresh weight, and plant height by 39.04%, 46.10%, and 48.69%, respectively, while raising survival rate from 1.51% to 14.54%. Microbial analysis revealed that companion planting increased microbiome diversity and network complexity. At green fruit stage, AG-perilla increased rhizosphere fungal Chao1 index by 42.6%, while AG-maize and AG-perilla elevated endophytic fungal Shannon indices by 46.68% and 74.84%, respectively. At wither stage, AG-maize notably enriched beneficial microbes (e.g., soil Pseudomonas +108.49%, Bacillus +200.73%) while reducing pathogens (soil Fusarium −20.04%, root endophytic Alternaria −54.55%). Structural equation model indicated AG-maize improved AG survival via core species-driven antibiosis and nutrient regulation, with keystone species Lysobacter sp. RHLT3-4 and Verrucomicrobium sp. IMCC25902 significantly correlating with AG health. The AG-maize system fostered synergistic microbial networks, enriching beneficial taxa and suppressing pathogens. These findings provide a foundation for developing eco-friendly disease management and high-yield AG cultivation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 4598 KiB  
Article
Metolachlor Exposure Impaired Neurogenesis During Embryonic Development of Zebrafish (Danio rerio)
by Martina Fazzina, Stefano Insidioso and Pietro Cacialli
Fishes 2025, 10(6), 292; https://doi.org/10.3390/fishes10060292 - 16 Jun 2025
Viewed by 464
Abstract
The presence of pesticides in surface waters has been widely reported worldwide and represents a significant problem that raises concerns on local, regional, national, and international scales. Among these, metolachlor is one of the most widely used herbicides to control annual grasses and [...] Read more.
The presence of pesticides in surface waters has been widely reported worldwide and represents a significant problem that raises concerns on local, regional, national, and international scales. Among these, metolachlor is one of the most widely used herbicides to control annual grasses and broadleaf weeds in various crops. Despite the existing research, data on the effects of metolachlor on the nervous system of fishes, remain limited. The present study aims to investigate the impact of metolachlor during embryonic development on the formation of the nervous system and the subsequent inflammatory response in zebrafish (Danio rerio), focusing specifically on larvae at 24 h post-fertilization (hpf). To achieve this, transgenic zebrafish lines marking neuronal populations Tg(Hu:GFP), glial cells Tg(gfap:GFP), and circulating macrophages Tg(mpeg:GFP) were employed. Following exposure to sub-lethal doses of metolachlor, we observed a significant decrease in GPF-positive cells marking the neuronal population, accompanied by an increase in apoptotic cells within the brain region. Additionally, treated embryos exhibited a marked neuroinflammatory response, characterized by astrogliosis and the specific accumulation of microglia/macrophage-positive cells in the head region. In situ hybridization and real-time PCR analyses revealed a significant downregulation of the neurogenin-1 (ngn1) transcript and a noticeable upregulation of the pro-inflammatory cytokine interleukin-1 beta (il1b). Our findings contribute to the growing body of evidence suggesting that metolachlor, even at early developmental stages, can have detrimental effects on both the formation of the nervous system and the regulation of immune responses. Full article
Show Figures

Graphical abstract

12 pages, 1708 KiB  
Article
Preliminary Report of Three Entomopathogenic Fungi as Potential Biocontrol Agents Against the Oak Wilt Vector, Platypus koryoensis
by Jin Heung Lee, Nam Kyu Kim, Keumchul Shin, Jong Kyu Lee and Dong-Hyeon Lee
Forests 2025, 16(6), 1009; https://doi.org/10.3390/f16061009 - 16 Jun 2025
Viewed by 691
Abstract
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence [...] Read more.
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence of pesticide-resistant pests in agricultural systems. Representative examples include Beauveria bassiana and Metarhizium anisopliae, which are regarded as natural enemies of pests in agroecosystems. Since the first report of Korean oak wilt disease in 2004, the disease has continuously spread across the country and causes severe damage to deciduous oak species, especially Quercus mongolica. Although many efforts have been made to effectively control the disease, including chemical treatments, the control efficacy was shown to be low, and given the environmental side effects arising from the use of insecticides, there has been a demand for alternative control strategies. Integrated Pest Management in forests promotes ecological sustainability by reducing chemical pesticide use, conserving biodiversity, and enhancing long-term forest health. In this study, to mitigate issues with disease management strategies, assessments were made on three entomopathogenic fungi, B. bassiana, M. anisopliae, and Purpureocillium lilacinum, as potential biological control agents against oak wilt disease and its insect vector, Platypus koryoensis. In this regard, we investigated the insecticidal efficacy and LT50 of each entomopathogenic fungus, and the results showed that all three entomopathogenic fungal strains exhibited fast insecticidal effects against the insect vector, P. koryoensis, with M. anisopliae showing the fastest action, recording a lethal time to 50% mortality (LT50) of 58.7 h. The spores of M. anisopliae were found to be sensitive to high temperatures, while demonstrating a relatively high germination rate under UV exposure and strong initial germination ability at low temperatures. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

7 pages, 239 KiB  
Proceeding Paper
Determination of the Content of Heavy Metals and Nitrites in Meat Products (Pâtés and Meat Spreads) from the Market of the Republic of Srpska
by Dragan Tošković, Danijela Rajić, Marija Mitrović, Vesna Gojković Cvjetković and Milomirka Obrenović
Eng. Proc. 2025, 99(1), 6; https://doi.org/10.3390/engproc2025099006 - 10 Jun 2025
Viewed by 245
Abstract
Animal-based food is significant for human nutrition, as it represents an easily digestible source of high-quality proteins, fatty acids, fat-soluble vitamins, and energy. During evolution, humans developed anatomical, metabolic, and biochemical adaptations in the digestive tract, becoming increasingly dependent on nutritionally valuable food, [...] Read more.
Animal-based food is significant for human nutrition, as it represents an easily digestible source of high-quality proteins, fatty acids, fat-soluble vitamins, and energy. During evolution, humans developed anatomical, metabolic, and biochemical adaptations in the digestive tract, becoming increasingly dependent on nutritionally valuable food, such as animal-based products. Animal-based food can be a source of chemical substances that are harmful to health, such as contaminants (heavy metals, mycotoxins, organochlorine pesticides, etc.), veterinary drug residues, and additives. The subject of this paper is the determination of the content of essential (copper—Cu, iron—Fe, and chromium—Cr) and heavy and toxic metals (lead—Pb, cadmium—Cd, arsenic—As, and tin—Sn), as well as nitrites, in meat products, particularly pâtés and meat spreads available on the market in the Republic of Srpska. Determination of the content of metals was performed using the ICP-OES method, while nitrites were analyzed using the standard SRPS ISO 2918/1999 method. The obtained results indicate that the content of heavy and toxic metals and nitrites is lower than the maximum prescribed by national regulations, namely the Rulebook on Maximum Amounts of Certain Contaminants (Official Gazette of BA, No. 68/14, 79/16, 84/18) and the Rulebook on Additives in Food (Official Gazette of BA, No. 33/18 and 6/21). Full article
17 pages, 2381 KiB  
Article
Wettability of the Plant Growth Regulator 28-HB on Pepper Leaves at Different Developmental Stages
by Xiaoya Dong, Kaiyuan Wang, Zhouming Gao, Cuicui Zhu, Xianping Guan and Baijing Qiu
Horticulturae 2025, 11(6), 661; https://doi.org/10.3390/horticulturae11060661 - 10 Jun 2025
Viewed by 361
Abstract
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of [...] Read more.
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of pepper leaves at the seedling, early flowering, and fruiting stages. The microstructure of the leaf surface was characterized using an ultra-depth field microscope. The surface free energy (SFE) of the leaves was calculated using the Owens-Wendt-Rabel-Kaelble (OWRK) method. Additionally, the surface tension of the 28-HB solutions containing various surfactants, as well as the contact angles on pepper leaves at different growth stages, were measured. The experimental results indicate that the surface free energy (SFE) of pepper leaves significantly decreases with plant maturation. Specifically, the SFE of the adaxial leaf surface declined from 43.4 mJ/m2 at the seedling stage to 26.6 mJ/m2 at the fruiting stage, while the abaxial surface decreased from 27.5 mJ/m2 to 22.5 mJ/m2. At all growth stages, the relative polar component (RP) of the adaxial surface was consistently higher than that of the abaxial surface and showed a gradual decline from 94.70% to 57.34% as development progressed. The contact angle measurement showed that the addition of surfactant decreased the contact angle of 28-HB on the leaf surface and increased the wetting area. Among the tested formulations, the addition of fatty alcohol ethoxylates (AEO-9) significantly reduced the contact angle to below 45°, and resulted in an adhesion tension below 30 mN/m and adhesion work lower than 105 mJ/m2. These values indicate superior wetting performance compared to formulations containing sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). This study integrates the surface free energy characteristics of pepper leaves at different growth stages with the wetting performance of various surfactant systems, providing a quantitative basis for the selection and optimization of surfactants in agricultural spray formulations. The findings offer theoretical support for precise pesticide application strategies, enhancing pesticide adhesion and absorption on leaf surfaces, thereby improving pesticide utilization efficiency throughout the crop growth cycle. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

Back to TopTop