The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
Abstract
1. Introduction
2. Different Approaches for Nanoparticle Preparation
3. Nanomaterials’ Uptake in Plants
4. Innovative Solutions in Managing Stress in Horticulture
- −
- Plant materials: Plants have adopted multiple strategies to survive under different stressors used for plant improvement, like vigorous growth, osmotic adjustment, higher water use efficiency (WUE), etc. Rootstocks and improved varieties play an important role in adaptation to stress with different tolerance levels. Grafting is used as an additional tool to alleviate environmental stresses, and this technique is applied to many high-yielding fruits and vegetables such as cucurbits and eggplant to enhance tolerance to saline soil, water shortage, heavy metals, etc. [65,66,67].
- −
- Exogenously applied phytohormones: They are chemical compounds that play an important role in plant extrinsic and intrinsic factors, essential in regulating many signal transduction pathways under stress conditions [68,69] and increasingly accepted by horticultural plants to tolerate stress diversity. Their action is regulated in their metabolism as they are extracted in small amounts from chemical systems [70]. For example, salicylic acid (SA) is one of the hormones that positively influence many developmental processes such as seed germination, seedling growth, photosynthesis, cell reproduction, changes in stomatal aperture, respiration, antioxidant defense system, delaying plant senescence, etc. [71]. SA exposure alleviated chilling injury on the seed germination of muskmelon plants [72] and enhanced the total soluble sugars and cold-response gene expression in peach fruit [73].
- −
- Utilize of biological treatments: Biofertilizers are one of the strategies for agricultural sustainability, especially under stress conditions, as they do not cause any harm or manipulation to the soil microflora, but rather enhance the association between soil, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) and are effective in developing tolerance to various abiotic stresses or improving nutrient cycling in the soil, thereby enhancing plant productivity [74].
- −
- Use of biotechnological tools: Advances in various biotechnological tools and the development of transgenic lines have been made possible by the introduction of modern molecular or biotechnological tools such as miRNA identification and signaling pathway analysis [75], CRISPR/Cas-mediated genome editing [76], quantitative trait loci (QTL) mapping, and genomic selection (GS), which have made it possible to identify and position the desired gene in the new genome with greater precision, which is involved in different metabolic activities, signaling pathways, and the expression of different genes. This technology helps understand the molecular and physiological mechanisms, stress responses, and improve plant productivity [77].
- −
- Utilization of nanotechnology: It is one of the most promising technologies in mitigating the effects of climate change and enhancing stress management techniques. The application of nanofertilizers via various techniques (e.g., soil irrigation, foliar spray, and seed coating), nanosensors to track the health status of plants in real time, and genetic engineering of plants to boost defense-related phytohormones and photosynthetic efficiency are examples of nano-enabled technologies that have been developed to support plant growth. Several studies have reported using NPs as nanofertilizers to improve plant production under stress conditions [78,79].
5. Role of Nanoparticles on Abiotic Stresses
5.1. Water Stress
5.2. Temperature Stress
5.3. Salinity and/or Alkalinity Stress
5.4. Heavy Metal Stress
6. Role of Nanoparticles on Biotic Stress
- −
- Pests: Such as insects and nematodes, that feed on plants and can cause direct damage to plant tissues by chewing leaves, stems, or roots. Common pests include aphids, beetles, and caterpillars. They can also act as vectors for diseases.
- −
- Pathogens: These include fungi, bacteria, viruses, and other microorganisms that can infect plants, leading to diseases. Pathogenic infections can cause various symptoms, including wilting, leaf spots, and root rot. Examples include downy mildew (fungal), bacterial blight, and viral infections like mosaics.
- −
- Weeds: Weeds are unwanted plants that compete with cultivated crops for resources such as light, water, nutrients, and space. They can reduce crop yields and quality by overshadowing crops, harboring pests, and acting as reservoirs for diseases.
- (a)
- Delivering pesticides or fungicides in a controlled manner, NPs can encapsulate pesticides or fungicides, allowing for controlled and sustained release [149]. This reduces the need for frequent applications and minimizes the risk of environmental contamination. By improving solubility and stability, NPs can enhance the efficacy of pesticides [150].
- (b)
- Inducing resistance in plants against pathogens, certain NPs can act as elicitors, prompting physiological responses that enhance stress tolerance. Silica or copper-based NPs can stimulate the plant’s innate immune system, activating defense pathways that enhance resistance against pathogens. This may involve increased production of ROS and the accumulation of phenolic compounds, which bolster plant defense mechanisms [151].
- (c)
- Targeting specific pests without harming non-target organisms, NPs can be engineered to be selectively toxic to specific pests while minimizing effects on beneficial and non-target organisms [152]. For instance, targeted delivery using lipid-based NPs can affect pest behavior without adversely impacting pollinators like bees [153].
6.1. A Polymeric Nanoparticle
6.2. Metal Nanoparticles
6.3. Metal Oxide-Based Nanoparticles
6.4. Carbon Nanomaterials
7. Nanoparticle Interaction with Plants
8. Biosafety of Nanomaterials
9. Real-World Applications of Nanoparticles in Horticultural Plants
- (a)
- Improvement of Nutrient Uptake: NPs can formulate slow or controlled-release fertilizers. Nanostructured fertilizers enhance nutrient absorption and reduce loss due to leaching.
- (b)
- Disease and Pest Management: NPs can enhance the efficacy of pesticides by improving their delivery to the target site while reducing the required dosage. For instance, chitosan NPs encapsulating pesticides have shown effective control of pests in crops like cucumbers [210].
- (c)
- Stress Mitigation: NPs can mitigate abiotic stress effects in horticultural crops, such as drought and salinity. For instance, silica NPs enhance drought tolerance in plants like cucumber, improving overall plant health and yield [211].
- (d)
- Growth Enhancement: NPs can be used in seed priming to improve germination rates and seedling vigor. For example, zinc oxide NPs have enhanced germination rate and early growth in crops [212].
- (e)
- Improved Photosynthesis: Certain NPs, such as titanium dioxide (TiO2), can enhance photosynthetic efficiency and chlorophyll content in horticultural crops. For example, TiO2 NPs have been shown to improve growth and increase net photosynthetic rate in Mentha piperita L. [213].
- (f)
- Disease Resistance: NPs can induce systemic plant resistance against diseases. For example, selenium NPs have been found to induce defense responses against fungal pathogens in crops like strawberries (Fragaria × ananassa) [154].
10. Advancements in Nanotechnology-Enabled Stress Management Techniques
- (a)
- High dispersibility, heavy metal-free nanomaterials
- (b)
- Nanosensors for detecting stress
- (c)
- Nano-encapsulated
11. Future Perspectives
12. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mantri, N.; Patade, V.; Pang, E.C.K. Recent Advances in Rapid and Sensitive Screening for Abiotic Stress. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M., Azooz, M., Phan Tran, L.S., Eds.; Springer: New York, NY, USA, 2014; pp. 37–47. [Google Scholar] [CrossRef]
- Nejat, N.; Mantri, N. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr. Issues Mol. Biol. 2017, 23, 1–16. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Abiotic Stress Effects on Performance of Horticultural Crops. Horticulturae 2019, 5, 67. [Google Scholar] [CrossRef]
- Nasser, M.A.; El-Mogy, M.M.; Samaan, M.S.F.; Hassan, K.M.; El-Sayed, S.M.; Alsubeie, M.S.; Darwish, D.B.E.; Mahmoud, S.F.; Al-Harbi, N.A.; Al-Qahtani, S.M.; et al. Postharvest exogenous melatonin treatment of table grape berry enhances quality and maintains bioactive compounds during refrigerated storage. Horticulturae 2022, 8, 860. [Google Scholar] [CrossRef]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental Stress and Plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, M.; Geioushy, R.A.; Fouad, O.A.; Khaled, A.G. Investigation the activities of photosynthetic pigments, antioxidant enzymes and inducing genotoxicity of cucumber seedling exposed to copper oxides nanoparticles stress. Sci. Hortic. 2022, 305, 111364. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Zandalinas, I.S.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Fawzy, M.; Al-zahrani, M.; Abdelkader, M. Enhancing Metabolic Processes and Water Deficit Stress Tolerance of Maize Plants through Biochar Addition and Foliar Application of Zinc Nanoparticles. Russ. J. Plant Physiol. 2025, 72, 1–12. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Ulhas, R.S.; Sudheer, W.N.; Banadka, A.; Nagella, P.; Aldaej, M.I.; Rezk, A.A.S.; Shehata, W.F.; Almaghasla, M.I. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants 2023, 12, 292. [Google Scholar] [CrossRef]
- Hassan, K.M.; Ajaj, R.; Abdelhamid, A.N.; Ebrahim, M.; Hassan, I.F.; Alam-Eldein, S.M.; Ali, M.A. Silicon: A powerful aid for medicinal and aromatic plants against abiotic and biotic stresses for sustainable agriculture. Horticulturae 2024, 10, 806. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwari, R.K.; Jeevalatha, A.; Siddappa, S.; Shah, M.A.; Sharma, S.; Sagar, V.; Kumar, M.; Chakrabarti, S.K. Potato apical leaf curl disease: Current status and perspectives on a disease caused by tomato leaf curl new Delhi virus. J. Plant Dis. Prot. 2021, 128, 897–911. [Google Scholar] [CrossRef]
- Devi, R.; Behera, B.; Raza, M.B.; Mangal, V.; Altaf, M.A.; Kumar, R.; Kumar, A.; Tiwari, R.K.; Lal, M.K.; Singh, B. An insight into microbes mediated heavy metal detoxification in plants: A review. J. Soil Sci. Plant Nutr. 2022, 22, 914–936. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, C.-B.; Ren, R.-M.; Jiang, J.-H. Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. Front. Plant Sci. 2023, 14, 1141918. [Google Scholar] [CrossRef] [PubMed]
- Samal, I.; Bhoi, T.K.; Majhi, P.K.; Murmu, S.; Pradhan, A.K.; Kumar, D.; Saini, V.; Paschapur, A.U.; Raj, M.N.; Ankur Manik, S. Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. Front. Plant Sci. 2023, 13, 1098673. [Google Scholar] [CrossRef]
- Sinha, R.K.; Verma, S.S. Proteomics approach in horticultural crops for abiotic-stress tolerance. In Stress Tolerance in Horticultural Crops; Woodhead Publishing: Sawston, UK, 2021; pp. 371–385. [Google Scholar] [CrossRef]
- Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol. 2021, 337, 57–70. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.A.; Ali, E.F. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antiox 2021, 10, 277. [Google Scholar] [CrossRef]
- Ali, M.A.A.; Nasser, M.A.; Abdelhamid, A.N.; Ali, I.A.A.; Saudy, H.S.; Hassan, K.M. Melatonin as a Key Factor for Regulating and Relieving Abiotic Stresses in Harmony with Phytohormones in Horticultural Plants—A Review. J. Soil Sci. Plant Nutr. 2023, 24, 54–73. [Google Scholar] [CrossRef]
- Bidi, H.; Fallah, H.; Niknejad, Y.; Tari, D.B. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol. Biochem. 2021, 163, 348–357. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.M.; Hassan, K.M.; Abdelhamid, A.N.; Yousef, E.E.; Abdellatif, Y.M.R.; Abu-Hussien, S.H.; Nasser, M.A.; Elshalakany, W.A.; Darwish, D.B.E.; Abdulmajeed, A.M.; et al. Exogenous paclobutrazol reinforces the antioxidant and antimicrobial properties of lavender (Lavandula officinalis L.) oil through modulating its composition of oxygenated terpenes. Plants 2022, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; El-Sayed, S.M.; Abdelhamid, A.N.; Hassan, K.M.; Elshalakany, W.A.; Nossier, M.I.; Alabdallah, N.M.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Darwish, D.B.E.; et al. Potentiating biosynthesis of alkaloids and polyphenolic substances in Catharanthus roseus plant using ĸ-carrageenan. Molecules 2023, 28, 3642. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komárek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef]
- Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Dilnawaz, F.; Misra, A.N.; Apostolova, E. Involvement of nanoparticles in mitigating plant’s abiotic stress. Plant Stress 2023, 10, 100280. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; da Silva, J.A.T. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2019, 100, 25–31. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Kalwani, M.; Chakdar, H.; Srivastava, A.; Pabbi, S.; Shukla, P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere 2022, 287, 132107. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology applications in sustainable agriculture: An emerging eco-friendly approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Hussain, M.; Zahra, N.; Lang, T.; Zain, M.; Raza, M.; Shakoor, N.; Adeel, M.; Zhou, H. Integrating nanotechnology with plant microbiome for next-generation crop health. Plant Physiol. Biochem. 2023, 196, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.D.; Surendhar, G.J.; Natrayan, L.; Patil, P.P.; Ram, P.B.; Paramasivam, P. Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. J. Nanomater. 2022, 2022, 1280411. [Google Scholar] [CrossRef]
- Raza, A.; Charagh, S.; Salehi, H.; Abbas, S.; Saeed, F.; Poinern, G.E.J.; Siddique, K.H.M.; Varshney, R.K. Nano-enabled stress-smart agriculture: Can nanotechnology deliver drought and salinity-smart crops? J. Sustain. Agric. Environ. 2023, 2, 189–214. [Google Scholar] [CrossRef]
- Zulfiqar, F.H.; Afroze, B.; Shakoor, S.; Bhutta, S.M.; Ahmed, M.; Hassan, S.; Batool, F.; Rashid, B. Nanoparticles in Agriculture: Enhancing Crop Resilience and Productivity against Abiotic Stresses. In Abiotic Stress in Crop Plants—Ecophysiological Responses and Molecular Approaches; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Kandhol, N.; Jain, M.; Tripathi, D.K. Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiol. Plant 2022, 174, e13665. [Google Scholar] [CrossRef]
- Khan, Y.; Sadia, H.; Ali Shah, S.Z.; Khan, M.N.; Shah, A.A.; Ullah, N.; Ullah, M.F.; Bibi, H.; Bafakeeh, O.T.; Khedher, N.B.; et al. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022, 12, 1386. [Google Scholar] [CrossRef]
- Shahid, M.; Javed, H.M.A.; Ahmad, M.I.; Qureshi, A.A.; Khan, M.I.; Alnuwaiser, M.A.; Ahmed, A.; Khan, M.A.; Tag-ElDin, E.S.M.; Shahid, A.; et al. A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials. Nanomaterials 2022, 12, 3413. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef]
- Iravani, S. Methods for Preparation of Metal Nanoparticles. In Metal Nanoparticles; Thota, S., Crans, D.C., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 15–31. [Google Scholar] [CrossRef]
- Szczyglewska, P.; Feliczak-Guzik, A.; Nowak, I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023, 28, 4932. [Google Scholar] [CrossRef]
- Stanley, S. Biological nanoparticles and their influence on organisms. Curr. Opin. Biotechnol. 2014, 28, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Saallah, S.; Lenggoro, I.W. Nanoparticles carrying biological molecules: Recent advances and applications. KONA Powder Part. J 2018, 35, 89–111. [Google Scholar] [CrossRef]
- Abou El-Nasr, M.K.; El-Hennawy, H.M.; El-Kereamy, A.M.H.; Abou El-Yazied, A.; Salah Eldin, T.A. Effect of Magnetite Nanoparticles (Fe3O4) as Nutritive Supplement on Pear Saplings. Middle East J. Appl. Sci. 2015, 5, 777–785. Available online: https://www.curresweb.com/mejas/mejas/2015/777-785.pdf (accessed on 21 May 2025).
- Hassan, N.S.; Salah El Din, T.A.; Hendawey, M.H.; Borai, I.H.; Mahdi, A.A. Magnetite and Zinc Oxide Nanoparticles Alleviated Heat Stress in Wheat Plants. Curr. Nanomater. 2018, 3, 32–43. [Google Scholar] [CrossRef]
- Ahamed, M.; Alhadlaq, H.A.; Khan, M.A.M.; Karuppiah, P.; Al-Dhabi, N.A. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. J. Nanomater. 2014, 2014, 637858. [Google Scholar] [CrossRef]
- Ganeshan, S.; Ramasundari, P.; Elangovan, A.; Arivazhagan, G.; Vijayalakshmi, R. Synthesis and Characterization of MnO2 Nanoparticles: Study of Structural and Optical Properties. Int. J. Sci. Res. Phys. Appl. Sci. 2017, 5, 5–8. [Google Scholar] [CrossRef]
- Abou El-Nasr, M.K.; El-Hennawy, H.M.; Samaan, M.S.F.; Salaheldin, T.A.; Abou El-Yazied, A.; El-Kereamy, A. Using Zinc Oxide Nanoparticles to Improve the Color and Berry Quality of Table Grapes Cv. Crimson Seedless. Plants 2021, 10, 1285. [Google Scholar] [CrossRef]
- Kshirsagar, J.; Shrivastava, R.; Adwani, P. Preparation and characterization of copper oxide nanoparticles and determination of enhancement in critical heat flux. Therm. Sci. 2017, 21, 233–242. [Google Scholar] [CrossRef]
- Gao, M.; Chang, J.; Wang, Z.; Zhang, H.; Wang, T. Advances in transport and toxicity of nanoparticles in plants. J. Nanobiotechnol. 2023, 21, 75. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, P.; Yin, H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials 2023, 16, 3097. [Google Scholar] [CrossRef] [PubMed]
- Sembada, A.A.; Lenggoro, I.W. Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials 2024, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Vega-Vásquez, P.; Mosier, N.S.; Irudayaraj, J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front. Bioeng. Biotechnol. 2020, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Mattos, B.D.; Antunes, D.R.; Forini, M.M.L.; Monikh, F.A.; Rojas, O.J. Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today 2021, 37, 101078. [Google Scholar] [CrossRef]
- Wang, W.-N.; Tarafdar, J.C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 2013, 15, 1413–1417. [Google Scholar] [CrossRef]
- Schwab, F.; Zhai, G.; Kern, M.; Turner, A.; Schnoor, J.L.; Wiesner, M.R. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—Critical review. Nanotoxicology 2015, 10, 257–278. [Google Scholar] [CrossRef]
- Avellan, A.; Yun, J.; Morais, B.P.; Clement, E.T.; Rodrigues, S.M.; Lowry, G.V. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in planta translocation Environ. Sci. Technol. 2021, 55, 13417–13431. [Google Scholar] [CrossRef]
- Kaiser, H. Stomatal uptake of mineral particles from a sprayed suspension containing an organosilicone surfactant. J. Plant Nutr. Soil Sci. 2014, 177, 869–874. [Google Scholar] [CrossRef]
- Wohlmuth, J.; Tekielska, D.; Čechová, J.; Baránek, M. Interaction of the Nanoparticles and Plants in Selective Growth Stages-Usual Effects and Resulting Impact on Usage Perspectives. Plants 2022, 11, 2405. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaka, M.; Abbasi, B.H.; Rahman, L.; Shah, A. Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol. 2022, 10, 359–366. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Al-Harbi, A.R.; Al-Omran, A.M.; Alharbi, K. Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Razi, K.; Suresh, P.; Mahapatra, P.P.; Al Murad, M.; Venkat, A.; Notaguchi, M.; Bae, D.W.; Prakash, M.A.S.; Muneer, S. Exploring the role of grafting in abiotic stress management: Contemporary insights and automation trends. Plant Direct 2024, 8, e70021. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Kharal, M.A. Role of Phytohormones in Stress Tolerance of Plants. In Plant, Soil and Microbes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 385–421. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Naz, S.; Altaf, M.M.; Khan, L.U.; Lal, M.K.; Tiwari, R.K.; Shakoor, A. Melatonin mitigates cadmium toxicity by promoting root architecture and mineral homeostasis of tomato genotypes. J. Soil Sci. Plant Nutr. 2022, 22, 1112–1128. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, G.; Liu, C.; Li, H.; Chen, X.; Fu, Q.; Lin, Y.; Guo, B. Salicylic Acid, a Multifaceted Hormone, Combats Abiotic Stresses in Plants. Life 2022, 12, 886. [Google Scholar] [CrossRef]
- Kaur, S.; Gupta, N. Effect of proline and salicylic acid on germination and antioxidant enzymes at different temperatures in Muskmelon (Cucumis melo L.) seeds. J. Appl. Nat. Sci. 2017, 9, 2165–2169. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, C.; Brummell, D.A.; Qi, S.; Lin, Q.; Bi, J.; Duan, Y. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content. Food Chem. 2021, 358, 129867. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 66. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Cai, X.; Zeng, X.; Zou, J.-J.; Xing, W. A systematic review on the role of miRNAs in plant response to stresses under the changing climatic conditions. Plant Stress 2024, 14, 100674. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Zhang, Y.; Zhang, Q. CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front. Genome Ed. 2022, 4, 987817. [Google Scholar] [CrossRef]
- Anwar, A.; Kim, J.K. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. Int. J. Mol. Sci. 2020, 21, 2695. [Google Scholar] [CrossRef]
- Ahmed, T.; Noman, M.; Manzoor, N.; Shahid, M.; Abdullah, M.; Ali, L.; Wang, G.; Hashem, A.; Al-Arjani, A.B.F.; Alqarawi, A.A.; et al. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol Environ. Saf. 2021, 209, 111829. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, N.; Ali, L.; Ahmed, T.; Noman, M.; Adrees, M.; Shahid, M.S.; Ogunyemi, S.O.; Radwan, K.S.; Wang, G.; Zaki, H.E. Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. Front. Plant Sci. 2022, 13, 951752. [Google Scholar] [CrossRef] [PubMed]
- Palmgren, M.; Shabala, S. Adapting crops for climate change: Regaining lost abiotic stress tolerance in crops. Front. Sci. 2024, 2, 1416023. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef]
- Gagné, F. Chapter 6—Oxidative Stress. In Biochemical Ecotoxicology; Gagné, F., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 103–115. [Google Scholar] [CrossRef]
- Raliya, R.; Franke, C.; Chavalmane, S.; Nair, R.; Reed, N.; Biswas, P. Quantitative Understanding of Nanoparticle Uptake in Watermelon Plants. Front. Plant Sci. 2016, 7, 1288. [Google Scholar] [CrossRef]
- Chaki, M.; Begara-Morales, J.C.; Barroso, J.B. Oxidative Stress in Plants. Antioxidants 2020, 9, 481. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Dutt, M.; Shalana, A.M.; El-Kadya, M.E.; El-Boraya, M.S.; Shabana, Y.M.; Grosser, J.W. Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S. Afr. J. Bot. 2020, 132, 155–163. [Google Scholar] [CrossRef]
- Daler, S.; Kaya, O.; Korkmaz, N.; Kılıç, T.; Karadağ, A.; Hatterman-Valenti, H. Titanium Nanoparticles (TiO2-NPs) as Catalysts for Enhancing Drought Tolerance in Grapevine Saplings. Horticulturae 2024, 10, 1103. [Google Scholar] [CrossRef]
- Fallah, S.; Yusefi-Tanha, E.; Peralta-Videa, J.R. Interaction of nanoparticles and reactive oxygen species and their impact on macromolecules and plant production. Plant Nano Biol. 2024, 10, 100105. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Daneshvar Hakimi Meybodi, N.; Peijnenburg, W. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agric. 2021, 101, 5202–5213. [Google Scholar] [CrossRef]
- Mozafari, A.A.; Ghadakchi Asl, A.; Ghaderi, N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol. Mol. Biol. Plants 2018, 24, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Arshad, R.; Gulshad, L.; Haq, I.U.; Farooq, M.A.; Al-Farga, A.; Siddique, R.; Manzoor, M.F.; Karrar, E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr. 2021, 9, 3354–3361. [Google Scholar] [CrossRef] [PubMed]
- Cevik, S. TiO2 nanoparticles alleviates the effects of drought stress in tomato seedlings. Bragantia 2022, 82, e20220203. [Google Scholar] [CrossRef]
- Alsadon, A.; Dewir, Y.H.; Ibrahim, A.; Alenazi, M.; Osman, M.; Al-Selwey, W.A.; Ali, M.A.; Shady, M.; Alsughayyir, A.; Hakiman, M. Compost Amendment Enhances Leaf Gas Exchange, Growth, and Yield in Water-challenged ‘Crimson Giant’ Red Radish (Raphanus sativus L.). HortScience 2024, 59, 84–91. [Google Scholar] [CrossRef]
- Alkhateeb, O.A.; Mahmoud, A.A.; Abdou, A.H.; Abdelaal, K.; EL-Azm, N.A. Integrating soil mulching and subsurface irrigation for optimizing deficit irrigation effectiveness as a water-rationing strategy in tomato production. Not. Bot. Horti Agrobot. 2024, 52, 13514. [Google Scholar] [CrossRef]
- Kazemipour, S.; Hashemabadi, F.; Kaviani, B. Effect of silver nanoparticles on the vase life and quality of cut chrysanthemum (Chrysanthemum morifolium L.) flower. Eur. J. Exp. Biol. 2013, 3, 298–302. [Google Scholar] [CrossRef]
- Foroutan, L.; Solouki, M.; Abdossi, V.; Fakheri, B.A.; Mahdinezhad, N.; Gholamipourfard, K.; Safarzaei, A. The effects of zinc oxide nanoparticles on drought stress in Moringa peregrina populations. Int. J. Basic Sci. Med. 2019, 4, 119–127. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Górnik, K.; Awad, R.M.; Ayoub, A.; Abada, H.S.; Mosa, W.F. Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions. Horticulturae 2023, 9, 1231. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Sabbatini, P.; VanderWeide, J. Iron oxide (Fe2O3) nanoparticles alleviate PEG-simulated drought stress in grape (Vitis vinifera L.) plants by regulating leaf antioxidants. Sci. Hortic. 2023, 312, 111847. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Behiry, S.I.; Ali, H.M.; Abdelkhalek, A.; Sas-Paszt, L.; Al-Huqail, A.A.; Ali, M.M.; Salem, M.Z. Pomegranate trees quality under drought conditions using potassium silicate, nanosilver, and selenium spray with valorization of peels as fungicide extracts. Sci. Rep. 2022, 12, 6363. [Google Scholar] [CrossRef] [PubMed]
- Javan, M.; Selahvarzi, Y.; Sayyad-Amin, P.; Rastegar, S. Potential application of TiO2 nanoparticles to improve the nutritional quality of strawberry cv. Camarosa under drought stress. Sci. Hortic. 2024, 330, 113055. [Google Scholar] [CrossRef]
- Şener, S.; Sayğı, H.; Duran, C.N. Responses of In Vitro Strawberry Plants to Drought Stress under the Influence of Nano-Silicon Dioxide. Sustainability 2023, 15, 15569. [Google Scholar] [CrossRef]
- Mozafari, A.A.; Havas, F.; Ghaderi, N. Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 132, 511–523. [Google Scholar] [CrossRef]
- Mubashir, A.; Nisa Z-u Shah, A.A.; Kiran, M.; Hussain, I.; Ali, N.; Zhang, L.; Madnay, M.M.; Alsiary, W.A.; Korany, S.M.; Ashraf, M. Effect of foliar application of nano-nutrients solution on growth and biochemical attributes of tomato (Solanum lycopersicum) under drought stress. Front. Plant Sci. 2023, 13, 1066790. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qi, M.; Huang, A.; Xu, X.; Begum, N.; Qin, C.; Zhang, C.; Ahmad, N.; Mustafa, N.S.; Ashraf, M.; et al. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol. Environ. Saf. 2021, 216, 112195. [Google Scholar] [CrossRef]
- Sallam, A.R.; Mahdi, A.A.; Farroh, K.Y. Improving Drought Stress Tolerance in Potato (Solanum tuberosum L.) Using Magnetite and Zinc Oxide Nanoparticles. Plant Cell Biotechnol. Mol. Biol. 2022, 23, 1–16. [Google Scholar] [CrossRef]
- Kobdani, A.; Piri, I.; Tavassoli, A. Effect of iron nano-chelate fertilizer on quantity and quality yield of Okra (Abelmoschus esculentus L.) in condition of drought stress. J. Veg. Sci. 2021, 5, 109–123. [Google Scholar] [CrossRef]
- Afshari, M.; Pazoki, A.; Sadeghipour, O. Foliar-applied Silicon and its Nanoparticles Stimulate Physio-chemical Changes to Improve Growth, Yield and Active Constituents of Coriander (Coriandrum Sativum, L.) Essential Oil Under Different Irrigation Regimes. Silicon 2021, 13, 4177–4188. [Google Scholar] [CrossRef]
- Hatami, M. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Ecotoxicol. Environ. Saf. 2017, 142, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Gerdini, F.S. Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. Int. J. Farm. Alli Sci. 2016, 5, 367–371. Available online: http://ijfas.com/wp-content/uploads/2016/07/367-371.pdf (accessed on 21 May 2025).
- Dowom, S.A.; Karimian, Z.; Dehnavi, M.M.; Samiei, L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol. 2022, 22, 364. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.F.; El-Shehawi, A.M.; Ibrahim, O.H.M.; Abdul-Hafeez, E.Y.; Moussa, M.M.; Hassan, F.A.S. A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol. Biochem. 2021, 161, 166–175. [Google Scholar] [CrossRef]
- Fischer, G.; Ramírez, F.; Casierra-Posada, F. Ecophysiological aspects of fruit crops in the era of climate change. A Review. Agron. Colomb. 2016, 34, 190–199. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics. Int. J. Mol. Sci. 2021, 22, 117. [Google Scholar] [CrossRef]
- Shafqat, W.; Jaskani, M.J.; Maqbool, R.; Chattha, W.S.; Ali, Z.; Naqvi, S.A.; Haider, M.S.; Khan, I.A.; Vincent, C.I. Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environ. Exp. Bot. 2021, 181, 104270. [Google Scholar] [CrossRef]
- Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Alina Marc, R. Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomaterials 2022, 12, 3915. [Google Scholar] [CrossRef]
- Qi, M.; Liu, Y.; Li, T. Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress. Biol. Trace Elem. Res. 2013, 156, 323–328. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; AL-Huqail, A.A.; AL-Harbi, M.S.; Ali, E.F.; Wang, J.; Ding, Z.; Rekaby, S.A.; Ghoneim, A.M.; Eissa, M.A. Mechanisms of Chitosan Nanoparticles in the Regulation of Cold Stress Resistance in Banana Plants. Nanomaterials 2021, 11, 2670. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Lasheen, F.F.; Hewidy, M.; Abdelhamid, A.N.; Thabet, R.S.; Abass, M.M.M.; Fahmy, A.A.; Saudy, H.S.; Hassan, K.M. Exogenous application of humic acid mitigates salinity stress on pittosporum (Pittosporum tobira) plant by adjusting the osmolytes and nutrient homeostasis. Gesun. Pflanz. 2023, 76, 317–325. [Google Scholar] [CrossRef]
- Alharbi, B.M.; Ali, M.A.; Abdelaal, K.; Dessoky, E.S.; Al-Harbi, N.A.; Al-Balawi, S.M.; Anazi, H.K.; Darwish, D.B.E.; Kashgry, N.A.T.A.; Alayafi, A.A.; et al. Spermidine (Spd) as a modulator of osmotic, redox and ion homeostasis in common bean seedlings under salinity stress: Physiological, biochemical and molecular aspects. Chil. J. Agric. Res. 2025, 85, 98–111. [Google Scholar] [CrossRef]
- Ranjan, A.; Rajput, V.D.; Minkina, T.; Bauer, T.; Chauhan, A.; Jindal, T. Nanoparticles induced stress and toxicity in plants. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100457. [Google Scholar] [CrossRef]
- Malekzadeh, M.R.; Roosta, H.R.; Kalaji, H.M. GO nanoparticles mitigate the negative effects of salt and alkalinity stress by enhancing gas exchange and photosynthetic efficiency of strawberry plants. Sci. Rep. 2023, 13, 8457. [Google Scholar] [CrossRef]
- Rehman, A.; Khan, S.; Sun, F.; Peng, Z.; Feng, K.; Wang, N.; Jia, Y.; Pan, Z.; He, S.; Wang, L.; et al. Exploring the nano-wonders: Unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. Front. Plant Sci. 2024, 14, 1324176. [Google Scholar] [CrossRef]
- Rasheed, A.; Li, H.; Tahir, M.M.; Mahmood, A.; Nawaz, M.; Shah, A.N.; Aslam, M.T.; Negm, S.; Moustafa, M.; Hassan, M.U.; et al. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front. Plant Sci. 2022, 13, 976179. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Maheshwari, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Pérez-De-Luque, A. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front. Environ. Sci. 2017, 5, 12. [Google Scholar] [CrossRef]
- Ghanbari, F.; Bag-Nazari, M.; Azizi, A. Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in lemon verbena under salinity stress. Sci. Rep. 2023, 13, 5352. [Google Scholar] [CrossRef]
- Aazami, M.A.; Maleki, M.; Rasouli, F.; Gohari, G. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. ‘Sultana’) under salinity stress. Sci. Rep. 2023, 13, 883. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc Oxide and Silicone Nanoparticles to Improve the Resistance Mechanism and Annual Productivity of Salt-Stressed Mango Trees. Agronomy 2020, 10, 558. [Google Scholar] [CrossRef]
- Abu Zeid, I.M.; Mohamed, F.H.; Metwali, E.M.R. Responses of two strawberry cultivars to NaCl-induced salt stress under the influence of ZnO nanoparticles. Saudi J. Biol. Sci. 2023, 30, 103623. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Abdelrahman, M.; Hosseini, M.S.; Hoveizeh, N.F.; Tran, L.-S.P. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium nanoparticles. Environ. Pollut. 2019, 253, 246e258. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; González-Morales, S.; Benavides-Mendoza, A.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules 2018, 23, 178. [Google Scholar] [CrossRef]
- Lu, L.; Huang, M.; Huang, Y.; Corvini, P.F.; Ji, R.; Zhao, L. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ. Sci. Nano 2020, 7, 1692–1703. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Tiwari, S.; Lata, C. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. Front. Plant Sci. 2018, 9, 452. [Google Scholar] [CrossRef]
- Cui, H.; Shi, Y.; Zhou, J.; Chu, H.; Cang, L.; Zhou, D. Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agric. Ecosyst. Environ. 2018, 267, 165–173. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Lian, M.; Zhang, C.; Ruan, X.; Li, T. Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): A three-year field study. Ecotoxicol. Environ. Saf. 2020, 197, 110600. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tito, N.; Giraldo, J.P. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS Nano 2017, 11, 11283–11297. [Google Scholar] [CrossRef] [PubMed]
- Panahirad, S.; Gohari, G.; Mahdavinia, G.; Jafari, H.; Kulak, M.; Fotopoulos, V.; Alcázar, R.; Dadpour, M. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: Modulation of antioxidant and photosynthetic status. BMC Plant Biol. 2023, 23, 411. [Google Scholar] [CrossRef]
- Fahad, A.B.; Agheem, M.H.; Memon, S.A.; Baloch, A.; Tunio, A.; Abdullah; Pato, A.H.; Jagirani, M.S.; Panah, P.; Gabole, A.A. Efficient mitigation of cadmium and lead toxicity in coriander plant utilizing magnetite (Fe3O4) nanofertilizer as growth regulator and antimicrobial agent. Int. J. Environ. Anal. Chem. 2020, 102, 3868–3879. [Google Scholar] [CrossRef]
- González-Moscoso, M.; Martínez-Villegas, N.; Cadenas-Pliego, G.; Juárez-Maldonado, A. Effect of Silicon Nanoparticles on Tomato Plants Exposed to Two Forms of Inorganic Arsenic. Agronomy 2022, 12, 2366. [Google Scholar] [CrossRef]
- Abou El-Nasr, M.K.; Nasser, M.A.; Ebrahim, M.; Samaan, M.S.F. Alleviating biotic stress of Powdery Mildew in mango cv. Keitt by Sulfur nanoparticles and assessing their effect on productivity and disease severity. Sci. Rep. 2025, 15, 5537. [Google Scholar] [CrossRef]
- Pascoli, M.; Lopes-Oliveira, P.J.; Fraceto, L.F.; Seabra, A.B.; Oliveira, H.C. State of the art of polymeric nanoparticles as carrier systems with agricultural applications: A minireview. Energy Ecol. Environ. 2018, 3, 137–148. [Google Scholar] [CrossRef]
- Paradva, K.C.; Kalla, S. Nanopesticides: A review on current research and future perspective. Chem. Sel. 2023, 8, e202300756. [Google Scholar] [CrossRef]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef] [PubMed]
- Tortella, G.; Rubilar, O.; Pieretti, J.C.; Fincheira, P.; de Melo Santana, B.; Fernández-Baldo, M.A.; Benavides-Mendoza, A.; Seabra, A.B. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics 2023, 12, 338. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ahmad, N.; Dar, M.A.; Manan, S.; Rani, A.; Alghanem, S.M.S.; Khan, K.A.; Sethupathy, S.; Elboughdiri, N.; Mostafa, Y.S.; et al. Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. Plants 2023, 13, 109. [Google Scholar] [CrossRef]
- Hooven, L.A.; Chakrabarti, P.; Harper, B.J.; Sagili, R.R.; Harper, S.L. Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules 2019, 24, 4458. [Google Scholar] [CrossRef]
- Shakiba, S.; Astete, C.E.; Paudel, S.; Sabliov, C.M.; Rodrigues, D.F.; Louie, S.M. Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 2020, 7, 37–67. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Bogdanchikova, N.; Garibo, D. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne incognita, plant pathogens Ralstonia solanacearum and Fusarium oxysporum. Molecules 2021, 26, 2462. [Google Scholar] [CrossRef]
- Solis Vizcaino, I.; Rubio Rosas, E.; Águila Almanza, E.; Marín Castro, M.; Hernández Cocoletzi, H. Ultrasonic Production of Chitosan Nanoparticles and Their Application Against Colletotrichum gloeosporioides Present in the Ataulfo Mango. Polymers 2024, 16, 3058. [Google Scholar] [CrossRef]
- Haq, I.U.; Cai, X.; Ali, H.; Akhtar, M.R.; Ghafar, M.A.; Hyder, M.; Hou, Y. Interactions Between Nanoparticles and Tomato Plants: Influencing Host Physiology and the Tomato Leafminer’s Molecular Response. Nanomaterials 2024, 14, 1788. [Google Scholar] [CrossRef]
- Lamsal, K.; Kim, S.W.; Jung, J.H.; Kim, Y.S.; Kim, K.S.; Lee, Y.S. Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. Mycobiology 2011, 39, 26–32. [Google Scholar] [CrossRef]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Soroush, F.; Varma, R.S. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int. J. Biol. Macromol. 2022, 222, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Gechev, T.S.; Van Breusegem, F.; Stone, J.M.; Denev, I.; Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 2006, 28, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.E.S.; Grillo, R.; Mello, N.F.S.; Rosa, A.H.; Fraceto, L.F. Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J. Hazard. Mater. 2014, 268, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Artusio, F.; Casà, D.; Granetto, M.; Tosco, T.; Pisano, R. Alginate Nanohydrogels as a Biocompatible Platform for the Controlled Release of a Hydrophilic Herbicide. Processes 2021, 9, 1641. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Noman, M.; Niazi, M.B.K.; Mahmood, F.; Manzoor, I.; Zhang, Y.; Li, B.; Yang, Y.; Yan, C.; et al. Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice. Pathogens 2020, 9, 160. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Ikram, M.; Oraby, H.F.; Mashwani, Z.-U.; Mohamed, A.H.; Singh, A.; Omar, A.A. Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. Molecules 2022, 27, 4274. [Google Scholar] [CrossRef]
- Consolo, V.F.; Torres-Nicolini, A.; Alvarez, V.A. Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci. Rep. 2020, 10, 20499. [Google Scholar] [CrossRef]
- Khan, I.; Raza, M.A.; Awan, S.A.; Khalid, M.H.B.; Raja, N.; Min, S.; Zhang, A.; Naeem, M.; Meraj, T.A.; Iqbal, N.; et al. In vitro effect of metallic silver nanoparticles (AgNPs): A novel approach toward the feasible production of biomass and natural antioxidants in pearl millet (Pennisetum glaucum L.). Appl. Ecol. Environ. Res. 2020, 17, 12877–12892. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int. J. Phytoremediat. 2016, 18, 1258–1269. [Google Scholar] [CrossRef] [PubMed]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater. Lett. 2014, 115, 13–17. [Google Scholar] [CrossRef]
- Lopez-Lima, D.; Mtz-Enriquez, A.I.; Carrión, G.; Basurto-Cereceda, S.; Pariona, N. The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Sci. Hortic. 2021, 277, 109810. [Google Scholar] [CrossRef]
- El-Ashry, R.M.; El-Saadony, M.T.; El-Sobki, A.E.A.; El-Tahan, A.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Saad, A.M.; Elshaer, N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 2022, 29, 920–932. [Google Scholar] [CrossRef]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- Bapat, G.; Zinjarde, S.; Tamhane, V. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids Surf. B Biointerfaces 2020, 193, 111079. [Google Scholar] [CrossRef]
- Zhang, J.; Kothalawala, S.; Yu, C. Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. Environ. Pollut. 2023, 320, 121045. [Google Scholar] [CrossRef]
- Zohra, E.; Ikram, M.; Omar, A.A.; Hussain, M.; Satti, S.H.; Raja, N.I.; Mashwani, Z.U.R.; Ehsan, M. Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: A comprehensive insight on the mechanistic approach and future perspectives. Green Process. Synth 2021, 10, 456–475. [Google Scholar] [CrossRef]
- Hu, D.; Yu, S.; Yu, D.; Liu, N.; Tang, Y.; Fan, Y.; Wang, C.; Wu, A. Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food Control 2019, 106, 106748. [Google Scholar] [CrossRef]
- Luksiene, Z.; Rasiukeviciute, N.; Zudyte, B.; Uselis, N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 203, 111656. [Google Scholar] [CrossRef]
- Giorgetti, L. Chapter 4—Effects of Nanoparticles in Plants: Phytotoxicity and Genotoxicity Assessment. In Nanomaterials in Plants, Algae and Microorganisms; Academic Press: Cambridge, MA, USA, 2018; Volume 2, pp. 65–87. [Google Scholar] [CrossRef]
- González-García, Y.; Cadenas-Pliego, G.; Alpuche-Solís, Á.; Cabrera, R.; Juárez-Maldonado, A. Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. Nanomaterials 2021, 11, 1080. [Google Scholar] [CrossRef]
- Mathur, P.; Roy, S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol. Biochem. 2020, 157, 114–127. [Google Scholar] [CrossRef]
- Fan, N.; Zhao, C.; Yue, L.; Ji, H.; Wang, X.; Xiao, Z.; Rasmann, S.; Wang, Z. Nanosilicon alters oxidative stress and defence reactions in plants: A meta-analysis, mechanism and perspective. Environ. Sci. Nano 2022, 9, 3742–3755. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.-U.; Ahmad, M.S.; Ikram, M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 2021, 16, e0246880. [Google Scholar] [CrossRef] [PubMed]
- Grasseschi, D.; Silva, W.C.; Souza Paiva, R.; Starke, L.D.; Nascimento, A.S. Surface coordination chemistry of graphene: Understanding the coordination of single transition metal atoms. Coord. Chem. Rev. 2020, 422, 213469. [Google Scholar] [CrossRef]
- Hassanpour, S.; Behnam, B.; Baradaran, B.; Hashemzaei, M.; Oroojalian, F.; Mokhtarzadeh, A.; De la Guardia, M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2021, 221, 121610. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Briso, A.L.; Aachmann, F.L.; Moreno-Manzano, V.; Serrano-Aroca, Á. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Int. J. Biol. Macromol. 2020, 143, 1000–1008. [Google Scholar] [CrossRef]
- Srivastava, N.; Mukhopadhyay, M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 2015, 38, 1723–1730. [Google Scholar] [CrossRef]
- Huang, B.; Liao, Q.; Fu, H.; Ye, Z.; Mao, Y.; Luo, J.; Wang, Y.; Yuan, H.; Xin, J. Effect of potassium intake on cadmium transporters and root cell wall biosynthesis in sweet potato. Ecotoxicol. Environ. Saf. 2023, 250, 114501. [Google Scholar] [CrossRef]
- Huang, B.; Huang, Y.; Shen, C.; Fan, L.; Fu, H.; Liu, Z.; Sun, Y.; Wu, B.; Zhang, J.; Xin, J. Roles of boron in preventing cadmium uptake by Capsicum annuum root tips: Novel insights from ultrastructural investigation and single-cell RNA sequencing. Sci. Total Environ. 2024, 957, 177858. [Google Scholar] [CrossRef]
- Parkinson, S.J.; Tungsirisurp, S.; Joshi, C.; Richmond, B.L.; Gifford, M.L.; Sikder, A.; Lynch, I.; O’Reilly, R.K.; Napier, R.M. Polymer nanoparticles pass the plant interface. Nat. Commun. 2022, 13, 7385. [Google Scholar] [CrossRef] [PubMed]
- Kurczyńska, E.; Godel-Jędrychowska, K.; Sala, K.; Milewska-Hendel, A. Nanoparticles—Plant Interaction: What We Know, Where We Are? Appl. Sci. 2021, 11, 5473. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Marslin, G.; Sheeba, C.J.; Franklin, G. Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Front. Plant Sci. 2017, 8, 832. [Google Scholar] [CrossRef]
- Javaid, A.; Munir, N.; Abideen, Z.; Duarte, B.; Siddiqui, Z.S.; Haq, R.; Naz, S. The potential effects of nanoparticles in gene regulation and expression in mammalian, bacterial and plant cells-A comprehensive review. Plant Nano Biol. 2025, 11, 100145. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotech. 2020, 2, 10. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Anbazhagan, V.; Dhankher, O.P.; Prasad, P.V.V. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. Plants 2024, 13, 3137. [Google Scholar] [CrossRef]
- Samynathan, R.; Venkidasamy, B.; Ramya, K.; Muthuramalingam, P.; Shin, H.; Kumari, P.S.; Thangavel, S.; Sivanesan, I. Recent Update on the Impact of Nano-Selenium on Plant Growth, Metabolism, and Stress Tolerance. Plants 2023, 12, 853. [Google Scholar] [CrossRef]
- Ochoa, L.; Shrivastava, M.; Srivastava, S.; Cota-Ruiz, K.; Zhao, L.; White, J.C.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Nanomaterials for managing abiotic and biotic stress in the soil–plant system for sustainable agriculture. Environ. Sci. Nano 2025, 12, 1037–1058. [Google Scholar] [CrossRef]
- Li, P.; Xia, Y.; Song, K.; Liu, D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Plants 2024, 13, 984. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Singh, M.; Pandey-Rai, S. Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 2022, 6, 100107. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Kah, M. Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Front. Chem. 2015, 3, 64. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022, 63 (Suppl. S3), E255–E266. [Google Scholar] [CrossRef]
- Warheit, D.B.; Brown, S.C.; Donner, E.M. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol. 2015, 84, 208–224. [Google Scholar] [CrossRef]
- Grodzicki, W.; Dziendzikowska, K.; Gromadzka-Ostrowska, J.; Wilczak, J.; Oczkowski, M.; Kopiasz, Ł.; Sapierzyński, R.; Kruszewski, M.; Grzelak, A. In Vivo Pro-Inflammatory Effects of Silver Nanoparticles on the Colon Depend on Time and Route of Exposure. Int. J. Mol. Sci. 2024, 25, 4879. [Google Scholar] [CrossRef]
- Michalak, I.; Dziergowska, K.; Alagawany, M.; Farag, M.R.; El-Shall, N.A.; Tuli, H.S.; Emran, T.B.; Dhama, K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Q. 2022, 42, 68–94. [Google Scholar] [CrossRef]
- Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Mahmood Dar, A.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int. 2014, 2014, 498420. [Google Scholar] [CrossRef]
- Bąkowski, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R.; Lipiec, A. Silver and zinc nanoparticles in animal nutrition—A review. Ann. Anim. Sci. 2018, 18, 879–898. [Google Scholar] [CrossRef]
- Rezaei-Kelishadi, M.; Ghasemi, A.; Abdolyosefi, N.N.; Zamani-Doabi, S.; Ramezani, M.; Changizi-Ashtiyani, S.; Rahimi, A. Effects of selenium nanoparticles on kidney and liver functional disorders in streptozotocin-induced diabetic rats. Physiol. Pharmacol. 2017, 21, 155–162. Available online: http://ppj.phypha.ir/article-1-1229-en.html (accessed on 21 May 2025).
- Jakic, K.; Selc, M.; Razga, F.; Nemethova, V.; Mazancova, P.; Havel, F.; Sramek, M.; Zarska, M.; Proska, J.; Masanova, V.; et al. Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys. Int. J. Nanomed. 2024, 19, 4103–4120. [Google Scholar] [CrossRef] [PubMed]
- Ingle, P.U.; Shende, S.S.; Shingote, P.R.; Mishra, S.S.; Sarda, V.; Wasule, D.L.; Rajput, V.D.; Minkina, T.; Rai, M.; Sushkova, S.; et al. Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon 2022, 8, e11893. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, B.; Chitdeshwari, T.; Mohanapriya, G. Fascinating role of nanosilica in mitigating drought and nutrient stress—A review. Plant Stress 2024, 14, 100672. [Google Scholar] [CrossRef]
- Nile, S.H.; Thiruvengadam, M.; Wang, Y.; Samynathan, R.; Shariati, M.A.; Rebezov, M.; Nile, A.; Sun, M.; Venkidasamy, B.; Xiao, J.; et al. Nano-priming as emerging seed priming technology for sustainable agriculture—Recent developments and future perspectives. J. Nanobiotechnol. 2022, 20, 254. [Google Scholar] [CrossRef]
- Ahmad, B.; Shabbir, A.; Jaleel, H.; Khan, M.M.A.; Sadiq, Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol. 2018, 13, 6–15. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Santana, I.; Fahlgren, M.; Giraldo, J.P. Standoff Optical Glucose Sensing in Photosynthetic Organisms by a Quantum Dot Fluorescent Probe. ACS Appl. Mater. Interfaces 2018, 10, 28279–28289. [Google Scholar] [CrossRef]
- Tan, W.; Du, W.; Barrios, A.C.; Armendariz, R.; Zuverza-Mena, N.; Ji, Z.; Chang, C.H.; Zink, J.I.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; et al. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ. Pollut. 2017, 222, 64–72. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z. Recent advances in nano-enabled agriculture for improving plant performance. Crop J. 2022, 10, 1–12. [Google Scholar] [CrossRef]
- Kobayashi, K.; Wei, J.; Iida, R.; Ijiro, K.; Niikura, K. Surface engineering of nanoparticles for therapeutic applications. Polym. J. 2014, 46, 460–468. [Google Scholar] [CrossRef]
- Gilroy, S.; Białasek, M.; Suzuki, N.; Górecka, M.; Devireddy, A.R.; Karpiński, S.; Mittler, R. ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiol. 2016, 171, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.-G.; Toyota, M.; Kim, S.-H.; Gilroy, S. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Biol. Sci. 2014, 111, 6497–6502. [Google Scholar] [CrossRef]
- Seifikalhor, M.; Aliniaeifard, S.; Shomali, A.; Azad, N.; Hassani, B.; Lastochkina, O.; Li, T. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal. Behav. 2019, 14, 1665455. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Nißler, R.; Morris, V.; Herrmann, N.; Hu, P.; Jeon, S.J.; Kruss, S.; Giraldo, J.P. Monitoring Plant Health with Near-Infrared Fluorescent H2O2 Nanosensors. Nano Lett. 2020, 20, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Saifullah, M.; Shishir, I.M.R.; Ferdowsi, R.; Rahman, T.M.R.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Ramadan, M.E.; El-Saber, M.M.; Abdelhamid, A.E.; El-Sayed, A.A. Effect of nano chitosan encapsulated spermine on growth, productivity and bioactive compounds of chili pepper (Capsicum annuum L.) under salinity stress. Egypt. J. Chem. 2022, 65, 197–207. [Google Scholar] [CrossRef]
- Gupta, R.; Xie, H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 209–230. [Google Scholar] [CrossRef]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 30, 9954443. [Google Scholar] [CrossRef]
Horticulture Crop Species | Nanomaterials/Addition Method | Effects | References |
---|---|---|---|
Mango Mangifera indica L. | Selenium (Se), Titanium (Ti), and Silicon (Si) NPs Foliar spraying of Se NPs (5, 10, and 20 mg/L); TiO2 NPs (40, 60, and 80 mg/L); SiO2 NPs (50, 100, and 150 mg/L). | Compared to the unsprayed plants during the experimental seasons, NPs significantly enhanced the vegetative parameters of mango trees during drought, improving the metrics related to fruit quality and ultimate production. | [99] |
Grape Vitis vinifera L. | Iron nanoparticles (Fe NPs) Added Fe NPs with different concentrations (0, 5, 10, 20, 30, and 40 µM) dissolved in half-strength Hoagland solution without Fe-EDTA, under simulated drought stress by adding 7% Polyethylene glycol (PEG) to the growth. | The plants’ physiological integrity was saved by increasing the generation of H2O2 and MDA, which decreased leaf RWC, chlorophyll content, and chlorophyll fluorescence (Fv/Fm). This was notably true at 30 µM Fe NPs, the ideal antioxidant concentration. | [100] |
Pomegranate Punica granatum L. | Silver nanoparticles (Ag NPs) Sprayed three times at the initial flowering, full bloom, and one month later with 7.5 and 10 mg L−1 | Enhanced the amount of bioactive chemicals and improved fruit quality, production, and biomass. | [101] |
Strawberries Fragaria × ananassa Duch. | Titanium nanoparticles (TiO2 NPs) Application of NPs by foliar spray at 0, 10, 20, and 30 mg/L−1 | Enhancing the productivity of plants under drought stress by TiO2 NPs is a convenient strategy. TiO2 NPs led to an increase in flavonoids. | [102] |
Nano-Silicon Dioxide (SiO2 NPs) Adding SiO2 NPs at (50 and 100 mg L−1) in an MS medium containing PEG at different concentrations, plantlets were cultured for 35 days. | Enhanced resistance to water stress through an increase in the weight and length of the roots, the number of leaves, the SPAD index, the CAT, and the SOD activity. | [103] | |
Iron nanoparticles (Fe3O4 NPs) The treatments consisted of Fe3O4 NPs at 0.08 and 0.8 ppm, salicylic acid (SA) at 0.01 and 0.05 mM; combined effect on branch number and other phenotypical traits, under drought stress at three levels, 5 and 10% simulated by PEG. | In vitro cultivation of strawberry plantlets treated with Fe4 NPs and SA improved the quantity and quality of morphological and growth metrics while reducing the adverse effects of drought stress. | [104] | |
Tomato Solanum lycopersicum | Nano-nutrients solution of biochar (NNS) Foliar was applied thrice, with 0%, 1%, 3%, and 5%, after two weeks of drought stress. | Increased plant biomass by the exogenous NNS administration, lessening the effects of drought-induced oxidative stress. It improved membrane stability, decreased the buildup of ROS, decreased lipid peroxidation, elevated levels of secondary metabolites, osmolytes, and antioxidant enzymes. | [105] |
Nano-vermicompost (NV) After germination, seedlings within 20 days were transplanted into pots filled with soil and NV at 10 and 100 mg kg−1 of soil. Then it is exposed to drought stress for fifteen days. | Lipid peroxidation, decreased ROS formation, and improved membrane function were the results of NV supplementation. Drought-mediated damage was also prevented by strong modulation of the antioxidant system, osmolytes, and secondary metabolites. | [106] | |
Potato Solanum tuberosum L. | Zinc oxide (ZnO NPs) and Magnetite (Fe3O4 NPs). Adding NPs at 0.0, 2.5, and 5.0 ppm under drought stress simulation by Sorbitol at 0.0, 1, 2, 3, and 4 Mm on micropropagation, micro tuberization, and some biochemical characters using potato plantlets. | Increased the accumulation of secondary metabolites such as quercetin and kaempferol and their ability to scavenge the radical DPPH (2,2-diphenyl-1-picrylhydrazyl). | [107] |
Okra Abelmoschus esculentus L. | Iron Nano-Chelate (Fe N-C) Application of nano fertilizer at 3.5, 7, and 10 kg ha−1, under drought stress at 100%, 80%, and 60% of soil field capacity. | Plant metabolism increased due to Fe N-C, and nutrients were absorbed into plant tissues more effectively. | [108] |
Eggplant Solanum melongena L. | Zinc Oxide Nanoparticles (ZnO NPs) ZnO NPs concentrations (0, 50, and 100 ppm), under full irrigation (100% crop evapotranspiration; ETc) and drought stress at 60% ETc. | ZnO NP-treated water-stressed plants displayed enhanced growth traits, increased productivity, and a reduction in the effects of drought stress. These enhancements included better anatomical features of the stem and leaf, more photosynthetic efficiency, and higher RWC and membrane stability index. | [20] |
Coriander Coriandrum Sativum L. | Silicon nanoparticles (Si NPs) Si NPs and Si-bulk at 1.5 mM were foliar-applied three times at an interval of 15 days. | Total phenolic content (TPC), total flavonoid content (TFC), and optimal essential oil (EO) quality and quantity all increased after Si NPs treatment. | [109] |
Pumpkin Cucurbita pepo L. | Multi-walled carbon nanotubes (MWCNTs) Using MS medium containing 3% sucrose, and 0.8% agar without or with MWCNTs at different concentrations of 125, 250, 500, and 1000 µg mL−1 for germination, under water stress that was simulated by adding PEG at 150 g/L of medium. | MWCNTs protect seedlings from oxidative damage by increasing the activity of antioxidant enzymes at low doses. These enzymes scavenge excess ROS. However, elevated oxidative damage markers, such as MDA and H2O2, were seen at high concentrations. | [110] |
Nano-potassium (K NPs) K NPs at 0.5, 1.5, and 2.5 ppt were sprayed three days before irrigation. | Using K NPs improved plant development and sped up the leaves’ absorption and transfer of elements, which proved successful. Using K NPs improved plant development and sped up the leaves’ absorption and transfer of elements, which proved successful. | [111] | |
Russian Sage Salvia abrotanoides Kar. | Chitosan nanoparticles (CNPs) CNPs at 0, 30, 60, and 90 ppm, under multiple irrigation regimes, 30%, 50%, and 100% of field capacity. | By enhancing RWC, total chlorophyll, carotenoids, phenol, flavonoids, soluble sugar, proline, and protein, CNPs lessened the impacts of drought stress. Additionally, it increased SOD, PPO, and GPX activity. Furthermore, stomatal density increased, and stomatal aperture size decreased. | [112] |
Rose periwinkle Catharanthus roseus L. | Chitosan nanoparticles (CNPs) Irrigation regimes of 50% and 100% of field capacity with foliar application of CNPs (0–1%). | By increasing proline accumulation and CAT and APX activity, as well as lowering H2O2 and MDA accumulation and alkaloid biosynthesis gene expression. | [113] |
Horticulture Crop Species | Nanomaterials/Addition Method | Salinity Level | Effects | References |
---|---|---|---|---|
Grape Vitis vinifera L. | Chitosan-salicylic acid nanocomposite (CS-SA NCs) Foliar spraying of NCs (0, 0.1, and 0.5 mM). | Three levels (0, 50, and 100 mM NaCl) | The concentration of NCs at 0.5 mM had a better effect and improved the grapes’ physiological and biochemical properties by enhancing total soluble protein, soluble carbohydrate, total antioxidant, and antioxidant enzymes activity. | [132] |
Mango Mangifera indica L. | Nano-zinc oxide (nZnO) and nano-silicon (nSi) Foliar spray of nZnO (50, 100, and 150 mg/L), nSi (150 and 300 mg/L), and the combination was applied at full bloom and one month after salt stress. | The soil salinity was 3.67 dSm−1, and the salinity of the irrigation water used was 0.96 dSm−1. | The combined application of 100 mg/L nZnO and 150 mg/L nSi showed improved nutrient uptake, carbon assimilation, plant growth, productivity, and fruit quality. | [133] |
Strawberry Fragaria × ananassa Duch. | Zinc oxide nanoparticles (ZnO-NPs) Application of ZnO-NPs at (0, 15, and 30 mg L−l). | Three levels of NaCl-induced salt stress (0, 35, and 70 mM) | The lower concentration at 15 mg l−1 was found to alleviate the harmful effects by enhancing the growth traits, decreasing the accumulation of toxic ions, and increasing K+ uptake. In addition, elevated levels of CAT, POD, and proline content. | [134] |
Foliar spray of Se-NPs (10 and 20 mg L−1) | Saline soils (0, 25, 50, and 75 mM NaCl) | Reducing lipid peroxidation and H2O2 content, by enhancing activities of antioxidant enzymes like SOD and POD. Enhanced levels of organic acids and sugars in the fruits | [135] | |
Tomato Solanum lycopersicum L. | Cu NPs 10 mg of Cu NPs absorbed on 1 g of CS–PVA hydrogel | 100 mM NaCl in the nutrient solution | Increased the growth, yield, SOD, GSH, and GPX activity in leaves. Also, total phenol content increased in leaves, and lycopene and vitamin C content increased in fruits. ABTS increased, whereas DPPH decreased in leaves and fruits. | [136] |
Cucumber Cucumis sativus | After 3 weeks of normal growth, the leaves were sprayed with Mn3O4 NPs suspensions (0, 20, or 100 mg L−1) twice daily, around 3.57 mL once/ plant. | 0.3% NaCl | Mn3O4 NPs, at a concentration of 1 mg per plant, effectively reduced oxidative stress in cucumber plants, enabling them to preserve their biomass. Also, it increased the levels of endogenous antioxidants by upregulating precursors and downstream products in the shikimate and phenylpropanoid pathways. | [137] |
Horticulture Crop Species | Nanomaterials | Type of Disease | Effects | References |
---|---|---|---|---|
Mango Mangifera indica L. | Chitosan nanoparticles (ChNPs) 0.25%, 0.5%, and 1%. | Colletotrichum gloeosporioides | The observed antifungal activity might be related to the interaction between the fungal cells and the ChNPs, where the surface area of the NPs makes it easier for them to be absorbed onto the cell surface. This changes the makeup of the cell and prevents vital nutrients from being accessible for growth. | [156] |
Sulfur nanoparticles (SNPs) 100, 300, and 500 ppm compared to micronized sulfur (500 ppm). | Oidium mangiferae | SNPs foliar spraying significantly reduced the disease incidence rate and severity index of powdery mildew in the Keitt mango cultivar. Besides an increase in the sulfur content of mango leaves, improved tree productivity, and affected the physical and chemical characteristics of fruits by reducing the H2O2 content. | [147] | |
Tomato Solanum lycopersicum L. | Silver and zinc oxide nanoparticles | Tuta absoluta | Causes oxidative stress by producing ROS, which damages proteins, lipids, and DNA in insect cells. This affects insects’ reproductive and developmental cycles, bolstering their potential as an efficient pest management method. | [157] |
Cucumber Cucumis sativus | Silver nanoparticles 10, 30, 50, and 100 ppm | Golovinomyces cichoracearum or Sphaerotheca fusca | Ag NPs were applied 3~4 weeks before disease outbreaks; even 50 ppm of Ag NPs can effectively inhibit powdery mildew. | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou El-Nasr, M.K.; Hassan, K.M.; Abd-Elhalim, B.T.; Kucher, D.E.; Rebouh, N.Y.; Ansabayeva, A.; Abdelkader, M.; Ali, M.A.A.; Nasser, M.A. The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review. Plants 2025, 14, 2192. https://doi.org/10.3390/plants14142192
Abou El-Nasr MK, Hassan KM, Abd-Elhalim BT, Kucher DE, Rebouh NY, Ansabayeva A, Abdelkader M, Ali MAA, Nasser MA. The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review. Plants. 2025; 14(14):2192. https://doi.org/10.3390/plants14142192
Chicago/Turabian StyleAbou El-Nasr, Mohamed K., Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali, and Mohamed A. Nasser. 2025. "The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review" Plants 14, no. 14: 2192. https://doi.org/10.3390/plants14142192
APA StyleAbou El-Nasr, M. K., Hassan, K. M., Abd-Elhalim, B. T., Kucher, D. E., Rebouh, N. Y., Ansabayeva, A., Abdelkader, M., Ali, M. A. A., & Nasser, M. A. (2025). The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review. Plants, 14(14), 2192. https://doi.org/10.3390/plants14142192