Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = paper-based valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 227
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

24 pages, 4323 KiB  
Article
Effective Bulk Modulus in Low-Pressure Pump-Controlled Hydraulic Cylinders
by Petter Gøytil, Michael Rygaard Hansen and Håkon Tvilde
Actuators 2025, 14(8), 366; https://doi.org/10.3390/act14080366 - 24 Jul 2025
Viewed by 178
Abstract
In this paper, the effective bulk modulus of pump-controlled hydraulic cylinders is studied in the context of linear time-invariant modeling and control. Using an experimental test-rig, the minimum expected value of the effective bulk modulus is identified, and its impact on stability and [...] Read more.
In this paper, the effective bulk modulus of pump-controlled hydraulic cylinders is studied in the context of linear time-invariant modeling and control. Using an experimental test-rig, the minimum expected value of the effective bulk modulus is identified, and its impact on stability and achievable performance under feedback control is analyzed. A method for control design and analysis based on a single operating point, analogous to that of what is traditionally utilized in valve-controlled systems, is proposed and validated. It is shown that despite the drastic reduction in the minimum effective bulk modulus occurring in these systems compared to that of valve-controlled cylinders, adequate performance may be achieved under feedback control due to the presence of adequate damping. Two critical modeling aspects commonly neglected in the research literature on these systems are highlighted, and their importance is demonstrated. These results demonstrate the efficacy of linear time-invariant methods in pump-controlled cylinders, as well as the importance of making appropriate modeling decisions, and should therefore be of high relevance to both researchers and engineers working with pump-controlled cylinders. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

28 pages, 3531 KiB  
Review
Review of Acoustic Emission Detection Technology for Valve Internal Leakage: Mechanisms, Methods, Challenges, and Application Prospects
by Dongjie Zheng, Xing Wang, Lingling Yang, Yunqi Li, Hui Xia, Haochuan Zhang and Xiaomei Xiang
Sensors 2025, 25(14), 4487; https://doi.org/10.3390/s25144487 - 18 Jul 2025
Viewed by 326
Abstract
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is [...] Read more.
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is capable of capturing the transient stress waves induced by leakage, thereby furnishing an effective means for the real-time monitoring and quantitative assessment of internal leakage within the valve body. This paper conducts a systematic review of the theoretical foundations, signal-processing methodologies, and the latest research advancements related to the technology for detecting internal leakage in the valve body based on acoustic emission. Firstly, grounded in Lechlier’s acoustic analogy theory, the generation mechanism of acoustic emission signals arising from valve body leakage is elucidated. Secondly, a detailed analysis is conducted on diverse signal processing techniques and their corresponding optimization strategies, encompassing parameter analysis, time–frequency analysis, nonlinear dynamics methods, and intelligent algorithms. Moreover, this paper recapitulates the current challenges encountered by this technology and delineates future research orientations, such as the fusion of multi-modal sensors, the deployment of lightweight deep learning models, and integration with the Internet of Things. This study provides a systematic reference for the engineering application and theoretical development of the acoustic emission-based technology for detecting internal leakage in valves. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

15 pages, 5395 KiB  
Article
Recommendations for Preventing Free-Stroke Failures in Electric Vehicle Suspension Dampers Based on Experimental and Numerical Approaches
by Na Zhang, Zhenhuan Yu and Zhiyuan Liu
World Electr. Veh. J. 2025, 16(7), 392; https://doi.org/10.3390/wevj16070392 - 13 Jul 2025
Viewed by 237
Abstract
Free stroke, which means the intermittent no-load operation state of dampers, can cause an abnormal noise and unavoidably lead to the deterioration of vehicle NVH performance. In electric vehicles, the noise is particularly intolerable because there are no engine sounds to mask it. [...] Read more.
Free stroke, which means the intermittent no-load operation state of dampers, can cause an abnormal noise and unavoidably lead to the deterioration of vehicle NVH performance. In electric vehicles, the noise is particularly intolerable because there are no engine sounds to mask it. Focusing on this, the mechanism of the free-stroke phenomenon is analyzed. A method, which involves parametric models and numerical simulation, is proposed to prevent free-stroke phenomena during the damper design phase. This paper proposes a free-stroke mechanism based on a fluid–structure interaction (FSI) numerical method, combined with experiments, which intends to provide a design reference with guaranteed performance for dampers. Initially, according to parametric cavitation models and by applying numerical methods, simulations for the proposed FSI model are calculated. By analyzing the simulation results, strain variation characteristics near the bottom of the damper valves are revealed, which establish the relationships between strain change, cavitation and the free-stroke phenomena. Meanwhile, the specific position and distribution of free-stroke failure are clearly located by running diverse loading speeds. Finally, all the theoretical analysis results are verified using damper noise tests and indicator bench tests. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

20 pages, 4574 KiB  
Article
Experimental and Numerical Flow Assessment of the Main and Additional Tract of Prototype Differential Brake Valve
by Marcin Kisiel and Dariusz Szpica
Appl. Sci. 2025, 15(13), 7483; https://doi.org/10.3390/app15137483 - 3 Jul 2025
Viewed by 202
Abstract
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was [...] Read more.
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was to determine the throughput of brake valve tracts using numerical and experimental methods. These tracts are supposed to provide the tracking and acceleration function of the valve depending on the setting of the correction system. The first numerical method was based on polyhedral meshes using computational fluid dynamics (CFD) and Ansys Fluent software. The second research method—experimental tests on the author’s bench using the reservoir method—consisted of identifying throughputs based on pressure waveforms in the measurement tanks. The determined throughputs were averaged over the range of pressure differences tested and allowed the final calculation of the mass flow rate. The analysis of the obtained results showed an average discrepancy between the two research methods for both tracts, in which the flow in both directions was considered to be 9.43%, taking into account the use of a polyhedral numerical mesh ensuring high-quality results with an optimal simulation duration. The analysis of the pressure distribution inside the working chambers showed local areas of increased pressure and negative pressure resulting from the acceleration of the flow in narrow flow channels and the occurrence of the Venturi effect. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 6299 KiB  
Article
Multi-Valve Coordinated Disturbance Rejection Control for an Intake Pressure System Using External Penalty Functions
by Louyue Zhang, Duoqi Shi, Chao Zhai, Zhihong Dan, Hehong Zhang, Xi Wang and Gaoxi Xiao
Actuators 2025, 14(7), 334; https://doi.org/10.3390/act14070334 - 2 Jul 2025
Viewed by 228
Abstract
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is [...] Read more.
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is formulated as an inequality-constrained optimization problem, and an exponential penalty together with a gradient based algorithm is designed for dynamic constraint relaxation, with guaranteed global convergence. A coordination term is then integrated into a distributed ADRC framework to yield a multi-valve coordinated ADRC controller, whose asymptotic stability is established via Lyapunov theory. Hardware-in-the-loop simulations using MATLAB/Simulink and a PLC demonstrate that, under ±3 kPa pressure constraints, the maximum engine inlet pressure error is 1.782 kPa (77.1% lower than PID control), and under an 80 kg/s2 flow-rate disturbance, valve oscillations decrease from ±27% to ±5%. These results confirm the superior disturbance rejection and decoupling performance of the proposed method. Full article
(This article belongs to the Special Issue Actuation and Robust Control Technologies for Aerospace Applications)
Show Figures

Figure 1

27 pages, 3561 KiB  
Article
A Novel Capacitor-Commutated Converter Based on Submodule-Cascaded STATCOM
by Ming Yan, Songge Huang, Wenbin Yang, Chenyi Tang, Jianan Jiang and Yaolu He
Electronics 2025, 14(13), 2646; https://doi.org/10.3390/electronics14132646 - 30 Jun 2025
Viewed by 152
Abstract
To address the challenge of a conventional line-commutated converter (LCC), unable to operate properly in connection with a very weak AC system, the technology of the capacitor-commutated converter (CCC) was widely utilized in 1990s. The topology of the CCC is constructed as a [...] Read more.
To address the challenge of a conventional line-commutated converter (LCC), unable to operate properly in connection with a very weak AC system, the technology of the capacitor-commutated converter (CCC) was widely utilized in 1990s. The topology of the CCC is constructed as a conventional LCC modified with a series capacitor between the converter transformer and the thyristor valves in each phase. Additional phase voltage can be generated on the capacitor to assist the process of the commutation. However, the CCC technology may experience continuous commutation failure due to the uncontrolled charging of the series capacitor. Based on the submodule-cascaded static synchronous compensator (STATCOM), this paper proposes a novel topology called the submodule-cascaded STATCOM-based CCC (SCCC). The SCCC technology enables the function of reactive power compensation and active filtering. It can also improve the transient characteristics of the AC faults via dynamic reactive power injection during the transient process, which helps to reduce the risk of continuous commutation failure in the CCC. Full article
Show Figures

Figure 1

15 pages, 1396 KiB  
Article
Modeling and Key Parameter Interaction Analysis for Ship Central Cooling Systems
by Xin Wu, Ping Zhang, Pan Su and Jiechang Wu
Appl. Sci. 2025, 15(13), 7241; https://doi.org/10.3390/app15137241 - 27 Jun 2025
Viewed by 250
Abstract
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network [...] Read more.
To achieve efficient prediction and optimization of the energy consumption of ship central cooling systems, this paper first constructed and validated a high-precision multi-physical domain simulation model of the ship central cooling system based on fluid heat transfer principles and the physical network method. Then, simulation experiments were designed using the Box–Behnken design (BBD) method to study the effects of five key parameters—main engine power, seawater temperature, seawater pump speed, low-temperature fresh water three-way valve opening, and low-temperature fresh water flow rate—on system energy consumption. Based on the simulation data, an energy consumption prediction model was constructed using response surface methodology (RSM). This prediction model exhibited excellent goodness of fit and prediction ability (coefficient of determination R2 = 0.9688, adjusted R2adj = 0.9438, predicted R2pred = 0.8752), with a maximum relative error of only 1.2% compared to the simulation data, confirming its high accuracy. Sensitivity analysis based on this prediction model indicated that main engine power, seawater pump speed, seawater temperature, and three-way valve opening were the dominant single factors affecting energy consumption. Further analysis revealed a significant interaction between main engine power and seawater pump speed. This interaction resulted in non-linear changes in system energy consumption, which were particularly prominent under operating conditions such as high power. This study provides an accurate prediction model and theoretical guidance on the influence patterns of key parameters for the simulation-driven design, operational optimization, and energy saving of ship central cooling systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

37 pages, 3905 KiB  
Review
Advances in HVDC Systems: Aspects, Principles, and a Comprehensive Review of Signal Processing Techniques for Fault Detection
by Leyla Zafari, Yuan Liu, Abhisek Ukil and Nirmal-Kumar C. Nair
Energies 2025, 18(12), 3106; https://doi.org/10.3390/en18123106 - 12 Jun 2025
Viewed by 611
Abstract
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated [...] Read more.
This paper presents a comprehensive review of High-Voltage Direct-Current (HVDC) systems, focusing on their technological evolution, fault characteristics, and advanced signal processing techniques for fault detection. The paper traces the development of HVDC links globally, highlighting the transition from mercury-arc valves to Insulated Gate Bipolar Transistor (IGBT)-based converters and showcasing operational projects in technologically advanced countries. A detailed comparison of converter technologies including line-commutated converters (LCCs), Voltage-Source Converters (VSCs), and Modular Multilevel Converters (MMCs) and pole configurations (monopolar, bipolar, homopolar, and MMC) is provided. The paper categorizes HVDC faults into AC, converter, and DC types, focusing on their primary locations and fault characteristics. Signal processing methods, including time-domain, frequency-domain, and time–frequency-domain approaches, are systematically compared, supported by relevant case studies. The review identifies critical research gaps in enhancing the reliability of fault detection, classification, and protection under diverse fault conditions, offering insights into future advancements in HVDC system resilience. Full article
Show Figures

Figure 1

22 pages, 6584 KiB  
Article
The Erosion Characteristics of a Needle Throttle Valve with Multiple Placement Schemes in a Shale Gas Field Based on CFD-DEM
by Zhe Wu, Yangfan Lu, Min Liu, Fubin Wang, Yingying Wang, Shengnan Du, Weiqiang Wang and Bingyuan Hong
Processes 2025, 13(6), 1833; https://doi.org/10.3390/pr13061833 - 10 Jun 2025
Cited by 1 | Viewed by 342
Abstract
Shale gas is a low-carbon unconventional natural gas resource. The development of shale gas helps to optimize the energy structure and reduce carbon emissions. However, the needle throttle valves (NTVs) commonly used in shale gas fields are usually severely eroded by solid particles. [...] Read more.
Shale gas is a low-carbon unconventional natural gas resource. The development of shale gas helps to optimize the energy structure and reduce carbon emissions. However, the needle throttle valves (NTVs) commonly used in shale gas fields are usually severely eroded by solid particles. Based on the method of CFD-DEM coupling calculation, this paper constructs a gas–solid two-phase flow erosion model of the NTV and studies the influence of different placement methods, valve opening degrees, and other factors on particle movement and valve erosion. This research found that the spool is the area of the valve that is most severely eroded, and when placed horizontally, it has a serious ‘bias wear’ phenomenon. The research results herein can provide references for the design optimization and on-site maintenance of valve performance. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

24 pages, 2174 KiB  
Article
Diode Rectifier-Based Low-Cost Delivery System for Marine Medium Frequency Wind Power Generation
by Tao Xia, Yangtao Zhou, Qifu Zhang, Haitao Liu and Lei Huang
J. Mar. Sci. Eng. 2025, 13(6), 1062; https://doi.org/10.3390/jmse13061062 - 28 May 2025
Viewed by 366
Abstract
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible [...] Read more.
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible DC transmission system applying modular multilevel converter is a common scheme for offshore wind power, which has been put into use in actual projects, but it is still facing the problems of high cost of offshore converter station platforms and high loss of collector systems. In order to improve the economy and reliability of the medium- and long-distance offshore wind power delivery systems, this paper proposes a diode rectifier-based medium-frequency AC pooling soft-direct low-cost delivery system for medium- and long-distance offshore wind power. Firstly, the mid-frequency equivalent model of the diode converter is established, and the influence of topology and frequency enhancement on the parameters of the main circuit equipment is analysed; then, the distribution parameters and transmission capacity of the mid-frequency cable are calculated based on the finite element modelling of the marine cable, and the transmission losses of the mid-frequency AC pooling system are then calculated, including the collector losses, converter valve losses, and transformer losses, etc. Finally, an economic analysis is carried out based on a specific example, comparing with the Jiangsu Rudong offshore wind power transmission project, in order to verify the economy of the medium-frequency AC flexible and direct transmission system of the medium- and long-distance offshore wind power using diode rectifier technology. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

20 pages, 2856 KiB  
Article
Characteristics of Spot Spraying and Continuous Spraying Systems
by Xueguan Zhao, Zhanwei Ma, Chunfeng Zhang, Zhichong Wang, Jing Chen, Xinwei Zhang and Changyuan Zhai
Agriculture 2025, 15(10), 1057; https://doi.org/10.3390/agriculture15101057 - 14 May 2025
Viewed by 440
Abstract
This paper studied the atomization characteristics of different spray nozzles under the spot spraying method and designed a test system for the atomization characteristics. First, the effective spray height range was determined based on the effective droplet size of 106–403 μm, the spray [...] Read more.
This paper studied the atomization characteristics of different spray nozzles under the spot spraying method and designed a test system for the atomization characteristics. First, the effective spray height range was determined based on the effective droplet size of 106–403 μm, the spray height of 200–500 mm, the operating speed of 0.5–1 m/s, and the droplet size requirements. The effective height ranges of the HVV25-02, HVV40-02, and HVV50-02 nozzles are 277–500 mm, 200–426 mm, and 200–266 mm, respectively. Second, the influences of pressure, the opening time of the solenoid valve, and the nozzle aperture on the atomization characteristics were studied through experiment. The experiment was repeated three times, with 10,000 points monitored each time. The test results show that the droplet size of spot spraying decreases with the increase in pressure, while the droplet velocity and droplet distribution relative span have no correlation with pressure. With the increase in the opening time of the solenoid valve, the droplet size does not change regularly, the droplet velocity generally shows an upward trend, and the droplet distribution relative span (RS) value decreases gradually. With the increase in the nozzle aperture, both droplet size and droplet velocity increase, and the distribution span shows a trend of first increasing and then decreasing. The droplet velocity of spot spraying is 4.1 m/s lower than that of continuous spraying, on average, and the droplet distribution relative span value is 2.2 higher than that of continuous spraying. This research can provide a basis and reference for the selection of appropriate spot spraying operation parameters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 7271 KiB  
Article
Performance Analysis of Control Valves for Supply–Demand Balance Regulation in Heating Stations
by Pengpeng Zhao, Jiaxiang Yin and Jinda Wang
Buildings 2025, 15(10), 1624; https://doi.org/10.3390/buildings15101624 - 11 May 2025
Viewed by 429
Abstract
With the high penetration of renewable energy, the imbalance between heat supply and demand is becoming increasingly severe. Installing additional heat storage bypass pipelines in the heating network can significantly enhance the heat storage capacity of the system, and regulating the supply and [...] Read more.
With the high penetration of renewable energy, the imbalance between heat supply and demand is becoming increasingly severe. Installing additional heat storage bypass pipelines in the heating network can significantly enhance the heat storage capacity of the system, and regulating the supply and demand balance of heat stations can achieve a stable heat supply for users. This paper proposes a heat storage bypass configuration scheme and a dual-valve-coordinated control system. Based on the control valves’ ideal and operational flow characteristics, this paper delves into the minimum and maximum control impedance mechanisms in control valves, analyzing their impact on operational performance. Aiming at the fluctuation in the water supply temperature in the secondary pipe network (dead zone of 1%), the influence of control valve parameters on the dynamic response was systematically analyzed. The optimal parameter-matching scheme of the bypass control valve and the heat exchange control valve was finally determined through an optimization analysis. We verified its correctness based on the measured engineering data. This study improves the stability and operational efficiency of the supply and demand balance and decoupling control of the heating heat exchange unit, thereby establishing a critical technical foundation for advancing the high-efficiency integration of renewable energy sources within urban energy systems. Full article
(This article belongs to the Special Issue Optimization Control and Energy Conservation in Smart Heating Systems)
Show Figures

Figure 1

20 pages, 10553 KiB  
Article
Output Feedback Control of Dual-Valve Electro-Hydraulic Valve Based on Cascade Structure Extended State Observer Systems with Disturbance Compensation
by Cunde Jia, Shaoguang Li, Xiangdong Kong, Hangtian Ma, Zhuowei Yu, Chao Ai and Yunhong Jiang
Machines 2025, 13(5), 392; https://doi.org/10.3390/machines13050392 - 8 May 2025
Viewed by 294
Abstract
In the development trend of intelligent and high-performance construction machinery, the dual-spool electro-hydraulic valve, as a new-generation core control element, directly affects the operation accuracy and energy-efficiency level of construction machinery. The standard linear extended state observer (LESO) produces relatively serious peaks as [...] Read more.
In the development trend of intelligent and high-performance construction machinery, the dual-spool electro-hydraulic valve, as a new-generation core control element, directly affects the operation accuracy and energy-efficiency level of construction machinery. The standard linear extended state observer (LESO) produces relatively serious peaks as the system order increases, which leads to the degradation of the observer’s performance and affects the controller’s accuracy. To solve this problem, this paper innovatively proposes an output feedback control strategy for a cascaded structure observer for the dual-spool electro-hydraulic valve. This paper designs an output feedback controller based on the cascaded structure observer. The uniform exponential stability (USE) criterion ensures that the tracking error of the observer for the system state is bounded. The expected load pressure is constructed based on the expected trajectory to replace the actual load pressure, avoiding the influence of the nonlinear coupling between the load pressure and the input signal on the control system. Finally, a stable output feedback controller is obtained based on the backstepping control method and Hurwitz polynomial stability analysis. This study first applies the cascaded structure observer to the field of dual-spool electro-hydraulic valve control, providing a new theoretical framework and technical path for the high-precision control of the hydraulic system of construction machinery. Theoretical analysis shows that compared with the standard LESO, the cascaded structure observer can significantly reduce the online computational burden and effectively suppress the peak phenomenon, providing stronger estimation ability. Finally, a large number of simulation examples verify the effectiveness and superiority of the output feedback controller based on the cascaded structure observer. In all four test scenarios, the average tracking error of C1 (the output feedback controller designed based on the cascaded structure linear extended state observer) is about 5.1%, the average tracking error of C2 (the output feedback controller designed based on the standard structure linear extended state observer) is about 7.8%, and the average tracking error of C3 (the high-gain PID controller) is about 19.2%. The average control accuracy of the designed C1 controller is improved by 2.7% and 14.1% compared with C2 and C3, respectively. In terms of the estimation of external disturbances, the average error of C1 is 14% and the average error of C2 is 29.6%. The estimation accuracy of the former is improved by 15.6% compared with the latter. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

19 pages, 9531 KiB  
Article
Stability Analysis and Static–Dynamic Characterization of Subminiature Two-Dimensional (2D) Electro-Hydraulic Servo Valves
by Lei Pan, Quanchao Dai, Zhankai Song, Chengtao Zhu and Sheng Li
Machines 2025, 13(5), 388; https://doi.org/10.3390/machines13050388 - 6 May 2025
Viewed by 382
Abstract
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density [...] Read more.
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density brushless DC motor (BLDC) is adopted as the electro-mechanical converter to further reduce the volume and mass. Firstly, the structure and working principle of the two-dimensional (2D) servo valve are described, and the mathematical model of the electro-mechanical converter is established. Aiming at the special working condition of the electro-mechanical converter with high-frequency oscillation at a small turning angle, this paper designs a position–current double closed-loop PID control algorithm based on the framework of the vector control algorithm (FOC). At the same time, the current feedforward compensation technique is included to cope with the high-frequency nonlinear disturbance problem of the electro-mechanical converter. The stability conditions of the electro-mechanical converter and the main valve were established based on the Routh–Hurwitz criterion, and the effects of the control algorithm of the electro-mechanical converter and the main parameters of the main valve on the stability of the system were analyzed. The dynamic and static characteristics of the 2D valve were simulated and analyzed by establishing a joint simulation model in Matlab/Simulink and AMESim. The prototype was fabricated, and the experimental bench was built; the size of the experimental prototype was 31.7 mm × 29.3 mm × 31 mm, and its mass was 73 g. Under a system pressure of 7 MPa, the flow rate of this valve was 5 L/min; the hysteresis loop of the spool-displacement input–output curve was 4.8%, and the linearity was 2.54%, which indicated that it had the ability of high-precision control and that it was suitable for the precision fluid system. The step response time was 7.5 ms, with no overshoot; the frequency response amplitude bandwidth was about 90 Hz (−3 dB); the phase bandwidth was about 95 Hz (−90°); and the dynamic characterization experiment showed that it had a fast response characteristic, which can satisfy the demand of high-frequency and high-dynamic working conditions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

Back to TopTop