Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,431)

Search Parameters:
Keywords = other woods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 714 KiB  
Article
Thermodynamic Analysis of Biomass Pyrolysis in an Auger Reactor Coupled with a Fluidized-Bed Reactor for Catalytic Deoxygenation
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Processes 2025, 13(8), 2496; https://doi.org/10.3390/pr13082496 (registering DOI) - 7 Aug 2025
Abstract
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech [...] Read more.
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech wood biomass at 500 °C in an Auger reactor. To improve the quality of the obtained bio-oil, its catalytic deoxygenation was performed within an in-line fluidized catalytic bed reactor using a catalyst based on HZSM5 zeolite modified with 5 wt.% Iron (5%FeHZSM-5). A thermodynamic analysis of the catalytic and non-catalytic pyrolysis system was carried out, as well as a comparative study of the calculation methods for the energy and exergy evaluation for bio-oil. The required heat for pyrolysis was found to be 1.2 MJ/kgbiomass in the case of non-catalytic treatment and 3.46 MJ/kgbiomass in the presence of the zeolite-based catalyst. The exergy efficiency in the Auger reactor was 90.3%. Using the catalytic system coupled to the Auger reactor, this efficiency increased to 91.6%, leading to less energy degradation. Calculating the total energy and total exergy of the bio-oil using two different methods showed a difference of 6%. In the first method, only the energy contributions of the model compounds, corresponding to the major compounds of each chemical family of bio-oil, were considered. In contrast, in the second method, all molecules identified in the bio-oil were considered for the calculation. The second method proved to be more suitable for thermodynamic analysis. The novelties of this work concern the thermodynamic analysis of a coupled system of an Auger biomass pyrolysis reactor and a fluidized bed catalytic deoxygenation reactor on the one hand, and the use of all the molecules identified in the oily phase for the evaluation of energy and exergy on the other hand. Full article
(This article belongs to the Section Chemical Processes and Systems)
23 pages, 5986 KiB  
Article
Research on the Response Regularity of Smoke Fire Detectors Under Typical Interference Conditions in Ancient Buildings
by Yunfei Xia, Lei Lei, Siyuan Zeng, Da Li, Wei Cai, Yupeng Hou, Chen Li and Yujie Yin
Fire 2025, 8(8), 315; https://doi.org/10.3390/fire8080315 - 7 Aug 2025
Abstract
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental [...] Read more.
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental scene of an ancient building with a typical flush gable roof structure was taken as the research object, and the differential influence laws of three typical interference sources, namely wind speed, water vapor, and incense burning, on the response times of point-type smoke detectors were quantified. Moreover, the prediction models of the alarm time of the detectors under the three interference conditions were established. The results indicate the following: (1) Within the range of experimental conditions, there is a quantitative relationship between the detector response delay and the type of interference source: the delay time shows a nonlinear positive correlation with the wind speed/water vapor interference gradient, while it exhibits a threshold unimodal change characteristic with the burning incense interference gradient; (2) under interference conditions, the detector response delay varies depending on the type of fire source: the detector has the best detection stability for smoldering smoke from a smoke cake, while it has the lowest detection sensitivity for smoldering smoke from a cotton rope. Moreover, the influence of wind speed interference is weaker than that of water vapor or smoke from burning incense, and the difference is the greatest in the wood block smoldering condition. (3) Construct a detector alarm time prediction model under three types of interference conditions, where the wind speed, water vapor, and burning incense interference conditions conform to third-order polynomial functions, Sigmoid functions, and fourth-order polynomial functions, respectively. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

18 pages, 3045 KiB  
Article
Biodegradable NR Latex Films with Lignocellulosic and Collagen Hydrolysate Fillers
by Magdalena Kmiotek, Mirosława Prochoń and Elżbieta Sąsiadek-Andrzejczak
Materials 2025, 18(15), 3711; https://doi.org/10.3390/ma18153711 - 7 Aug 2025
Abstract
The objective of this study was to investigate the influence of the lignocellulose filler originating in wood and non-wood raw materials, alone or together with collagen hydrolysate, on the properties and biodegradation ability of natural rubber latex. The different hydrophobicity of the polymer [...] Read more.
The objective of this study was to investigate the influence of the lignocellulose filler originating in wood and non-wood raw materials, alone or together with collagen hydrolysate, on the properties and biodegradation ability of natural rubber latex. The different hydrophobicity of the polymer matrix and natural filler makes it difficult to obtain a homogenous structure of the composite. However, the easy biodegradation of the natural filler is a sufficient reason to seek a compromise between its useful properties and the environmental safety of the material. The composites were filled with lignocellulose filler: pine, spruce, and birch wood flour or willow, raspberry, and mallow non-wood flour. Collagen hydrolysate was used as a substitute for lignocellulosic filler, together or alone. The mechanical properties of the composites, their hardness, and equilibrium swelling were studied. In order to determine the morphology and interactions between filler and latex, scanning electron microscopy together with infrared spectroscopy were engaged. The results revealed that after the incorporation of 4 phr of the filler, the increase in mechanical strength was observed even despite the lack of compatibility between the filler and polymer matrix. The lignocellulose filler is a promising agent because its biodegradability contributes to the overall environmental safety of the polymer material. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

20 pages, 3734 KiB  
Review
Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
by Jiachang Cao, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai and Ying Xu
Fermentation 2025, 11(8), 457; https://doi.org/10.3390/fermentation11080457 - 7 Aug 2025
Abstract
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary [...] Read more.
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary of the AD processes for four types of typical OSWs (i.e., sewage sludge, food waste, livestock manure, and straw), with an emphasis on their universal characteristics across global contexts, focusing mainly on the electron transfer mechanisms, essential microbial communities, and key metabolic pathways. Special attention was given to the mechanisms by which substrate-specific structural differences influence anaerobic digestion efficiency, with a focused analysis and discussion on how different components affect microbial communities and metabolic pathways. This study concluded that the hydrogenotrophic methanogenesis pathway, TCA cycle, and the Wood–Ljungdahl pathway serve as critical breakthrough points for enhancing methane production potential. This research not only provides a theoretical foundation for optimizing AD efficiency, but also offers crucial scientific insights for resource recovery and energy utilization of OSWs, making significant contributions to advancing sustainable waste management practices. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

31 pages, 18795 KiB  
Review
Timber Architecture for Sustainable Futures: A Critical Review of Design and Research Challenges in the Era of Environmental and Social Transition
by Agnieszka Starzyk, Nuno D. Cortiços, Carlos C. Duarte and Przemysław Łacek
Buildings 2025, 15(15), 2774; https://doi.org/10.3390/buildings15152774 - 6 Aug 2025
Abstract
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, [...] Read more.
This article provides a critical review of the current design and research challenges in contemporary timber architecture. Conducted from the perspective of a designer-researcher, the review focuses on the role of wood as a material at the intersection of environmental performance, cultural meaning, and spatial practice. The study adopts a conceptual, problem-oriented approach, eschewing the conventional systematic aggregation of existing data. The objective of this study is to identify, interpret and categorise the key issues that are shaping the evolving discourse on timber architecture. The analysis is based on peer-reviewed literature published between 2020 and 2025, sourced from the Scopus and Web of Science Core Collection databases. Fifteen thematic challenges have been identified and classified according to their recognition level in academic and design contexts. The subjects under discussion include well-established topics, such as life cycle assessment and carbon storage, as well as less commonly explored areas, such as symbolic durability, social acceptance, traceability, and the upcycling of low-grade wood. The review under consideration places significant emphasis on the importance of integrating technical, cultural, and perceptual dimensions when evaluating timber architecture. The article proposes an interpretive framework combining design thinking and transdisciplinary insights. This framework aims to bridge disciplinary gaps and provide a coherent structure for understanding the complexity of timber-related challenges. The framework under discussion here encourages a broader understanding of wood as not only a sustainable building material but also a vehicle for systemic transformation in architectural culture and practice. The study’s insights may support designers, educators, and policymakers in identifying strategic priorities for the development of future-proof timber-based design practices. Full article
Show Figures

Figure 1

10 pages, 2260 KiB  
Article
Multi-Elemental Analysis for the Determination of the Geographic Origin of Tropical Timber from the Brazilian Legal Amazon
by Marcos David Gusmao Gomes, Fábio José Viana Costa, Clesia Cristina Nascentes, Luiz Antonio Martinelli and Gabriela Bielefeld Nardoto
Forests 2025, 16(8), 1284; https://doi.org/10.3390/f16081284 - 6 Aug 2025
Abstract
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates [...] Read more.
Illegal logging is a major threat to tropical forests; however, control mechanisms and efforts to combat illegal logging have not effectively curbed fraud in the production chain, highlighting the need for effective methods to verify the geographic origin of timber. This study investigates the application of multi-elemental analysis combined with Principal Component Analysis (PCA) to discriminate the provenance of tropical timber in the Brazilian Legal Amazon. Wood samples of Hymenaea courbaril L. (Jatobá), Handroanthus sp. (Ipê), and Manilkara huberi (Ducke) A. Chevalier. (Maçaranduba) were taken from multiple sites. Elemental concentrations were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and CA was applied to evaluate geographic differentiation. Significant differences in elemental profiles were found among locations, particularly when using the intermediate disk portions (25% to 75%), and especially the average of all five sampled portions, which proved most effective in geographic discrimination of the trunk. Elements such as Ca, Sr, Cr, Cu, Zn, and B were especially important for spatial discrimination. These findings underscore the forensic potential of multi-elemental wood profiling as a tool to support law enforcement and environmental monitoring by providing scientifically grounded evidence of timber origin. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

16 pages, 5519 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

17 pages, 5490 KiB  
Technical Note
Double vs. Single Shear in Dowelled Timber Connections Under Fire Conditions, Thermal Analysis
by Elza M. M. Fonseca
Fire 2025, 8(8), 310; https://doi.org/10.3390/fire8080310 - 5 Aug 2025
Abstract
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects [...] Read more.
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects of double and single shear. Several parameters will be examined to determine the load capacity. Furthermore, a numerical thermal analysis using finite element methods will be performed to estimate the temperatures inside the connections and compare them. The results show that the double shear connection in steel-to-timber, with a steel plate of any thickness as the central element and with a higher density of wood material, has better mechanical and fire resistance. Lower temperatures were also observed in this connection type in the wood material and along the length of the dowel. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 4967 KiB  
Article
CatBoost-Optimized Hyperspectral Modeling for Accurate Prediction of Wood Dyeing Formulations
by Xuemei Guan, Rongkai Xue, Zhongsheng He, Shibin Chen and Xiangya Chen
Forests 2025, 16(8), 1279; https://doi.org/10.3390/f16081279 - 5 Aug 2025
Abstract
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction [...] Read more.
This study proposes a CatBoost-enhanced hyperspectral modeling approach for accurate prediction of wood dyeing formulations. Using Pinus sylvestris var. mongolica veneer as the substrate, 306 samples with gradient dye concentrations were prepared, and their reflectance spectra (400–700 nm) were acquired. After noise reduction and sensitive band selection (400–450 nm, 550–600 nm, and 600–650 nm), spectral descriptors were extracted as model inputs. The CatBoost algorithm, optimized via k-fold cross-validation and grid search, outperformed XGBoost, random forest, and SVR in prediction accuracy, achieving MSE = 0.00271 and MAE = 0.0349. Scanning electron microscopy (SEM) revealed the correlation between dye particle distribution and spectral response, validating the model’s physical basis. This approach enables intelligent dye formulation control in industrial wood processing, reducing color deviation (ΔE < 1.75) and dye waste by approximately 25%. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 164
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 - 4 Aug 2025
Viewed by 96
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

Back to TopTop