The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
Abstract
1. Introduction
2. Scientific Prospection
2.1. Overview
2.2. Application Area
3. Technological Prospection
3.1. The Origins and Evolution of Barrel Aging Techniques
3.2. Influence of the Physicochemical Properties and Chemical Composition of Wood on the Aging of Alcoholic Beverages
3.2.1. Oak
3.2.2. Tropical Woods
3.2.3. Regulatory Aspects of Alternative Woods
3.3. Wood Aging Process
3.3.1. Dynamics of Compound Transfer During Beverage Aging
3.3.2. Origin and Identification of Compounds
3.3.3. Evolution of Methods and Techniques for Wood-Aged Alcoholic Beverages
3.4. Impacts of Technological Innovations on Beverage Quality: Recent Research and Applications
4. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC–MS and GC–O. Flavour Frag. J. 2008, 23, 93–98. [Google Scholar] [CrossRef]
- Híc, P.; Horák, M.; Balík, J.; Martinák, K. Assessment of spirit aging on different kinds of wooden fragments. Wood Sci. Technol. 2021, 55, 257–270. [Google Scholar] [CrossRef]
- Ghadiriasli, R.; Wagenstaller, M.; Buettner, A. Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry. Anal. Bioanal. Chem. 2018, 410, 6595–6607. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.Q.; Reeves, M.J.; He, F. A Review of Polyphenolics in Oak Woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; Cadahía, E.; Simón, B.F.; de Gutiérrez-Gamboa, G.; Nevares, I.; del Álamo-Sanza, M. Quercus humboldtii (Colombian oak): Characterisation of wood phenolic composition with respect to traditional oak wood used in oenology. Ciência Técnica Vitivinícola 2017, 32, 93–101. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; Del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Different Woods in Cooperage for Oenology: A Review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.L. Relation between volatile composition, ellagitannin content and sensory perception of oak wood chips representing different toasting processes. Eur. Food Res. Technol. 2013, 236, 735–746. [Google Scholar] [CrossRef]
- Cadahía, E.; Muñoz, L.; Fernández de Simón, B.; García-Vallejo, M.C. Changes in Low Molecular Weight Phenolic Compounds in Spanish, French, and American Oak Woods during Natural Seasoning and Toasting. J. Agric. Food Chem. 2001, 49, 1790–1798. [Google Scholar] [CrossRef]
- Chatonnet, P.; Cutzach, I.; Pons, M.; Dubourdieu, D. Monitoring Toasting Intensity of Barrels by Chromatographic Analysis of Volatile Compounds from Toasted Oak Wood. J. Agric. Food Chem. 1999, 47, 4310–4318. [Google Scholar] [CrossRef]
- Jordão, A.M.; Cosme, F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Appl. Sci. 2022, 12, 3179. [Google Scholar] [CrossRef]
- Bajerski, M.; Klimczak, K.; Cioch-Skoneczny, M. Application of the oak wood chips in brewing®. Postępy Techn. Przetwór. Spoż. 2021, 1, 124–129. Available online: https://bibliotekanauki.pl/articles/2051417 (accessed on 4 March 2025).
- Jung, R.; Karabín, M.; Jelínek, L.; Dostálek, P. Balance of volatile phenols originating from wood- and peat-smoked malt during the brewing process. Eur. Food Res. Technol. 2023, 249, 33–45. [Google Scholar] [CrossRef]
- Guimarães, B.P.; Neves, L.E.P.; Guimarães, M.G.; Ghesti, G.F. Evaluation of maturation congeners in beer aged with Brazilian woods. J. Brew. Distill. 2020, 9, 1–7. [Google Scholar]
- Baiano, A.; De Gianni, A.; Mentana, A.; Quinto, M.; Centonze, D.; Del Nobile, M.A. Effects of the treatment with oak chips on color-related phenolics, volatile composition, and sensory profile of red wines: The case of Aglianico and Montepulciano. Eur. Food Res. Technol. 2016, 242, 745–767. [Google Scholar] [CrossRef]
- Organisation Internationale de la Vigne et du Vin (OIV). Harmonised Guidelines for Single-Laboratory Validation. 2014. Available online: https://www.oiv.int/index.php/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-e/annex-e-laboratory-quality-assurance/harmonised-guidelines-for-single-laboratory-validation (accessed on 14 August 2023).
- Oliveira-Alves, S.; Lourenço, S.; Fernandes, T.A.; Canas, S. Coumarins in Spirit Beverages: Sources, Quantification, and Their Involvement in Quality, Authenticity and Food Safety. Appl. Sci. 2024, 14, 1010. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Romero-Cano, L.A. A critical review on the assessment of the quality and authenticity of Tequila by different analytical techniques: Recent advances and perspectives. Food Chem. 2023, 408, 135223. [Google Scholar] [CrossRef]
- Conner, J. Maturation. In Whisky and Other Spirits; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–311. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128220764000139 (accessed on 29 July 2024).
- Bortoletto, A.M.; Silvello, G.C.; Alcarde Ae, R. Aromatic profiling of flavor active compounds in sugarcane spirits aged in tropical wooden barrels. Braz. J. Food Technol. 2021, 24, e2019071. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Alternative Woods in Enology: Characterization of Tannin and Low Molecular Weight Phenol Compounds with Respect to Traditional Oak Woods. A Review. Molecules 2020, 25, 1474. [Google Scholar] [CrossRef]
- Aguilar-Méndez, O.; López-Álvarez, J.A.; Díaz-Pérez, A.L.; Altamirano, J.; Reyes De la Cruz, H.; Rutiaga-Quiñones, J.G.; Campos-García, J. Volatile compound profile conferred to tequila beverage by maturation in recycled and regenerated white oak barrels from Quercus alba. Eur. Food Res. Technol. 2017, 243, 2073–2082. [Google Scholar] [CrossRef]
- Taransaud, J. Le Livre de la Tonnellerie; La Roue à Livres Diffusion: Mulhouse, France, 1976. [Google Scholar]
- Vivas, N. Manuel de Tonnellerie: À L’usage des Utilisateurs de Futaille; Éditions Féret: Bordeaux, France, 2002. [Google Scholar]
- Zamora, F. Barrel Aging; Types of Wood. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 125–147. [Google Scholar] [CrossRef]
- Chatonnet, P. Influence des procédés de Tonnellerie et des Conditions d’élevage sur la Composition et la qualité des vins élevés en fûts de chêne. PhD Thesis, Université Bordeaux 2, Bordeaux, France, 1995. [Google Scholar]
- Marín, F.Z. Elaboración y Crianza del Vino Tinto: Aspectos Científicos y Prácticos; Mundi-Prensa Libros: Madrid, Spain, 2003. [Google Scholar]
- Vivas, N.; Glories, Y. Role of Oak Wood Ellagitannins in the Oxidation Process of Red Wines During Aging. Am. J. Enol. Vitic. 1996, 47, 103–107. [Google Scholar] [CrossRef]
- Ghadiriasli, R.; Mahmoud, M.A.; Wagenstaller, M.; van de Kuilen, J.-W.; Buettner, A. Chemo-sensory characterization of aroma active compounds of native oak wood in relation to their geographical origins. Food Res. Int. 2021, 150, 110776. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Nishimura, K. Maturation and maturation chemistry. The Science and Technology of Whiskies; Longman: London, UK, 1989. [Google Scholar]
- Cernîşev, S. Analysis of lignin-derived phenolic compounds and their transformations in aged wine distillates. Food Control 2017, 73, 281–290. [Google Scholar] [CrossRef]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. Volatile norisoprenoid compounds as constituents of oak woods used in wine and spirit maturation. J. Agric. Food Chem. 1990, 38, 2045–2049. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf00101a009 (accessed on 15 April 2025). [CrossRef]
- Caldeira, I.; Mateus, A.M.; Belchior, A.P. Flavour and odour profile modifications during the first five years of Lourinhã brandy maturation on different wooden barrels. Anal. Chim. Acta 2006, 563, 264–273. [Google Scholar] [CrossRef]
- Cerezo, A.B.; Tesfaye, W.; Torija, M.J.; Mateo, E.; García-Parrilla, M.C.; Troncoso, A.M. The phenolic composition of red wine vinegar produced in barrels made from different woods. Food Chem. 2008, 109, 606–615. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Sanz, M. Volatile Compounds in Acacia, Chestnut, Cherry, Ash, and Oak Woods, with a View to Their Use in Cooperage. J. Agric. Food Chem. 2009, 57, 3217–3227. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The effect of oak wood source, location of seasoning and coopering on the composition of volatile compounds in oak-matured wines. Aust. J. Grape Wine Res. 2004, 10, 216–226. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Puech, J.L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdieu, D. Comparative Study of the Characteristics of American White Oak (Quercus alba) and European Oak (Quercus petraea and Q. robur) for Production of Barrels Used in Barrel Aging of Wines. Am. J. Enol. Vitic. 1998, 49, 79–85. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Sanz, M.; Cadahía, E.; Poveda, P.; Broto, M. Chemical Characterization of Oak Heartwood from Spanish Forests of Quercus pyrenaica (Wild.). Ellagitannins, Low Molecular Weight Phenolic, and Volatile Compounds. J. Agric. Food Chem. 2006, 54, 8314–8321. [Google Scholar] [CrossRef]
- Cerdán, T.G.; Mozaz, S.R.; Azpilicueta, C.A. Volatile composition of aged wine in used barrels of French oak and of American oak. Food Res. Int. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Cadahía, E.; Fernández de Simón, B.; Jalocha, J. Volatile Compounds in Spanish, French, and American Oak Woods after Natural Seasoning and Toasting. J. Agric. Food Chem. 2003, 51, 5923–5932. [Google Scholar] [CrossRef]
- Coelho, E.; Teixeira, J.A.; Tavares, T.; Domingues, L.; Oliveira, J.M. Reuse of oak chips for modification of the volatile fraction of alcoholic beverages. LWT 2021, 135, 110046. [Google Scholar] [CrossRef]
- Morales, M.L.; Benitez, B.; Troncoso, A.M. Accelerated aging of wine vinegars with oak chips: Evaluation of wood flavour compounds. Food Chem. 2004, 88, 305–315. [Google Scholar] [CrossRef]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strąk, E. Changes in Chemical Composition of Plum Distillate during Maturation in the Presence of Oak Chips under Different Conditions. Food Technol. Biotechnol. 2017, 55, 333–359. Available online: http://www.ftb.com.hr/images/pdfarticles/2017/July-September/ftb-55-333.pdf (accessed on 17 August 2023). [CrossRef] [PubMed]
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Pizarro, C.; Esteban-Díez, I.; Rodríguez-Tecedor, S.; González-Sáiz, J.M. A sensory approach for the monitoring of accelerated red wine aging processes using multi-block methods. Food Qual. Prefer. 2013, 28, 519–530. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Ellagitannins from Portuguese oak wood (Quercus pyrenaica Willd.) used in cooperage: Influence of geographical origin, coarseness of the grain and toasting level. Holzforschung 2007, 61, 155–160. [Google Scholar] [CrossRef]
- Prida, A.; Puech, J.L. Influence of Geographical Origin and Botanical Species on the Content of Extractives in American, French, and East European Oak Woods. J. Agric. Food Chem. 2006, 54, 8115–8126. [Google Scholar] [CrossRef] [PubMed]
- Delia, L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Influence of different wood chips species (oak, acacia and cherry) used in a short period of aging on the quality of “encruzado” white wines. Mitt. Klosterneubg. 2017, 67, 84–96. [Google Scholar]
- Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Res. Int. 2016, 87, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.B.; Marinho, L.S.; Nelson, D.L. Certification of amburana in the aging of cachaça. Research, Society and Development. Res. Soc. Dev. 2020, 9, e3891210644. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso Mdas, G.; Nelson, D.L. Cachaça stored in casks newly constructed of oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba): Alcohol content, phenol composition, colour intensity and dry extract. J. Inst. Brew. 2017, 123, 232–241. [Google Scholar] [CrossRef]
- Lima, C.M.G.; Benoso, P.; Pierezan, M.D.; Santana, R.F.; Hassemer Gde, S.; da Rocha, R.A.; Nora, F.M.D.; Verruck, S.; Caetano, D.; Simal-Gandara, J. A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J. Food Compos. Anal. 2022, 106, 104338. [Google Scholar] [CrossRef]
- Pereira, A.D.A.M.; Acevedo, M.S.M.S.F.; Vargas, M.R.I.; Alcarde, A.R. Sensory profile and chemical quality of Merlot aged in barrels of different wood species. Food Sci. Technol. 2024, 44. [Google Scholar] [CrossRef]
- Castro, J.P.; Perígolo, D.M.; Bianchi, M.L.; Mori, F.A.; Fonseca, A.D.S.; Alves, I.C.N.; Vasconcellos, F.J.D. Uso de espécies amazônicas para envelhecimento de bebidas destiladas: Análises física e química da madeira. Cerne 2015, 21, 319–327. [Google Scholar] [CrossRef]
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The Impact of Compounds Extracted from Wood on the Quality of Alcoholic Beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef]
- Maia, A.B.; Carneiro, F.M.B.; Tonidandel, L.O.; Conceição, E.C.; da Machado, B.D.; Marinho, L.S. Ocorrência e significado da cumarina na cachaça armazenada em amburana. Res. Soc. Dev. 2023, 12, e18912139667. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso Mdas, G.; de Andrade Santiago, J.; Teixeira, M.L.; Barbosa, R.B.; Zacaroni, L.M.; de Sales, P.F.; Nelson, D.L. Physicochemical profile and determination of volatile compounds in cachaça stored in new oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba) casks by SPME-GC–MS. J. Inst. Brew. 2016, 122, 624–634. [Google Scholar] [CrossRef]
- de Simón, B.F.; Sanz, M.; Cadahía, E.; Martínez, J.; Esteruelas, E.; Muñoz, A. Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chem. 2014, 143, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Canas, S.; Caldeira, I.; Anjos, O.; Lino, J.; Soares, A.; Pedro Belchior, A. Physicochemical and sensory evaluation of wine brandies aged using oak and chestnut wood simultaneously in wooden barrels and in stainless steel tanks with staves. Int. J. Food Sci. Technol. 2016, 51, 2537–2545. [Google Scholar] [CrossRef]
- de Simón, B.F.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chem. 2014, 147, 346–356. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. LWT 2022, 154, 112658. [Google Scholar] [CrossRef]
- Pichler, A.; Ivić, I.; Mesić, J.; Drenjančević, M.; Kujundžić, T.; Marković, T.; Kopjar, M. Aroma Profile of Merlot Red Wine Stored in Stainless-Steel Tanks and Wooden Barrels with Different Toasting Methods. Foods 2024, 13, 45. [Google Scholar] [CrossRef]
- Santos, F.; Correia, A.C.; Ortega-Heras, M.; García-Lomillo, J.; González-SanJosé, M.L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Acacia, cherry and oak wood chips used for a short aging period of rosé wines: Effects on general phenolic parameters, volatile composition and sensory profile. J. Sci. Food Agric. 2019, 99, 3588–3603. [Google Scholar] [CrossRef]
- Costa, M.; Fontes, L.; Correia, A.C.; Miljić, U.; Jordão, A.M. Impact of oak (Q. pyrenaica and Q. pubescens) and cherry (P. avium) wood chip contact on phenolic composition and sensory profile evolution of red wines during bottle storage. OENO One 2020, 54, 1159–1181. [Google Scholar] [CrossRef]
- Setzer, W.N. Volatile components of oak and cherry wood chips used in aging of beer, wine, and sprits. Am. J. Essent. Oils Nat. Prod. 2016, 4, 37–40. [Google Scholar]
- Jordão, A.M.; Lozano, V.; Correia, A.C.; Ortega-Heras, M.; González-SanJosé, M.L. Comparative analysis of volatile and phenolic composition of alternative wood chips from cherry, acacia and oak for potential use in enology. BIO Web. Conf. 2016, 7, 02012. [Google Scholar] [CrossRef]
- Palomero, F.; Bertani, P.; Simón, B.F.; de Cadahía, E.; Benito, S.; Morata, A.; Suárez-Lepe, J.A. Wood impregnation of yeast lees for winemaking. Food Chem. 2015, 171, 212–223. [Google Scholar] [CrossRef]
- Correia, A.C.; Miljić, U.; Jordão, A.M. Storage of a white wine with different untoasted wood species: Impact on the chemical composition and sensory characteristics. Eur. Food Res. Technol. 2023, 249, 2689–2703. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Delgado-González, M.J.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT 2021, 140, 110706. [Google Scholar] [CrossRef]
- Smailagić, A.; Stanković, D.M.; Đurić, S.V.; Veljović, S.; Zagorac, D.D.; Manojlović, D.; Natić, M. Influence of extraction time, solvent and wood specie on experimentally aged spirits—A simple tool to differentiate wood species used in cooperage. Food Chem. 2021, 346, 128896. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Chang, W.; Zhang, L.; Zheng, M.; Su-Zhou, C.; Merkeryan, H.; Xu, M.; Liu, X. Characterization of volatile compounds and sensory properties of spine grape (Vitis davidii Foex) brandies aged with different toasted wood chips. Food Chem. X 2024, 23, 101777. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gil, A.M.; Del Alamo-Sanza, M.; Del Barrio-Galán, R.; Nevares, I. Alternative Woods in Oenology: Volatile Compounds Characterisation of Woods with Respect to Traditional Oak and Effect on Aroma in Wine, a Review. Appl. Sci. 2022, 12, 2101. [Google Scholar] [CrossRef]
- Simoncini, J.B.V.B.; Tanagino, P.I.D.; Carneiro, R.F.; Clozato, T.V.; Marques, M.D. Madeiras Tropicais utilizadas no envelhecimento de Cachaça. ANALECTA—Cent. Univ. Acad. 2023, 8, 128896. Available online: https://seer.uniacademia.edu.br/index.php/ANL/article/view/3375 (accessed on 2 April 2025).
- Zacaroni, L.M.; das Graças Cardoso, M.; Saczk, A.A.; de Moraes, A.R.; dos Anjos, J.P.; de Resende Machado, A.M.; Nelson, D.L. Determination of Phenolic Compounds and Coumarins in Sugar Cane Spirit Aged in Different Species of Wood. Anal. Lett. 2011, 44, 2061–2073. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso Mdas, G.; Santiago Jde, A.; Gomes, M.S.; Rodrigues, L.M.A.; Brandão, R.M.; Cardoso, R.R.; D’avila, G.B.; da Silva, B.L.; Caetano, A.R.S. Comparison and Quantification of the Development of Phenolic Compounds during the Aging of Cachaça in Oak (Quercus sp.) and Amburana (Amburana cearensis) Barrels. Am. J. Plant Sci. 2014, 5, 3140–3150. [Google Scholar] [CrossRef]
- Abreu-Lima, T.D.; Maia, A.D.A.; Oliveira, E.D.S. Sensorial Effects of the Addition of Different Wood Extracts to Sugar Cane Spirit; CABI Publishing: Wallingford, UK, 2005; pp. 107–112. [Google Scholar]
- Catão, C.G.; Paes, J.B.; Gomes, J.P.; Araújo, G.T. Qualidade da madeira de cinco espécies florestais para o envelhecimento da cachaça. Rev. Bras. Eng. Agríc Ambient. 2011, 15, 741–747. [Google Scholar] [CrossRef]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz ÁMa Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic Compounds in Chestnut (Castanea sativa Mill.) Heartwood. Effect of Toasting at Cooperage. J. Agric. Food Chem. 2010, 58, 9631–9640. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. (Eds.) Alcoholic Beverages. In Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 892–937. [Google Scholar] [CrossRef]
- Barbosa, R.B.; Santiago, W.D.; Alvarenga, G.F.; da Silva Oliveira, R.E.; Ferreira, V.R.F.; Nelson, D.L.; das Graças Cardoso, M. Physical–Chemical Profile and Quantification of Phenolic Compounds and Polycyclic Aromatic Hydrocarbons in Cachaça Samples Aged in Oak (Quercus sp.) Barrels with Different Heat Treatments. Food Bioprocess. Technol. 2022, 15, 1977–1987. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Aging marker profile in cachaça is influenced by toasted oak chips. J. Inst. Brew. 2015, 121, 70–77. [Google Scholar] [CrossRef]
- Culleré, L.; Fernández de Simón, B.; Cadahía, E.; Ferreira, V.; Hernández-Orte, P.; Cacho, J. Characterization by gas chromatography–olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods. LWT—Food Sci. Technol. 2013, 53, 240–248. [Google Scholar] [CrossRef]
- Ditchun, R. Bíblia da cachaça; Lafonte: São Paulo, Brazil, 2018. [Google Scholar]
- Bortoletto, A.M.; Alcarde Ae, R. Congeners in sugar cane spirits aged in casks of different woods. Food Chem. 2013, 139, 695–701. [Google Scholar] [CrossRef]
- Da Silva, A.A.; De Keukeleire, D.; Cardoso, D.R.; Franco, D.W. Multivariate analyses of UV-Vis absorption spectral data from cachaça wood extracts: A model to classify aged Brazilian cachaças according to the wood species used. Anal. Methods 2012, 4, 642. [Google Scholar] [CrossRef]
- Ghanem, E.; Afsah, S.; Fallah, P.N.; Lawrence, A.; LeBovidge, E.; Raghunathan, S.; Rago, D.; Ramirez, M.A.; Telles, M.; Winkler, M.; et al. Differentiation and Identification of Cachaça Wood Extracts Using Peptide-Based Receptors and Multivariate Data Analysis. ACS Sens. 2017, 2, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Serafim, F.A.T.; Lanças, F.M. 11—Sugarcane Spirits (Cachaça) Quality Assurance and Traceability: An Analytical Perspective. In Production and Management of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 335–359. Available online: https://www.sciencedirect.com/science/article/pii/B9780128152607000110 (accessed on 29 August 2024).
- Silva, F.A.; da Morais, K.C.R.C.; Ribeiro, K.O.; Garcia, L.G.C.; Caliari, M. Evolution of the content of phenolic compounds, antioxidant activity and color in organic sugarcane spirit aged in barrels of different woods. Res. Soc. Dev. 2020, 9, e138953302. [Google Scholar] [CrossRef]
- Zacaroni, L.M.; Cardoso Mdas, G.; Santiago, W.D.; Mendonça, J.G.P.; Nunes, C.A.; Duarte, F.C. Avaliação multivariada da composição fenólica de cachaças envelhecidas em diferentes barris de madeira. Científica 2014, 42, 101–107. [Google Scholar] [CrossRef]
- Alcarde, A.R.; Souza, P.A.; Belluco, A.E.D.S. Aspectos da composição química e aceitação sensorial da aguardente de cana-de-açúcar envelhecida em tonéis de diferentes madeiras. Food Sci. Technol. 2010, 30, 226–232. [Google Scholar] [CrossRef]
- Sanz, M.; Fernández de Simón, B.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Hernández, T.; Estrella, I.; Pinto, E. Effect of Toasting Intensity at Cooperage on Phenolic Compounds in Acacia (Robinia pseudoacacia) Heartwood. J. Agric. Food Chem. 2011, 59, 3135–3145. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds. Food Chem. 2016, 204, 499–505. [Google Scholar] [CrossRef]
- Chen, X.; Song, X.; Zhao, X.; Zhang, Y.; Wang, Y.; Jia, R.; Zou, Y.; Li, L.; Yin, Z.; Oliveira, S.H.P. Insights into the Anti-inflammatory and Antiviral Mechanisms of Resveratrol. Mediat. Inflamm. 2022, 2022, 7138756. [Google Scholar] [CrossRef]
- Abdelgawad, I.Y.; Grant, M.K.O.; Zordoky, B.N. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019, 11, 627. [Google Scholar] [CrossRef]
- Li, H.; Xia, N.; Förstermann, U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012, 26, 102–110. [Google Scholar] [CrossRef]
- Alcohol and Tobacco Tax and Trade Bureau (TTB). Standards of Identity for Distilled Spirits, 27 CFR §5.143—Straight American Single Malt Whisky. Federal Register/Governo dos Estados Unidos; 18 December 2024. Available online: https://www.ecfr.gov/current/title-27/chapter-I/subchapter-A/part-5/subpart-I/section-5.143 (accessed on 10 April 2025).
- European Commission Regulation (EC). No 1507/2006 of 8 October 2006 Amending Regulation (EC) No 2165/2005 as Regards the Use of Wood Pieces in Wine Aging. Official Journal of the European Union, L283, 22.10.2006. pp. 18–21. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006R1507 (accessed on 10 April 2025).
- European Commission Regulation (EC). No 2165/2005 of 6 December 2005 Amending Regulation (EC) No 1507/2006 as Regards the Use of Wood Pieces in Wine Aging. Official Journal of the European Union, L343, 7.12.2005. pp. 23–26. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005R2165 (accessed on 10 April 2025).
- European Parliament and Council of the European Union Regulation (EU). No 251/2014 of 26 February 2014 on the Definition, Description, Presentation, Labelling and Protection of Geographical Indications of Aromatised Wine Products. Official Journal of the European Union, L84, 27.3.2014. pp. 1–14. Available online: https://eur-lex.europa.eu/eli/reg/2014/251/oj (accessed on 10 April 2025).
- Ministério da Agricultura, Portugal. Portaria n.º 325/2019, de 5 de Setembro de 2019, Que Estabelece Disposições Sobre o Envelhecimento de Bebidas Alcoólicas. Diário da República, 1.ª série—N.º 181—20 de Setembro de 2019. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/325-2019-124879311 (accessed on 2 April 2025).
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Brasil. Portaria nº 539, de 26 de Dezembro de 2022. Aprova o Regulamento Técnico de Identidade e Qualidade (RTIQ) de diversas Bebidas Alcoólicas. Diário Oficial da União, 27 dez. 2022. Available online: https://www.in.gov.br/en/web/dou/-/portaria-mapa-n-539-de-26-de-dezembro-de-2022-453828778 (accessed on 2 April 2025).
- Bargalló-Guinjoan, C.; Matias-Guiu, P.; Rodríguez-Bencomo, J.J.; López, F. First approach to the use of wood from Mediterranean species for the accelerated aging of alcoholic beverages. Wood Sci. Technol. 2023, 57, 307–323. [Google Scholar] [CrossRef]
- Coelho, E.; Magalhães, J.; Pereira, F.B.; Macieira, F.; Domingues, L.; Oliveira, J.E.M. Volatile fingerprinting differentiates diverse-aged craft beers. LWT 2019, 108, 129–136. [Google Scholar] [CrossRef]
- Bossaert, S.; Winne, V.; Van Opstaele, F.; Buyse, J.; Verreth, C.; Herrera-Malaver, B.; Van Geel, M.; Verstrepen, K.J.; Crauwels, S.; De Rouck, G.; et al. Description of the temporal dynamics in microbial community composition and beer chemistry in sour beer production via barrel ageing of finished beers. Int. J. Food Microbiol. 2021, 339, 109030. [Google Scholar] [CrossRef]
- Bossaert, S.; Kocijan, T.; Winne, V.; Schlich, J.; Herrera-Malaver, B.; Verstrepen, K.J.; Van Opstaele, F.; De Rouck, G.; Crauwels, S.; Lievens, B. Beer ethanol and iso-α-acid level affect microbial community establishment and beer chemistry throughout wood maturation of beer. Int. J. Food Microbiol. 2022, 374, 109724. [Google Scholar] [CrossRef]
- Bossaert, S.; Winne, V.; Van Opstaele, F.; Buyse, J.; Verreth, C.; Herrera-Malaver, B.; Verstrepen, K.J.; De Rouck, G.; Crauwels, S.; Lievens, B. Impact of wood species on microbial community composition, beer chemistry and sensory characteristics during barrel-ageing of beer. Int. J. Food Sci. Technol. 2022, 57, 1122–1136. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos Oelia Portal, V.; Belchior, A.P.; Canas, S. Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta. 2010, 660, 43–52. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Belchior, A.P. Extraction/oxidation kinetics of low molecular weight compounds in wine brandy resulting from different ageing technologies. Food Chem. 2013, 138, 2460–2467. [Google Scholar] [CrossRef]
- García-Estévez, I.; Alcalde-Eon, C.; Le Grottaglie, L.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Understanding the ellagitannin extraction process from oak wood. Tetrahedron 2015, 71, 3089–3094. [Google Scholar] [CrossRef]
- Coelho, E.; Azevedo, M.; Teixeira, J.A.; Tavares, T.; Oliveira, J.M.; Domingues, L. Evaluation of multi-starter S. Evaluation of multi-starter S. cerevisiae/D. bruxellensis cultures for mimicking and accelerating transformations occurring during barrel ageing of beer. Food Chem. 2020, 323, 126826. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, I.; Roels, S.P.; Van Nieuwerburgh, F.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int. J. Food Microbiol. 2016, 221, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Carrasco-Marín, F.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Chemical characterization of tequila maturation process and their connection with the physicochemical properties of the cask. J. Food Compos. Anal. 2021, 98, 103804. [Google Scholar] [CrossRef]
- Basalekou, M.; Pappas, C.; Tarantilis, P.; Kotseridis, Y.; Kallithraka, S. Wine authentication with Fourier Transform Infrared Spectroscopy: A feasibility study on variety, type of barrel wood and ageing time classification. Int. J. Food Sci. Technol. 2017, 52, 1307–1313. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Miguel-Cruz, F.; Romero-Cano, L.A. Isotopic Characterization of 100% Agave Tequila (Silver, Aged and Extra-Aged Class) for Its Use as an Additional Parameter in the Determination of the Authenticity of the Beverage Maturation Time. Molecules 2021, 26, 1719. [Google Scholar] [CrossRef]
- Mosedale, J.R. Effects of oak wood on the maturation of alcoholic beverages with particular reference to whisky. Int. J. For. Res. 1995, 68, 203–230. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Medina, M. Changes in aroma profile of sherry wines during the oxidative ageing. Int. J. Food Sci. Technol. 2010, 45, 2425–2432. [Google Scholar] [CrossRef]
- Mercanti, N.; Pieracci, Y.; Macaluso, M.; Fedel, M.; Brazzarola, F.; Palla, F.; Verdini, P.G.; Zinnai, A. Exploring Red Wine Aging: Comparative Analysis of Cellar and Sea Underwater Aging on Chemical Composition and Quality. Foods 2024, 13, 1812. [Google Scholar] [CrossRef]
- Gerrard, M. Cask Strength: The Story of the Barrel, the Secret Ingredient in Your Drink; BenBella Books: Dallas, TX, USA, 2023; 168p. [Google Scholar]
- Coelho, E.; Teixeira, J.A.; Domingues, L.; Tavares, T.; Oliveira, J.M. Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chem. 2019, 295, 156–164. [Google Scholar] [CrossRef]
- Coelho, E.; Domingues, L.; Teixeira, J.A.; Oliveira, J.M.; Tavares, T. Understanding wine sorption by oak wood: Modeling of wine uptake and characterization of volatile compounds retention. Food Res. Int. 2019, 116, 249–257. [Google Scholar] [CrossRef]
- Roullier-Gall, C.E.; Signoret, J.; Hemmler, D.; Witting, M.A.; Kanawati, B.; Schäfer, B.; Gougeon, R.D.; Schmitt-Kopplin, P. Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Soares, B.; Dias, C.B.; Freitas, A.M.C.; Cabrita, M.J. Phenolic and furanic compounds of Portuguese chestnut and French, American and Portuguese oak wood chips. Eur. Food Res. Technol. 2012, 235, 457–467. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Pérez-Prieto, L.J.; Fernández-Fernández, J.I.; López-Roca, J.M. The effect of successive uses of oak barrels on the extraction of oak-related volatile compounds from wine. Int. J. Food Sci. Technol. 2004, 39, 1069–1078. [Google Scholar] [CrossRef]
- Wilkinson, K.; Li, S.; Grbin, P.; Warren, P. Barrel reclamation: Everything that’s old can be new again. Aust. N. Z. Grapegrow. Winemak. 2020, 70–72. [Google Scholar]
- Canas, S.; Caldeira, I.; Fernandes, T.A.; Anjos, O.; Belchior, A.P.; Catarino, S. Chapter 14—Sustainable use of wood in wine spirit production. In Improving Sustainable Viticulture and Winemaking Practices; Costa, J.M., Catarino, S., Escalona, J.M., Comuzzo, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 259–280. ISBN 978-0-323-85150-3. [Google Scholar] [CrossRef]
- Bernardes, C.D.; Barbeira, P.J.S. Different Chemometric Methods for the Discrimination of Commercial Aged Cachaças. Food Anal. Methods 2016, 9, 1053–1059. [Google Scholar] [CrossRef]
- Bernardes, C.D.; Figueiredo, M.C.P.D.; Barbeira, P.J.S. Developing a PLS model for determination of total phenolic content in aged cachaças. Microchem. J. 2014, 116, 173–177. [Google Scholar] [CrossRef]
- de Aquino, F.W.B.; Rodrigues, S.; do Nascimento, R.F.; Casimiro, A.R.S. Simultaneous determination of aging markers in sugar cane spirits. Food Chem. 2006, 98, 569–574. [Google Scholar] [CrossRef]
- Pizarro, C.; Rodríguez-Tecedor, S.; Esteban-Díez, I.; Pérez-del-Notario, N.; González-Sáiz, J.M. Experimental design approach to evaluate the impact of oak chips and micro-oxygenation on the volatile profile of red wines. Food Chem. 2014, 148, 357–366. [Google Scholar] [CrossRef]
- Botha, A.; Du Toit, W.; Brand, J.; Kidd, M.; Groenewald, N. The Effect of Different Oak Products Used during Fermentation and Ageing on the Sensory Properties of a White Wine over Time. Foods 2020, 9, 1220. [Google Scholar] [CrossRef]
- Tarko, T.; Krzysztof, N.; Duda-Chodak, A. Influence of the Aging of Apple Wines with Oak Chips on the Quality and Sensory Parameters of the Wines. Acta Univ. Cibiniensis. Ser. E Food Technol. 2023, 27, 213–230. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, S.; Wang, W.; Ma, Y. Effects of high-gravity field on Fenjiu maturation. Innov. Food Sci. Emerg. Technol. 2012, 16, 198–204. [Google Scholar] [CrossRef]
- Zeng, X.A.; Yu, S.J.; Zhang, L.; Chen, X.D. The effects of AC electric field on wine maturation. Innov. Food Sci. Emerg. Technol. 2008, 9, 463–468. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Yordi, E.G.; Radice, M.; Scalvenzi, L.; Pérez-Martínez, A. Preliminary Study Regarding the Optimisation of the Accelerated Ageing of Sugar Cane Spirit by Applying Ultrasound-Assisted Extraction and White Oak Chips (Quercus alba). Food Anal. Methods 2023, 16, 1120–1130. [Google Scholar] [CrossRef]
- Castro, M.C.; Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Lignin-derived phenolic compounds in cachaça aged in new barrels made from two oak species. Heliyon 2020, 6, e05586. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Solana, R.; Rodríguez-Freigedo, S.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Optimisation of accelerated ageing of grape marc distillate on a micro-scale process using a Box–Benhken design: Influence of oak origin, fragment size and toast level on the composition of the final product. Aust. J. Grape Wine Res. 2017, 23, 5–14. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Sánchez, M.; Guillén, D.A.; Barroso, C.G. Development of an accelerated aging method for Brandy. LWT—Food Sci. Technol. 2014, 59, 108–114. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M. 3—New Trends in Spirit Beverages Production. In Alcoholic Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 65–111. ISBN 978-0-12-815269-0. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Saison, D.; Delvaux, F.R. Wood Aging of Beer. Part I: Influence on Beer Flavor and Monophenol Concentrations. J. Am. Soc. Brew. Chem. 2012, 70, 55–61. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Saison, D.; Delvaux, F.R. Wood Aging of Beer. Part II: Influence of Wood Aging Parameters on Monophenol Concentrations. J. Am. Soc. Brew. Chem. 2012, 70, 62–69. [Google Scholar] [CrossRef]
- Wyler, P.; Angeloni, L.H.P.; Alcarde, A.R.; da Cruz, S.H. Effect of oak wood on the quality of beer. J. Inst. Brew. 2015, 121, 62–69. [Google Scholar] [CrossRef]
- Tamayo-Sánchez, J.C.; Meza-González, D.A.; Warren-Vega, W.M.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Advances in the development of tailor-made color alcoholic beverages based on an accelerated maturation process. Food Res. Int. 2023, 169, 112859. [Google Scholar] [CrossRef]
- López-Solís, R.; Osorio-Umaña, P.; Medel-Marabolí, M.; Obreque-Slier, E. Comparative analysis of the evolution of phenolic profiles during wood aging of a Carménère wine using novel products or procedures aimed at re-using oak barrels. Food Biosci. 2024, 57, 103623. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.; Castro, R.; Rodríguez-Dodero, M.C.; Durán-Guerrero, E. The impact of ultrasound, micro-oxygenation and oak wood type on the phenolic and volatile composition of a Tempranillo red wine. LWT 2022, 163, 113618. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.-L. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol. 2015, 240, 533–547. [Google Scholar] [CrossRef]
- Bossaert, S.; Kocijan, T.; Winne, V.; Van Opstaele, F.; Schlich, J.; Herrera-Malaver, B.; Verstrepen, K.J.; De Rouck, G.; Lievens, B.; Crauwels, S. Development of a tractable model system to mimic wood-ageing of beer on a lab scale. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; Barroso, C.G.; Castro, R. Use of ultrasound at a pilot scale to accelerate the ageing of sherry vinegar. Ultrason. Sonochemistry 2020, 69, 105244. [Google Scholar] [CrossRef] [PubMed]
- Krüger, R.T.; Alberti, A.; Nogueira, A. Current Technologies to Accelerate the Aging Process of Alcoholic Beverages: A Review. Beverages 2022, 8, 65. [Google Scholar] [CrossRef]
- Caldeira, I.; Belchior, A.; Canas, S. Effect of alternative ageing systems on the wine brandy sensory profile. Ciência E Técnica Vitivinícola 2013, 28, 9–18. [Google Scholar]
- Silvello, G.C.; Bortoletto, A.M.; de Castro, M.C.; Alcarde, A.R. New approach for barrel-aged distillates classification based on maturation level and machine learning: A study of cachaça. LWT 2021, 140, 110836. [Google Scholar] [CrossRef]
- Karathanos, A.; Soultani, G.; Kontoudakis, N.; Kotseridis, Y. Impact of Different Wood Types on the Chemical Composition and Sensory Profile of Aged Tsipouro: A Comparative Study. Beverages 2024, 10, 76. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Salikhova, I.; Skorobogatova, N.; Chibisova, M.; Budnikov, H. New Electrochemistry-Based Approaches to Brandy Quality Evaluation Using Antioxidant Parameters. Food Anal. Methods 2015, 8, 1794–1803. [Google Scholar] [CrossRef]
- Sánchez-Guillén, M.M.; García-Moreno, M.V.; Guillén-Sánchez, D.A.; García-Barroso, C. Determination of Antioxidant Activity of Brandy and Other Aged Beverages by Electrochemical and Photochemiluminescence Methods. Food Anal. Methods 2017, 10, 1045–1053. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Romero-Cano, L.A. Use of electrochemical color index as emerging analytical method for evaluating the quality of Tequila 100% agave. Food Biosci. 2023, 56, 103300. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Contreras-Atrisco, Z.A.; Ramírez-Quezada, M.F.; Romero-Cano, L.A. A novel approach of artificial intelligence for the study of the relation of physicochemical profile and color acquired by Tequila 100% agave in its maturation process. J. Food Compos. Anal. 2023, 123, 105533. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; García-Moreno, M.V.; Valcárcel-Muñoz, M.J.; Guillén-Sánchez, D.A. Determining the impact of seasoning on the volatile chemical composition of the oak wood of different Sherry Casks® by DTD–GC–MS. Wood Sci. Technol. 2023, 57, 861–878. [Google Scholar] [CrossRef]
- Correia, A.C.; González-SanJosé, M.L.; Ortega-Heras, M.; Jordão, A.M. Preliminary Study of the Effect of Short Maceration with Cherry and Oak Wood Chips on the Volatile Composition of Different Craft Beers. Beverages 2023, 9, 79. [Google Scholar] [CrossRef]
- Caetano, D.; Lima, C.M.G.; Sanson, A.L.; Silva, D.F.; de Souza Hassemer, G.; Verruck, S.; da Silva, G.A.; de Cássia Franco Afonso, R.J.; Coutrim, M.X.; Gregório, S.R. Descriptive screening and lexicon development of non-aged artisanal cachaça sensorial profile using principal component analysis and Kohonen artificial neural networks. J. Sens. Stud. 2021, 36, e12645. [Google Scholar] [CrossRef]
- da Silva, V.P.; de Souza, J.B.; de Queiroz, A.L.M.; Ribeiro-Filho, N.; Bezerra, T.K.A. Cachaça production: From sugar cane to spirit. J. Inst. Brew. 2023, 129, 259–275. [Google Scholar] [CrossRef]
- Santiago, M.A.A.; Santiago, W.D.; Fernandes, A.I.; Teixeira, M.L.; Silva, S.C.S.; Rezende, D.A.C.S.; das Graças Cardoso, M. Transformações qualitativas e quantitativas dos parâmetros físico-químicos em cachaças envelhecidas. Res. Soc. Dev. 2024, 13, e10613846629. [Google Scholar] [CrossRef]
- Fernandes, T.A.; Antunes, A.M.M.; Caldeira, I.; Anjos, O.; De Freitas, V.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using alternative ageing technology and high-resolution mass spectrometry. Food Chem. 2022, 382, 132322. [Google Scholar] [CrossRef] [PubMed]
- González-Centeno, M.R.; Chira, K.; Teissedre, P.-L. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods. Food Chem. 2016, 210, 500–511. [Google Scholar] [CrossRef]
- Cioch-Skoneczny, M.; Bajerski, M.; Klimczak, K.; Satora, P.; Skoneczny, S. Influence of oak chips addition on the physicochemical properties of beer. Eur. Food Res. Technol. 2023, 249, 183–197. [Google Scholar] [CrossRef]
- Gambuti, A.; Picariello, L.; Rinaldi, A.; Moio, L. Evolution of Sangiovese Wines With Varied Tannin and Anthocyanin Ratios During Oxidative Aging. Front. Chem. 2018, 6, 63. [Google Scholar] [CrossRef]
- Trillo-Ollero, R.; Trillo-Gutiérrez, L.M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Applying kinetic models to the study of the influence of wood contact surface area/volume ratio on the ageing of Brandy de Jerez. Curr. Res. Food Sci. 2024, 9, 100900. [Google Scholar] [CrossRef]
- Delgado-Gonzalez, M.J.; Garcia-Moreno, M.V.; Sanchez-Guillen, M.M.; Garcia-Barroso, C.; Guillen-Sanchez, D.A. Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control 2021, 119, 107468. [Google Scholar] [CrossRef]
- Ríos-Hernández, P.A.; Gómez-Navarro, C.S.; Warren-Vega, W.M.; Gutiérrez, L.V.G.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Comprehension of the adsorption mechanism in the selective color removal of extra-aged Tequila to produce Cristalino Tequila using tailored carbon materials. Food Chem. Adv. 2023, 2, 100174. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Xu, Y. Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques. Compr. Rev. Food Sci. Food Saf. 2023, 22, 502–534. [Google Scholar] [CrossRef]
- Coetzee, C.; du Toit, W.J. Sauvignon blanc wine: Contribution of ageing and oxygen on aromatic and non-aromatic compounds and sensory composition—A review. S. Afr. J. Enol. Vitic. 2015, 36, 347–365. [Google Scholar] [CrossRef]
- Briceno, J.C.C.; Rabelo, P.N.; Belo, L.; Mendes, D.; Caliari, M.; Silva, F.; Morgado, C.; Oliveira, T.F.D. Kinetics of volatile aromatic compound production during the aging of cachaça in different types of wood. Food Sci. Technol. 2025, 45. [Google Scholar] [CrossRef]
- Garrido-Bañuelos, G.; Buica, A. Is There a Link Between Coffee Aroma and the Level of Furanmethanethiol (FMT) in Pinotage Wines. S. Afr. J. Enol. Vitic. 2020, 41, 245–250. [Google Scholar] [CrossRef]
Wood Type | Scientific Name | Applications | Key Characteristics and Sensory Profile | References |
---|---|---|---|---|
Amburana | Amburana cearensis | Cachaça, rum, brandies | Durable and moderately extractive wood. Rich in coumarin, lactones, gallic acid, and other phenolic compounds. Imparts smooth vanilla, almond, sweet spice, coconut, and dried fruit notes. | [13,53,54,55,56,57,58,59,60] |
Balsam | Myroxylon peruiferum | Cachaça, rum, other spirits | Soft and easy to handle, less durable. Contains gallic acid, ellagic acid, vanillin, eugenol, and intense aromatic compounds. Produces resinous notes with pine, vanilla, and spices. | [3,13,54,55,57,58,59] |
Brazil Nut | Bertholletia excelsa | Brandies, cachaça, other spirits | Extremely dense and heavy, with low porosity and gradual compound release. Rich in phenolic compounds, lactones, and aromatic aldehydes. Yields an elegant profile with woody, spicy notes and subtle dried fruit nuances. | [13,54,57,58] |
Chestnut | Castanea sativa | Brandies, cachaça, wines, other spirits | Highly porous with good extractive capacity and robust structure. Contains ellagic acid, ellagitannins, flavonoids, furanones, and volatiles like furanes and guaiacol. Delivers toasted, smoky, spicy aromas, with vanilla, coconut, caramel, and spice notes. Higher astringency with antioxidant properties. | [61,62,63,64] |
Cherry | Prunus avium,
Prunus serotina | Brandies, liqueurs, whiskies, wines | Moderately structured wood with low tannin levels. Rich in benzaldehyde, vanillin, acetovanillone, eugenol, gallic acid, and catechin. Produces fruity, sweet, and slightly floral notes with almond undertones. | [6,10,20,24,51,54,56,61,63,65,66,67,68,69,70,71,72,73,74,75] |
Ipê | Tabebuia chrysotricha, Handroanthus spp. | Cachaça, wine, other spirits | Very dense and resistant with gradual compound release. Contains tannins, lignins, and phenolic acids such as caffeic acid. Produces intense woody and spicy notes, orange hue, smooth mouthfeel with slight astringency. | [19,53,55,57,58,76] |
Jatoba | Hymenaea courbaril | Brandies, cachaça | Dense, robust, and aromatic wood. Contains phenolic acids and vanillin, with a profile similar to oak. Provides herbal, woody aromas, balanced sweetness/acidity, and a hint of bitterness. | [13,53,54,55,56,57,58,60] |
Jequitiba | Cariniana spp. | Cachaça, other spirits | Wood with moderate porosity and extractive capacity, rich in coumarins and phenolic acids. Imparts spicy, woody, and vanilla notes, with a smooth aging evolution. | [19,57,76] |
Peroba | Paratecoma peroba | Cachaça, brandies, other spirits | Wood of moderate density and medium porosity, rich in coumarins, vanillin, and phenolic compounds. Confers sweet, floral, and spicy notes with hints of honey, vanilla, and a balanced woody character. | [13,54,55,57,58] |
Main Topic | Aspect Investigated | Beverage(s) | References |
---|---|---|---|
Aging Materials and Systems | Aging Conditions and variable influence | Beer | [147,153] |
Brandy | [143] | ||
Spirits | [18,154] | ||
Wine | [7,71,122,127] | ||
Technological strategies for aging | Alcoholic beverages | [3,28,68,155] | |
Beer | [113] | ||
Brandy | [156] | ||
Cachaça | [115,157] | ||
Spirits | [137,141] | ||
Wine | [70] | ||
Wine spirits | [142] | ||
Traditional, alternative, and native wood species | Alcoholic beverages | [44,95,105,148] | |
Brandy | [62] | ||
Cachaça | [19,54,78,87,89] | ||
Spirits | [2,57,73,158] | ||
Wine | [5,24,61,63,69,72] | ||
Analytical Techniques and Classification Tools | Analytical and instrumental methods for assessing aging effects | Alcoholic beverages | [3,28,68] |
Beer | [106] | ||
Brandy | [159,160] | ||
Cachaça | [92,130] | ||
Tequila | [17,21,161] | ||
Evaluation Methods and Analytical Approaches | Tequila | [152,162,163] | |
Sensory Outcomes and Wood-Influenced Quality | Beer | [164,165] | |
Brandy | [74] | ||
Tequila | [151] | ||
Wine | [14,56,63,132] | ||
Analytical Techniques and Classification Tools | Cachaça | [129,157] | |
Tequila | [117] | ||
Whiskey | [124] | ||
Wine | [116] | ||
Chemical Composition and Interactions | Major compound groups | Beer | [11] |
Cachaça | [55,60,138,166,167] | ||
Spirits | [151] | ||
Wine spirits | [168] | ||
Wine | [6,52,65,169] | ||
Wood–beverage interactions | Alcoholic beverages | [58,64] | |
Beer | [13,170] | ||
Cachaça | [83] | ||
Tequila | [115] | ||
Wine | [10,123,149,171] | ||
Microbiology and Biochemical Processes | Beer | [108,109,114] | |
Chemical transformations during aging | Brandy | [111,172] | |
Spirits | [173] | ||
Tequila | [174] | ||
Contextual and Market Perspectives | Literature reviews on aging materials and methods | Alcoholic beverages | [121,155,175] |
Wine | [37,75,139,176] | ||
Emerging trends and consumer preferences in aged alcoholic beverages | Alcoholic beverages | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, T.F.C.d.; Melo Miranda, B.; Colivet Briceno, J.C.; Gómez-Estaca, J.; Alves da Silva, F. The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods. Foods 2025, 14, 2739. https://doi.org/10.3390/foods14152739
Souza TFCd, Melo Miranda B, Colivet Briceno JC, Gómez-Estaca J, Alves da Silva F. The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods. Foods. 2025; 14(15):2739. https://doi.org/10.3390/foods14152739
Chicago/Turabian StyleSouza, Tainá Francisca Cordeiro de, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca, and Flávio Alves da Silva. 2025. "The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods" Foods 14, no. 15: 2739. https://doi.org/10.3390/foods14152739
APA StyleSouza, T. F. C. d., Melo Miranda, B., Colivet Briceno, J. C., Gómez-Estaca, J., & Alves da Silva, F. (2025). The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods. Foods, 14(15), 2739. https://doi.org/10.3390/foods14152739