Fire Detection and Public Safety, 2nd Edition

A special issue of Fire (ISSN 2571-6255). This special issue belongs to the section "Mathematical Modelling and Numerical Simulation of Combustion and Fire".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 5496

Special Issue Editors

1. Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, China
2. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 320601, China
3. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Interests: fire detection; electrical fire; IOTs for fire protection; public safety; emergency information system
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Interests: fire dynamics and control technology in special environments
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Fire Protection Engineering, Central South University, Changsha 410075, China
Interests: fire science and smart fire-fighting; tunnel fire prevention and control and fire safety; urban public safety and emergency management; fire resistance of major engineering structures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To reduce the risk of fire, the implementation of innovative and effective fire early warning technologies is essential. Despite the fact that research publications on fire detection technology have addressed this issue to some extent, fire detection technology still confronts hurdles in decreasing false alerts, improving sensitivity and dynamic responsibility, and providing protection for costly and complicated installations. On the other hand, the worldwide development of intelligent buildings and systems also puts forward new requirements for the integration and intelligence of fire detection.

Therefore, we are pleased to invite researchers from all over the world to explore novel and reliable fire-detection technologies, including emerging sensor technology, fire signal processing and monitoring technology, fire risk analysis and insurance, and integrated very early fire detection systems for building fires. This Special Issue wishes to provide insights into the frontiers of the latest progress in fire detection and monitoring strategies.

This Special Issue also focuses on advanced methods and techniques for fire control and suppression, as well as new progress in fire-related public safety issues. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Building fire, industrial fire, or forest fire detection;
  • Fire detection and fire dynamics;
  • Flame, smoke, and/or gas detection;
  • Multi parameter composite detection;
  • Electronic fire risk and detection;
  • Sensors associated with fire detection;
  • Fire detection algorithms;
  • Fire-related public safety issues;
  • Fire sensors for specific locations and extreme conditions;
  • New concept of fire monitoring and response systems.

Dr. Tao Chen
Dr. Jun Fang
Prof. Dr. Changkun Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fire is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fire detection
  • flame, smoke, and/or gas detection
  • fire detection algorithms
  • fire-related public safety issues
  • fire sensors for specific locations and extreme conditions
  • new concept of fire monitoring and response systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 21805 KiB  
Article
Case Study on the Rupture Morphology of a Copper Tube in an Air Conditioner Condenser After Fire
by Yunlong Ou, Ming Fu, Jing Zhang, Wenzhong Mi, Changzheng Li, Shouhai Chen and Shoulei Zheng
Fire 2025, 8(4), 145; https://doi.org/10.3390/fire8040145 - 4 Apr 2025
Viewed by 396
Abstract
The new eco-friendly flammable refrigerant in air conditioners has resulted in an annual increase in fire incidents associated with these units. Fire investigators face significant challenges in identifying the causes of these fires. In this study, copper tube samples were extracted from various [...] Read more.
The new eco-friendly flammable refrigerant in air conditioners has resulted in an annual increase in fire incidents associated with these units. Fire investigators face significant challenges in identifying the causes of these fires. In this study, copper tube samples were extracted from various locations of air conditioner condenser debris post fire. The morphology characteristics of the ruptured copper tubes formed by a high-temperature flame in fire and that formed by corrosion were analyzed, respectively. The findings indicate that the ruptures in the copper tubes of air conditioners may be classified into two types based on their origins: ruptures resulting from fire and ruptures resulting from corrosion. The ruptures in the copper tubes resulting from fire are associated with the presence of aluminum alloy fins. At elevated temperatures, the copper and aluminum atoms persist in diffusing and fracturing. A significant quantity of silver-white aluminum is present surrounding the ruptures, and distinct elemental layers may be seen in the cross-section. The corrosion-induced ruptures in the copper tubes are associated with ant nest corrosion. Despite the influence of high-temperature flame melting on surface corrosion pits, they will not entirely obscure the pits and the cross-section continues to exhibit the bifurcated structure characteristic of ant nest corrosion. This investigation demonstrates that corrosion of ant nests is the root cause of copper tube breakage obscured by flames. An investigation method for the refrigerant leakage air conditioning fire is proposed. The above findings can provide proof and method for air conditioning fire investigation. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

17 pages, 2653 KiB  
Article
The Fire Behaviour of Fabrics Containing Dried Emollient Residues
by Roísín McDermott, Mya Richards, Megan-Mae Wright, George Shajan, Joanne Morrissey and Sarah Hall
Fire 2025, 8(4), 133; https://doi.org/10.3390/fire8040133 - 29 Mar 2025
Viewed by 443
Abstract
A significant number of UK fire fatalities have been reported to involve textiles contaminated with emollients. In the following study, the flammability of a variety of fabrics containing 14 different emollients, including paraffin-free creams, was evaluated. This is the first time the impact [...] Read more.
A significant number of UK fire fatalities have been reported to involve textiles contaminated with emollients. In the following study, the flammability of a variety of fabrics containing 14 different emollients, including paraffin-free creams, was evaluated. This is the first time the impact of the presence of such a large range of emollients has been examined. Horizontal burn tests were conducted on emollient-contaminated fabrics. Significantly earlier ignition time were noted upon heating for all emollient-contaminated fabrics (p < 0.001) when compared to the behaviour of blank fabrics were noted using a vertical burn test. The mean time to ignition for 100% cotton fabric (151 ± 2 g/m2) was reduced from 71.5 to 14.4 s and for 52%/48% polyester/cotton fabric (103 ± 2 g/m2) from 328 to 12.9 s by the presence of emollients. Horizontal burn tests with a direct flame on 100% cotton fabric (114 ± 1 g/m2) displayed an accelerated mean flame speed from 0.0032 to 0.0048 ms−1 and an increased maximum flame height of 56.6 to 175.4 mm for emollient-contaminated fabrics. These findings demonstrate the fire risk of fabrics contaminated with a dried emollient. Their potential to ignite quickly and to propagate a fire may strongly decrease the reaction time of an impacted individual. Therefore, it is important that this risk and appropriate safety advice be continually highlighted and communicated not only in the UK but worldwide. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

19 pages, 7900 KiB  
Article
Experimental Study on Temperature Distribution Characteristics Under Coordinated Ventilation in Underground Interconnected Tunnels
by Houlin Ying, Zhisheng Xu, Zihan Yu, Yaolong Yin and Weibing Jiao
Fire 2025, 8(3), 110; https://doi.org/10.3390/fire8030110 - 13 Mar 2025
Viewed by 401
Abstract
Underground interconnected tunnels typically have a large curvature and multiple branching structures, which pose a higher fire risk than traditional single-tube tunnels. In this paper, experiments were performed on a reduced-scale tunnel to study the characteristics of temperature distribution and smoke propagation under [...] Read more.
Underground interconnected tunnels typically have a large curvature and multiple branching structures, which pose a higher fire risk than traditional single-tube tunnels. In this paper, experiments were performed on a reduced-scale tunnel to study the characteristics of temperature distribution and smoke propagation under coordinated ventilation. A total of 318 experimental cases were conducted, systematically varying fire location, ventilation scheme, and fire power. The results show that an increased heat release rate (HRR) significantly elevates both the maximum temperature (ΔTmax) and smoke spread range. The influence of ventilation on ΔTmax and smoke spread varies depending on fire locations. When fire occurs at the intersection of two tunnel central axes, increasing the velocity in either the branch tunnel (v1) or main tunnel (v2) reduces ΔTmax and smoke spread in tunnels. When fire occurs inside the branch tunnel, the main tunnel airflow obstructs downstream smoke movement, leading to a higher ΔTmax and expanded smoke spread upstream of the branch tunnel. A prediction model for ΔTmax under cooperative ventilation in underground interconnected tunnels was established, accounting for variations in fire position and the HRR. Meanwhile, the temperature distribution upstream of the branch tunnel was studied, revealing that the HRR has minimal impact on it. When fire occurs outside of the branch tunnel, v2 significantly affects temperature attenuation within the branch tunnel. When fire occurs at the branch tunnel entrance or inside, v2 has less effect. Combining the ventilation scheme and the HRR, dimensionless temperature decay models for different fire locations were proposed. These findings offer valuable insights for smoke control in underground interconnected tunnels. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

21 pages, 14241 KiB  
Article
YOLOv7scb: A Small-Target Object Detection Method for Fire Smoke Inspection
by Dan Shao, Yu Liu, Guoxing Liu, Ning Wang, Pu Chen, Jiaxun Yu and Guangmin Liang
Fire 2025, 8(2), 62; https://doi.org/10.3390/fire8020062 - 4 Feb 2025
Cited by 2 | Viewed by 936
Abstract
Fire detection presents considerable challenges due to the destructive and unpredictable characteristics of fires. These difficulties are amplified by the small size and low-resolution nature of fire and smoke targets in images captured from a distance, making it hard for models to extract [...] Read more.
Fire detection presents considerable challenges due to the destructive and unpredictable characteristics of fires. These difficulties are amplified by the small size and low-resolution nature of fire and smoke targets in images captured from a distance, making it hard for models to extract relevant features. To address this, we introduce a novel method for small-target fire and smoke detection named YOLOv7scb. This approach incorporates two key improvements to the YOLOv7 framework: the use of space-to-depth convolution (SPD-Conv) and C3 modules, enhancing the model’s ability to extract features from small targets effectively. Additionally, a weighted bidirectional feature pyramid network (BiFPN) is integrated into the feature-extraction network to merge features across scales efficiently without increasing the model’s complexity. We also replace the conventional complete intersection over union (CIoU) loss function with Focal-CIoU, which reduces the degrees of freedom in the loss function and improves the model’s robustness. Given the limited size of the initial fire and smoke dataset, a transfer-learning strategy is applied during training. Experimental results demonstrate that our proposed model surpasses others in metrics such as precision and recall. Notably, it achieves a precision of 98.8% for small-target flame detection and 90.6% for small-target smoke detection. These findings underscore the model’s effectiveness and its broad potential for fire detection and mitigation applications. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

14 pages, 4915 KiB  
Article
Development and Evaluation of Steel Component Coatings for Substations/Converter Stations with Both Fire and Corrosion Prevention Functions
by Yu Liu, Baohui Chen, Chuanping Wu, Tiannian Zhou and Bichen Pan
Fire 2025, 8(1), 1; https://doi.org/10.3390/fire8010001 - 24 Dec 2024
Viewed by 890
Abstract
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve [...] Read more.
There are a large number of steel components in substations/converter stations whose performance is seriously affected by being exposed to environmental corrosion and fire, endangering the operation of the substation/converter station. The current protective measures for steel components in substations/converter stations primarily involve the application of anti-corrosion and fireproof coatings. However, these coatings can easily peel off, resulting in a significant loss of their protective effectiveness. In response to this challenge, a new type of silicone-modified epoxy resin substrate has been synthesized by chemically grafting silicone resin onto epoxy resin segments, which retains the high adhesion of epoxy resin while enhancing its weather resistance. The use of synthesized nano zinc oxide-modified graphene oxide as a fireproof filler significantly improves the physical barrier effect and corrosion resistance of the coating. Additionally, the innovative addition of new metal anti-corrosion active pigments improves the adhesion and impermeability of the coating. Therefore, a steel structure coating for substations/converter stations with both fire and corrosion prevention functions has been developed. Standard tests conducted by national institutions have shown that the coating meets the performance requirements. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

12 pages, 2331 KiB  
Article
Electrical Home Fire Injuries Analysis
by Mark John Taylor, John Fielding and John O’Boyle
Fire 2024, 7(12), 471; https://doi.org/10.3390/fire7120471 - 10 Dec 2024
Viewed by 1649
Abstract
Domestic electrical fires can occur for a variety of reasons, including faulty wiring and plugs, overloaded circuits, and malfunctioning electrical appliances. In this article, the circumstances of domestic electrical fire injuries between 2011 and 2022 in the county of Merseyside in Northwestern England [...] Read more.
Domestic electrical fires can occur for a variety of reasons, including faulty wiring and plugs, overloaded circuits, and malfunctioning electrical appliances. In this article, the circumstances of domestic electrical fire injuries between 2011 and 2022 in the county of Merseyside in Northwestern England were examined in order to inform fire prevention activities. Householder carelessness appeared to be less of a factor in electrical fire injury compared to other types of fire injury such as cooking or smoking fire injury. Faulty electricity supplies were the main cause of electrical fire injuries. Male residents were slightly more likely to sustain injury in an electrical fire in comparison to females (1.25 to 1). Those aged 75+ appeared to be more at risk of electrical fire injuries compared to other age groups. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

Back to TopTop