Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,970)

Search Parameters:
Keywords = nutrient accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2675 KB  
Article
Synergistic Interactions and Short-Term Impact of Tillage Systems on Soil Physico-Chemical Properties and Organic Carbon Sequestration in North-Eastern Romania
by Segla Serginho Cakpo, Mariana Rusu, Cosmin Ghelbere, Gabriel Dumitru Mihu, Tudor George Aostăcioaei, Ioan Boti, Gerard Jităreanu and Denis Țopa
Agriculture 2026, 16(2), 179; https://doi.org/10.3390/agriculture16020179 (registering DOI) - 10 Jan 2026
Abstract
Tillage practices regulate soil health by influencing soil’s physico-chemical qualities and its capacity to sequester organic carbon. Maintaining soil health contributes to ecosystem stability and fluidity in the soil–plant–atmosphere relationship. This study aimed to evaluate soil porosity (SP), aeration limit (SAL), soil capillary [...] Read more.
Tillage practices regulate soil health by influencing soil’s physico-chemical qualities and its capacity to sequester organic carbon. Maintaining soil health contributes to ecosystem stability and fluidity in the soil–plant–atmosphere relationship. This study aimed to evaluate soil porosity (SP), aeration limit (SAL), soil capillary capacity (SCC), soil total capacity (STC), soil temperature (Ts), air temperature (Ta), nutrient availability, soil organic carbon (SOC), and soil organic matter (SOM) under three different tillage systems: no-tillage (NT), minimum tillage (MT), and conventional tillage (CT), based on a short-term field experiment. This research was conducted on Cambic Chernozem soil using a randomized complete block design with three replications. The results revealed a significant effect of tillage systems on all evaluated properties. SP reached a higher value under MT (60.01%), NT (56.74%) and CT (53.58%), respectively. This observation is similar with regard to SAL, SCC, and STC. It might be due to the reduced soil disturbance characteristics of conservation systems, thereby maintaining the soil’s natural state. There is a positive regression between these two properties across all three systems, with the highest R2 = 0.8308 observed under MT. The highest carbon stocks were recorded in NT (2.82%) and MT (2.91%) compared to 2.01% in CT at surface depths of 0–5 and 5–10 cm. This can be explained by the accumulation of organic residues and a reduction in their oxidation. Nutrient availability (TN, P, and K) increased at depths of 0–5 cm and 5–10 cm, with the highest values in conservation systems. Furthermore, the results demonstrate a significant relationship and positive synergy between soil depth, tillage practices, and key physical and chemical soil properties, especially carbon stock, across the two cropping seasons. Full article
24 pages, 6582 KB  
Article
Effects of Combined Application of Different Nitrogen Forms on Substrate Nutrient Utilization, Root Microenvironment, and Tomato Yield
by Shuyan Jiang, Jianhong Sun, Ning Jin, Shuya Wang, Shuchao Huang, Zhaozhuang Li, Jihua Yu, Jian Lyu and Li Jin
Microorganisms 2026, 14(1), 158; https://doi.org/10.3390/microorganisms14010158 (registering DOI) - 10 Jan 2026
Abstract
In facility tomato production, the excessive application ratio of ammonium nitrogen (NH4+-N) often leads to root acidification and calcium-magnesium antagonism. Although amide nitrogen (urea-N) has better buffering properties, it needs to be hydrolyzed before utilization, resulting in a lag effect. [...] Read more.
In facility tomato production, the excessive application ratio of ammonium nitrogen (NH4+-N) often leads to root acidification and calcium-magnesium antagonism. Although amide nitrogen (urea-N) has better buffering properties, it needs to be hydrolyzed before utilization, resulting in a lag effect. Previous studies have mostly focused on a single nitrogen source or a fixed proportion, and there is still a lack of systematic evidence on the nitrogen supply effects of different nitrogen application combinations at different growth stages of tomatoes. Therefore, in this experiment, tomato cultivar ‘Jingfan 502’ was used. All treatments received the same total nitrogen concentration (15 mM), but the nitrogen was supplied as different combinations of ammonium nitrogen (AN) and amide nitrogen (UN). Six AN–UN ratio treatments were designed: CK (0% AN, 0% UN), T1 (100% AN, 0% UN), T2 (0% AN, 100% UN), T3 (25% AN, 75% UN), T4 (50% AN, 50% UN), and T5 (75% AN, 25% UN). T3 (25% NH4+ + 75% urea) increased single-plant yield by 64.04% and 5.10%, and total N, P, K, and Mg accumulation by 29.0% and 20.7%, relative to T1 and T2. In addition, compared to T1 and T2, the nitrogen fertilizer uptake rate of the T3 treatment increased by 17.00% and 24.90%, respectively, and the electrical conductivity (EC) increased by 27.04% and 44.84%, respectively. Redundancy Analysis (RDA) showed that enzyme activities, total N and electrical conductivity were positively linked to microbial communities in T3 and T4, whereas communities in CK, T1, T2 and T5 correlated with nutrients and pH. Under controlled pot conditions, T3 optimizes the rhizosphere micro-environment, enhances microbial abundance and nutrient uptake, and provides a theoretical basis for precise N management in tomato. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

21 pages, 4194 KB  
Article
Physiological and Biochemical Analysis of Coffea arabica Cultivars in the Early Stage of Development Subjected to Water Stress for the Selection of Cultivars Adapted to Drought
by Jhon Edler Lopez-Merino, Eyner Huaman, Jorge Alberto Condori-Apfata and Manuel Oliva-Cruz
Stresses 2026, 6(1), 2; https://doi.org/10.3390/stresses6010002 - 9 Jan 2026
Abstract
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from [...] Read more.
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from ten cultivars subjected to adequate irrigation (AW), severe water deficit (SWD) and rehydration (RI). Water potential, gas exchange, oxidative stress markers, stomatal traits and foliar macro- and micronutrients were quantified. Most cultivars exhibited pronounced reductions in the pre-dawn leaf water potential (Ψpd), photosynthesis (A), stomatal conductance (gs) and transpiration (E), together with increases in oxidative stress indicators under SWD. In contrast, Obatá amarillo, Castillo, and Arará maintained greater hydraulic stability, more efficient stomatal regulation, higher water-use efficiency, and lower oxidative stress, accompanied by a more effective post-stress recovery after RI. Regarding nutrient dynamics, Geisha, Castillo, and Arará showed higher K+ accumulation, while Catimor bolo presented elevated Ca2+, P, and Fe2+ contents, elements associated with metabolic reactivation and structural recovery after stress. Geisha and Marsellesa displayed an adaptive, recovery-driven resilience strategy following drought stress. Overall, the findings identify Obatá amarillo, Castillo, and Arará as the most drought-tolerant cultivars, highlighting their potential relevance for breeding programs aimed at improving drought resilience in coffee. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
16 pages, 1597 KB  
Article
Thermal and Fat Organic Loading Effects on Anaerobic Digestion of Dairy Effluents
by Juana Fernández-Rodríguez, Montserrat Pérez and Diana Francisco
Biomass 2026, 6(1), 8; https://doi.org/10.3390/biomass6010008 - 9 Jan 2026
Viewed by 31
Abstract
The untreated discharge of dairy industry wastewater, characterized by high organic and nutrient loads, poses a severe eutrophication threat, leading to oxygen depletion and the disruption of aquatic ecosystems, which necessitates advanced treatment strategies. Anaerobic digestion (AD) represents an effective and sustainable alternative, [...] Read more.
The untreated discharge of dairy industry wastewater, characterized by high organic and nutrient loads, poses a severe eutrophication threat, leading to oxygen depletion and the disruption of aquatic ecosystems, which necessitates advanced treatment strategies. Anaerobic digestion (AD) represents an effective and sustainable alternative, converting organic matter into biogas while minimizing sludge production and contributing to Circular Economy strategies. This study investigated the effects of fat concentration and operational temperature on the anaerobic digestion of dairy effluents. Three types of effluents, skimmed, semi-skimmed, and whole substrates, were evaluated under mesophilic 35 °C and thermophilic 55 °C conditions to degrade substrates with different fat content. Low-fat effluents exhibited higher COD removal, shorter lag phases, and stable activity under mesophilic conditions, while high-fat substrates delayed start-up due to accumulation of fatty acids and brief methanogen inhibition. Thermophilic digestion accelerated hydrolysis and methane production but demonstrated increased sensitivity to lipid-induced inhibition. Kinetic modeling confirmed that the modified Gompertz model accurately described mesophilic digestion with rapid microbial adaptation, while the Cone model better captured thermophilic, hydrolysis-limited kinetics. The thermophilic operation significantly enhanced methane productivity, yielding 105–191 mL CH4 g−1VS compared to 54–70 mL CH4 g−1VS under mesophilic conditions by increasing apparent hydrolysis rates and reducing lag phases. However, the mesophilic process demonstrated superior operational stability and robustness during start-up with fat-rich effluents, which otherwise suffered delayed methane formation due to lipid hydrolysis and volatile fatty acid (VFA) inhibition. Overall, the synergistic interaction between temperature and fat concentration revealed a trade-off between methane productivity and process stability, with thermophilic digestion increasing methane yields up to 191 mL CH4 g−1 VS but reducing COD removal and robustness during start-up, whereas mesophilic operation ensured more stable performance despite lower methane yields. Full article
Show Figures

Figure 1

28 pages, 6064 KB  
Article
Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks
by Hatim Sanad, Rachid Moussadek, Abdelmjid Zouahri, Majda Oueld Lhaj, Houria Dakak, Khadija Manhou and Latifa Mouhir
Plants 2026, 15(2), 205; https://doi.org/10.3390/plants15020205 - 9 Jan 2026
Viewed by 52
Abstract
Soil contamination by heavy metals (HMs) threatens crop productivity, food safety, and ecosystem health, especially in intensively cultivated Mediterranean regions. This study investigated the influence of soil HM contamination on nutrient uptake, photosynthetic traits, and metal bioaccumulation in avocado (Persea americana Mill.) [...] Read more.
Soil contamination by heavy metals (HMs) threatens crop productivity, food safety, and ecosystem health, especially in intensively cultivated Mediterranean regions. This study investigated the influence of soil HM contamination on nutrient uptake, photosynthetic traits, and metal bioaccumulation in avocado (Persea americana Mill.) orchards. Twenty orchard sites were sampled, collecting paired soil and mature leaf samples. Soil physicochemical properties and HM concentrations were determined, while leaves were analyzed for macro- and micronutrients, photosynthetic pigments, and metal contents. Bioaccumulation Factors (BAFs) were computed, and multivariate analyses (Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), Linear Discriminant Analysis (LDA), and Partial Least Squares Regression (PLSR)) were applied to assess soil–plant relationships, complemented by Monte Carlo simulations to quantify probabilistic contamination risks. Results revealed substantial inter-site variability, with leaf Cd and Pb concentrations reaching 0.92 and 3.54 mg/kg, and BAF values exceeding 1 in several orchards. PLSR models effectively predicted leaf Cd (R2 = 0.789) and Pb (R2 = 0.772) from soil parameters. Monte Carlo simulations indicated 15–25% exceedance of FAO/WHO safety limits for Cd and Pb. These findings demonstrate that soil metal accumulation substantially alters avocado nutrient balance and photosynthetic efficiency, highlighting the urgent need for site-specific soil monitoring and sustainable remediation strategies in contaminated orchards. Full article
(This article belongs to the Special Issue Heavy Metal Contamination in Plants and Soil)
Show Figures

Figure 1

19 pages, 3161 KB  
Article
Pressure-Dependent Microbial Oil Production with Cutaneotrichosporon oleaginosus Converting Lignocellulosic Hydrolysate
by Fabian Herrmann, Nila Kazemian, Emelie Petzel and Dirk Weuster-Botz
Processes 2026, 14(2), 228; https://doi.org/10.3390/pr14020228 - 8 Jan 2026
Viewed by 174
Abstract
Microbial lipid production from renewable carbon sources, particularly lignocellulosic hydrolysates, is a promising alternative to plant-derived oils and fats for food applications, as it can minimize the land use by utilizing agricultural wastes and byproducts from food production. In this context, a standard [...] Read more.
Microbial lipid production from renewable carbon sources, particularly lignocellulosic hydrolysates, is a promising alternative to plant-derived oils and fats for food applications, as it can minimize the land use by utilizing agricultural wastes and byproducts from food production. In this context, a standard approach to prevent oxygen limitation at reduced air gassing rates during long-term aerobic microbial processes is to operate bioreactors at increased pressure for elevating the gas solubility in the fermentation broth. This study investigates the effect of absolute pressures of up to 2.5 bar on the conversion of the carbon sources (glucose, xylose, and acetate), growth, and lipid biosynthesis by Cutaneotrichosporon oleaginosus converting a synthetic nutrient-rich lignocellulosic hydrolysate at low air gassing rates of 0.1 vessel volume per minute (vvm). Increasing pressure delayed xylose uptake, reduced acetic acid consumption, and reduced biomass formation. Lipid accumulation decreased with increasing pressure, except for fermentations at 1.5 bar, which achieved a maximum lipid content of 83.6% (±1.6, w/w) (weight per weight in %). At an absolute pressure of 1.5 bar, a lipid yield from glucose, xylose, and acetic acid of 38% (w/w) was reached after 6 days of fermentation. The pressure sensitivity of C. oleaginosus may pose challenges on an industrial scale due to the dynamic changes in pressure when the yeast cells pass through the bioreactor. Increasing liquid heights in full-scale bioreactors will result in increased hydrostatic pressures at the bottom, substantially reducing lipid yields, e.g., to only 23% (w/w) at 2.0–2.5 bar, as shown in this study. However, further scale-up studies with dynamic pressure regimes (1–2.5 bar) may help to evaluate scale-up feasibility. Full article
Show Figures

Figure 1

40 pages, 2292 KB  
Review
Air Pollution as a Driver of Forest Dynamics: Patterns, Mechanisms, and Knowledge Gaps
by Eliza Tupu, Lucian Dincă, Gabriel Murariu, Romana Drasovean, Dan Munteanu, Ionica Soare and George Danut Mocanu
Forests 2026, 17(1), 81; https://doi.org/10.3390/f17010081 - 8 Jan 2026
Viewed by 108
Abstract
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest [...] Read more.
Air pollution is a major but often under-integrated driver of forest dynamics at the global scale. This review combines a bibliometric analysis of 258 peer-reviewed studies with a synthesis of ecological, physiological, and biogeochemical evidence to clarify how multiple air pollutants influence forest structure, function, and regeneration. Research output is dominated by Europe, East Asia, and North America, with ozone, nitrogen deposition, particulate matter, and acidic precipitation receiving the greatest attention. Across forest biomes, air pollution affects growth, wood anatomy, nutrient cycling, photosynthesis, species composition, litter decomposition, and soil chemistry through interacting pathways. Regional patterns reveal strong context dependency, with heightened sensitivity in mountain and boreal forests, pronounced ozone exposure in Mediterranean and peri-urban systems, episodic oxidative stress in tropical forests, and long-term heavy-metal accumulation in industrial regions. Beyond being impacted, forests actively modify atmospheric chemistry through pollutant filtration, aerosol interactions, and deposition processes. The novelty of this review lies in explicitly framing air pollution as a dynamic driver of forest change, with direct implications for afforestation and restoration on degraded lands. Key knowledge gaps remain regarding combined pollution–climate effects, understudied forest biomes, and the scaling of physiological responses to ecosystem and regional levels, which must be addressed to support effective forest management under global change. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 4153 KB  
Article
Straw Biochar Optimizes 15N Distribution and Nitrogen Use Efficiency in Dryland Foxtail Millet
by Zhiwen Cui, Jiling Bai, Fang Gao, Qiyun Ji, Xiaolin Wang, Panpan Zhang and Xiong Zhang
Agriculture 2026, 16(2), 157; https://doi.org/10.3390/agriculture16020157 - 8 Jan 2026
Viewed by 128
Abstract
The combined application of straw biochar and nitrogen fertilizer is an increasingly studied strategy to enhance soil fertility and crop yield. Optimizing the biochar-nitrogen interaction could be a choice for increasing nitrogen use efficiency (NUE) and reducing nitrogen loss in dryland agriculture. However, [...] Read more.
The combined application of straw biochar and nitrogen fertilizer is an increasingly studied strategy to enhance soil fertility and crop yield. Optimizing the biochar-nitrogen interaction could be a choice for increasing nitrogen use efficiency (NUE) and reducing nitrogen loss in dryland agriculture. However, the mechanisms by which it regulates nitrogen allocation and absorption in foxtail millet (Setaria italica) are still limited in terms of mechanical understanding. Based on preliminary experiments, the optimal biochar-nitrogen interaction for soil nutrient absorption was identified. A field experiment was conducted with six treatments in an arid region of northwestern China: N1C1 (N1: 130 kg ha−1 + C1: 100 kg ha−1, control group), N2C4 (N2: 195 kg ha−1 + C4: 250 kg ha−1), N3C1 (N3: 260 kg ha−1 + C1: 100 kg ha−1), N3C2 (N3: 260 kg ha−1 + C2: 150 kg ha−1), N3C3 (N3: 260 kg ha−1 + C3: 200 kg ha−1), and N3C4 (N3: 260 kg ha−1 + C4: 250 kg ha−1). The results demonstrated that the biochar–nitrogen ratio significantly influenced topsoil total nitrogen, microbial biomass carbon (SMBC), and microbial biomass nitrogen (SMBN). All biochar-to-nitrogen combinations sharply increased soil total nitrogen by 133.11–151.52% compared to pre-sowing levels, providing a fundamental base for microbial-driven nitrogen transformation. Low nitrogen addition is more conducive to biomass accumulation, with N2C4 significantly increasing by 62.82%. Although a high biochar-to-nitrogen ratio reduced leaf relative chlorophyll content (SPAD) by 5.72–16.18% and net photosynthetic rate (Pn) by 16.09–52.65% at the heading stage, these did not compromise final yield. Importantly, N2C4, N3C1, and N3C4 significantly increased spike 15N abundance by 71.45%, 13.21%, and 19.43%, respectively. N2C4 grain production increases by 53.77–110.57% in two years and was positively correlated with spike 15N abundance, reflecting high nitrogen partial factor productivity. In conclusion, a reasonable biochar-nitrogen interaction enhances nitrogen allocation and grain yield by stimulating microbial activity and strengthening soil–plant synergy, the certified strategy effectively supports sustainable dryland agriculture by simultaneously increasing productivity and improving soil health. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 2285 KB  
Review
Cystinosis and Cellular Energy Failure: Mitochondria at the Crossroads
by Francesco Bellomo and Domenico De Rasmo
Int. J. Mol. Sci. 2026, 27(2), 630; https://doi.org/10.3390/ijms27020630 - 8 Jan 2026
Viewed by 70
Abstract
Cystinosis is a rare lysosomal storage disorder characterized by defective cystine transport and progressive multi-organ damage, with the kidney being the primary site of pathology. In addition to the traditional perspective on lysosomal dysfunction, recent studies have demonstrated that cystinosis exerts a substantial [...] Read more.
Cystinosis is a rare lysosomal storage disorder characterized by defective cystine transport and progressive multi-organ damage, with the kidney being the primary site of pathology. In addition to the traditional perspective on lysosomal dysfunction, recent studies have demonstrated that cystinosis exerts a substantial impact on cellular energy metabolism, with a particular emphasis on oxidative pathways. Mitochondria, the central hub of ATP production, exhibit structural abnormalities, impaired oxidative phosphorylation, and increased reactive oxygen species. These factors contribute to proximal tubular cell failure and systemic complications. This review highlights the critical role of energy metabolism in cystinosis and supports the emerging idea of organelle communication. A mounting body of evidence points to a robust functional and physical association between lysosomes and mitochondria, facilitated by membrane contact sites, vesicular trafficking, and signaling networks that modulate nutrient sensing, autophagy, and redox balance. Disruption of these interactions in cystinosis leads to defective mitophagy, accumulation of damaged mitochondria, and exacerbation of oxidative stress, creating a vicious cycle of energy failure and cellular injury. A comprehensive understanding of these mechanisms has the potential to reveal novel therapeutic avenues that extend beyond the scope of cysteamine, encompassing strategies that target mitochondrial health, enhance autophagy, and restore lysosome–mitochondria communication. Full article
(This article belongs to the Special Issue New Advances in Cystinosis from Basic to Clinical Research)
Show Figures

Figure 1

13 pages, 4496 KB  
Article
Further Insights into Influence of Light Intensities on the Production of Long-Chain Hydroxy Fatty Acids, Fatty Diols and Fatty Alcohols in Nannochloropsis oceanica
by Martina Blasio, Adele Cutignano, Angela Sardo, Stefan Schouten and Sergio Balzano
Phycology 2026, 6(1), 11; https://doi.org/10.3390/phycology6010011 (registering DOI) - 8 Jan 2026
Viewed by 54
Abstract
Microalgae can modify their metabolic pathways as a response to environmental stimuli such as light, temperature, salinity, and nutrient availability, which critically influence the synthesis of lipids and other biomolecules. While extensive studies have focused on the impact of these environmental variables on [...] Read more.
Microalgae can modify their metabolic pathways as a response to environmental stimuli such as light, temperature, salinity, and nutrient availability, which critically influence the synthesis of lipids and other biomolecules. While extensive studies have focused on the impact of these environmental variables on the accumulation of valuable compounds such as polyunsaturated fatty acids (PUFAs) and triacylglycerols (TAGs), information on the biosynthesis of specialized metabolites, including long-chain hydroxy fatty acids (LCHFAs), long-chain diols (LCDs), and long-chain alkenols (LCAs) is scarce. These metabolites are thought to contribute to the structural integrity of cell walls in certain microalgae, such as Nannochloropsis spp. (Eustigmatophyceae), where they make up a biopolymer known as algaenan. This study investigates how varying light intensities affect the production of LCHFAs, LCDs, and LCAs in Nannochloropsis oceanica over a 12 h light/dark cycle. Our findings provide insights into the lipid biosynthetic pathways in microalgae, revealing that light strongly drives the production of LCHFAs, whereas LCDs and LCAs are less light-dependent and show more variable responses to different light intensities. Full article
Show Figures

Figure 1

17 pages, 2498 KB  
Article
Construction and Functional Validation of a Cross-Niche Multifunctional Microbial Consortium for Straw-Returning Agricultural Systems
by Shu Jia, Hang Qu, Bo Li, Jin Chu, Yinghua Juan, Yuehua Xing, Yan Liu, Hongjing Bao and Wentao Sun
Microorganisms 2026, 14(1), 135; https://doi.org/10.3390/microorganisms14010135 - 7 Jan 2026
Viewed by 154
Abstract
Straw returning, a core practice in conservation tillage, promotes sustainable intensification; however, it faces challenges such as inefficient decomposition, nutrient competition, and pathogen accumulation. To address these limitations, this study aimed to develop a multifunctional microbial consortium specifically designed for straw-incorporating cropping systems. [...] Read more.
Straw returning, a core practice in conservation tillage, promotes sustainable intensification; however, it faces challenges such as inefficient decomposition, nutrient competition, and pathogen accumulation. To address these limitations, this study aimed to develop a multifunctional microbial consortium specifically designed for straw-incorporating cropping systems. The consortium comprises four Bacillus strains with complementary enzymatic systems, isolated from diverse ecological niches. It exhibited robust lignocellulolytic enzyme production, with manganese peroxidase (7709.33 U/L), laccase (450.65 U/L), endo-β-1,4-glucanase (154.67 U/mL), and filter paper activity (309.18 U/L). The consortium significantly enhanced rice straw degradation by 37.18% and increased nitrogen (N) release by 16.13% compared to the control. Moreover, the consortium exhibited a 67.56% inhibition rate against Magnaporthe oryzae and reduced both the incidence rate and disease index of leaf blast and panicle blast. Field trials revealed increases in the rice grain yield of 9.63% and 6.94% when applied alone and 6.75% and 5.18% when co-applied with straw residues. These findings highlight the multifunctional agricultural potential of the consortium and provide a sustainable strategy to overcome the limitations of straw-incorporating farming systems. Full article
Show Figures

Graphical abstract

21 pages, 7662 KB  
Article
Growth and Mineral Nutrition of Two Accessions of the Coastal Grass Species Leymus arenarius Under Chloride and Nitrate Salinity Conditions
by Andis Karlsons, Anita Osvalde, Una Andersone-Ozola, Astra Jēkabsone and Gederts Ievinsh
Grasses 2026, 5(1), 3; https://doi.org/10.3390/grasses5010003 - 7 Jan 2026
Viewed by 70
Abstract
Functional properties of coastal halophytes are important for development of salt-tolerant cash crop cultures. The study of salt tolerance in coastal dune-building grass Leymus arenarius holds significant importance for its application in land reclamation, soil stabilization, and enhancing crop resilience to salinity stress. [...] Read more.
Functional properties of coastal halophytes are important for development of salt-tolerant cash crop cultures. The study of salt tolerance in coastal dune-building grass Leymus arenarius holds significant importance for its application in land reclamation, soil stabilization, and enhancing crop resilience to salinity stress. We used two accessions (LA1 and LA2) of L. arenarius to compare effects of salinity caused by NaCl and NaNO3 on growth, ion accumulation and mineral nutrition in controlled conditions. L. arenarius plants exhibited high tolerance to sodium salts, with distinct effects on growth and development observed between chloride and nitrate treatments. While both salts negatively impacted root biomass, nitrate treatment (50–100 mmol L−1) increased leaf number and biomass in LA2 plants, whereas chloride treatment decreased tiller and leaf sheath biomass. Despite individual variations, salinity treatments showed comparable effects on traits like tiller and leaf count, as well as leaf blade and sheath biomass. Salinity increased water content in leaf blades, sheaths, and roots, with LA2 plants showing the most pronounced effects. Chlorophyll a fluorescence measurements indicated a positive impact of NaNO3 treatment on photosynthesis at intermediate salt concentrations, but a decrease at high salinity, particularly in LA2 plants. The accumulation capacity for Na+ in nitrate-treated plants reached 30 and 20 g kg−1 in leaves and roots, respectively. In contrast, the accumulation capacity in chloride-treated plants was significantly lower, approximately 10 g kg−1, in both leaves and roots. Both treatments increased nitrogen, phosphorus, and manganese concentrations in leaves and roots, with varying effects on calcium, magnesium, iron, zinc, and copper concentrations depending on the type of salt and tissue. These findings highlight the potential of L. arenarius for restoring saline and nitrogen-contaminated environments and position it as a valuable model for advancing research on salt tolerance mechanisms to improve cereal crop resilience. Full article
Show Figures

Figure 1

29 pages, 12284 KB  
Article
Analysis of Temporal Cumulative, Lagging Effects and Driving Mechanisms of Environmental Factors on Green Tide Outbreaks: A Case Study of the Ulva Prolifera Disaster in the South Yellow Sea, China
by Zhen Tian, Jianhua Zhu, Huimin Zou, Zeen Lu, Yating Zhan, Weiwei Li, Bangping Deng, Lijia Liu and Xiucheng Yu
Remote Sens. 2026, 18(2), 194; https://doi.org/10.3390/rs18020194 - 6 Jan 2026
Viewed by 124
Abstract
The Ulva prolifera green tide in the South Yellow Sea has erupted annually for many years, posing significant threats to coastal ecology, the economy, and society. While environmental factors are widely acknowledged as prerequisites for these outbreaks, the asynchrony and complex coupling between [...] Read more.
The Ulva prolifera green tide in the South Yellow Sea has erupted annually for many years, posing significant threats to coastal ecology, the economy, and society. While environmental factors are widely acknowledged as prerequisites for these outbreaks, the asynchrony and complex coupling between their variations and disaster events have challenged traditional studies that rely on instantaneous correlations to uncover the underlying dynamic mechanisms. This study focuses on the Ulva prolifera disaster in the South Yellow Sea, systematically analyzing its spatiotemporal distribution patterns, the temporal accumulation and lag effects of environmental factors, and the coupled driving mechanisms using the Floating Algae Index (FAI). The results indicate that: (1) The disaster shows significant interannual variability, with 2019 experiencing the most severe outbreak. Monthly, the disaster begins offshore of Jiangsu in May, moves northward and peaks in June, expands northward with reduced scale in July, and largely dissipates in August. Years with large-scale outbreaks exhibit higher distribution frequency and broader spatial extent. (2) Environmental factors demonstrate significant accumulation and lag effects on Ulva prolifera disasters, with a mixed temporal mode of both accumulation and lag effects being dominant. Temporal parameters vary across different factors—nutrients generally have longer lag times, while light and temperature factors show longer accumulation times. These parameters change dynamically across disaster stages and display a clear inshore–offshore gradient, with shorter effects in coastal areas and longer durations in offshore waters, revealing significant spatiotemporal heterogeneity in temporal response patterns. (3) The driving mechanism of Ulva prolifera disasters follows a “nutrient-dominated, temporally relayed” pattern. Nutrient accumulation (PO4, NO3, SI) from the previous autumn and winter serves as the decisive factor, explaining 86.8% of interannual variation in disaster scale and 56.1% of the variation in first outbreak timing. Light and heat conditions play a secondary modulating role. A clear temporal relay occurs through three distinct stages: the initial outbreak triggered by nutrients, the peak outbreak governed by light–temperature–nutrient synergy, and the system decline characterized by the dissipation of all driving forces. These findings provide a mechanistic basis for developing predictive models and targeted control strategies. Full article
(This article belongs to the Special Issue Remote Sensing for Marine Environmental Disaster Response)
Show Figures

Figure 1

33 pages, 9647 KB  
Article
The Valorization of Food Waste into High-Value Biomass and Organic Fertilizers Through Bioconversion Using Black Soldier Fly Larvae (Hermetia illucens)
by Hongren Su, Bin Zhang, Rencan Yang, Jingyi Shi, Shichun He, Sifan Dai, Dongwang Wu and Zhiyong Zhao
Recycling 2026, 11(1), 8; https://doi.org/10.3390/recycling11010008 - 6 Jan 2026
Viewed by 114
Abstract
The valorization of food waste through bioconversion using black soldier fly larvae (BSFL, Hermetia illucens) represents a promising pathway for sustainable waste management. However, the efficiency and safety of this process when using low-quality food waste substrates remain insufficiently characterized. This study [...] Read more.
The valorization of food waste through bioconversion using black soldier fly larvae (BSFL, Hermetia illucens) represents a promising pathway for sustainable waste management. However, the efficiency and safety of this process when using low-quality food waste substrates remain insufficiently characterized. This study investigated the adaptive responses, nutrient conversion efficiency, and product safety of BSFL reared solely on food waste (moisture 78.4%, crude protein 42.98%, pH 3.62) under controlled conditions (28 °C, 55% RH). Larval growth followed a logistic model (R2 = 0.96), with an inflection point at 13.14 days and a maximum daily weight gain of 0.0153 g/larva. Crude protein content increased significantly to 64.21%, while crude fat peaked at 26.42% by day 6 before declining. Larvae accumulated essential amino acids and functional fatty acids effectively. Notably, BSFL demonstrated a strong ability to exclude arsenic and chromium, with over 90% of these heavy metals retained in the frass. The frass itself exhibited high organic matter content (up to 61.57%) and an alkaline pH, meeting general standards for organic fertilizers. These findings underscore the resilience of BSFL and its potential for safe, high-value biomass production from challenging food waste streams, contributing to advanced circular economy strategies. Full article
Show Figures

Figure 1

19 pages, 4006 KB  
Article
Prokaryotic Microbial Diversity and Community Assembly in Reclaimed Coastal Agricultural Soils
by Yifan Yin, Weidong Xu, Min Xu, Yuwei Wang, Hao Liu, Hui Cao and Feng Wang
Microorganisms 2026, 14(1), 120; https://doi.org/10.3390/microorganisms14010120 - 6 Jan 2026
Viewed by 189
Abstract
Coastal reclamation profoundly alters soil physicochemical conditions and strongly influences soil microbial ecology; however, the millennial-scale successional patterns and assembly mechanisms of prokaryotic communities under such long-term disturbance remain insufficiently understood. In this study, we investigated archaeal and bacterial communities in the plow [...] Read more.
Coastal reclamation profoundly alters soil physicochemical conditions and strongly influences soil microbial ecology; however, the millennial-scale successional patterns and assembly mechanisms of prokaryotic communities under such long-term disturbance remain insufficiently understood. In this study, we investigated archaeal and bacterial communities in the plow layer along a 0–1000-year coastal reclamation chronosequence on the southern shore of Hangzhou Bay. We analyzed community abundance, diversity, composition and assembly processes, and quantified the relative contributions of geographic distance, environmental factors and reclamation years to microbial biogeographic patterns. The results showed that reclamation markedly drove continuous soil desalination, acidification, nutrient accumulation, and particle-size refinement. Bacterial abundance exhibited a sharp decline during the early stages of reclamation, whereas archaeal abundance remained relatively stable. The α-diversity of both archaea and bacteria peaked at approximately 210–230 years of reclamation. Community assembly processes differed substantially between the two microbial domains: the archaeal communities were dominated by stochastic processes (77.78%) identified as undominated processes and dispersal limitation, whereas bacterial communities were primarily shaped by deterministic processes (70.75%) driven as variable selection. Distance–decay analysis indicated that bacterial communities were more sensitive to environmental gradients. Multiple regression and variance partitioning further demonstrated that soil pH and electrical conductivity were the key drivers of community structure. Overall, this study reveals the millennial-scale community dynamics and assembly mechanisms of archaea and bacteria in response to coastal reclamation, providing mechanistic insights into long-term microbial ecological succession and offering valuable guidance for sustainable agricultural management and ecological restoration in reclaimed coastal regions. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

Back to TopTop