Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks
Abstract
1. Introduction
- (1)
- Assess and quantify the nutritional status of avocado leaves (macronutrients, micronutrients, and HMs) as well as their photosynthetic performance using SPAD index and chlorophyll a and b concentrations across multiple orchard sites;
- (2)
- Evaluate the bioaccumulation capacity of avocado leaves for HMs through the calculation of Bioaccumulation Factors (BAFs);
- (3)
- Investigate intra-specific variability in plant response and identify the key soil and physiological parameters driving differences among trees and sites using multivariate statistical techniques, including PCA, HCA, and LDA;
- (4)
- Apply MCS to incorporate variability and uncertainty into ecological risk estimates, enhancing the robustness of risk prediction associated with HM accumulation;
- (5)
- Develop predictive models using PLSR to quantify relationships between soil HM concentrations and leaf nutrient and photosynthetic traits.
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling Design and Laboratory Analyses
2.2.1. Leaf and Soil Sampling
2.2.2. Leaf Sample Preparation and Analytical Procedures
2.3. Bioaccumulation Factor (BAF) Calculation
2.4. Multivariate Statistical Analyses (MSA)
2.5. Statistical Framework and Multivariate Testing Procedures
3. Results
3.1. Leaf Nutritional Status, Photosynthetic Pigments, and HM Accumulation in Relation to Soil Quality and Farming Practices in Avocado Orchard
3.1.1. Macronutrient Dynamics in Avocado Leaves
3.1.2. Micronutrient Uptake Patterns in Avocado Leaves and Soil Influences
3.1.3. HM Accumulation Patterns and Environmental Risks in Avocado Leaves
3.1.4. Photosynthetic Response in Avocado Leaves and Interactions Between Nutritional Status, HMs, and Soil Properties
3.2. Bioaccumulation Potential of HMs and Micronutrients in Avocado Leaves Across Orchard Sites and Trees
3.3. Interrelationships Among Soil Properties, Leaf Nutritional Status, HM Accumulation, and BAF in Avocado Orchards
3.3.1. Correlation Matrix
3.3.2. PCA of Soil, Leaf, BAF and Photosynthetic Parameters
3.3.3. HCA of Orchard Sites Based on Integrated Soil, Leaf, Bioaccumulation, and Photosynthetic Characteristics
3.3.4. Discriminant Analysis (LDA) of Orchard Sites Based on Integrated Soil, Leaf, BAF and Photosynthetic Parameters
3.4. MCS of HM Bioaccumulation, Leaf Uptake, and Photosynthetic Traits Under Soil Variability
3.5. Predictive Modeling of Leaf Nutrient Status and Photosynthetic Traits Using PLSR
4. Discussion
4.1. Integrated Discussion of Soil Quality, Bioaccumulation, Plant Uptake, and Photosynthetic Performance
4.2. Recommendations and Mitigation Strategies for Reducing HM Risks and Enhancing Orchard Sustainability
4.3. Study Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabi, N.; Ahmed, I.; Qadir, M.; Reshi, Q.M. Global Aquaculture: Scenarios and Nutritional Implications. In Aquaculture: Enhancing Food Security and Nutrition; Springer: Berlin/Heidelberg, Germany, 2025; pp. 121–137. [Google Scholar]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Dakak, H.; Zouahri, A. Geospatial Analysis of Trace Metal Pollution and Ecological Risks in River Sediments from Agrochemical Sources in Morocco’s Sebou Basin. Sci. Rep. 2025, 15, 16701. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.H.; Ali, H.; Haider, K.; Chughtai, A.H.; Abdullah, M.; Batool, S.; Rasool, S.; Anwar, R.N.; Hussain, S. Chemically Degraded Soil: Strategies for Mitigating Its Toxicity and Enhancing Sustainable Crop Production. J. Soil Sci. Plant Nutr. 2024, 25, 363–381. [Google Scholar] [CrossRef]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.-G.; Hu, Q.; Zhao, F.-J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global Soil Pollution by Toxic Metals Threatens Agriculture and Human Health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, Effects and Present Perspectives of Heavy Metals Contamination: Soil, Plants and Human Food Chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Semwal, P.; Dave, A.; Israr, J.; Misra, S.; Kumar, M.; Paul, D. Exploring Microbial Ecosystem Services for Environmental Stress Amelioration: A Review. Int. J. Mol. Sci. 2025, 26, 4515. [Google Scholar] [CrossRef]
- Qi, Y.; Cao, X.; Cao, R.; Cao, M.; Huang, J.; Xu, D. A Study on Water Quality and Pollution Source Investigation of Jinkengling Reservoir. Mar. Freshw. Res. 2024, 75, MF24022. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Dakak, H.; Zouahri, A.; Oueld Lhaj, M.; Mouhir, L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 2417. [Google Scholar] [CrossRef]
- Kamaraj, M.; Kiruthika, N.; Saranya, T.; Aravind, J. Bibliometric Analysis and Impact of Heavy Metals Contamination in Soils. Glob. J. Environ. Sci. Manag. 2025, 11, 321. [Google Scholar]
- Mansour, H.A.; El-Hady, M.A. Plant Growth-Promoting Rhizobacterial Enzyme Dynamics in Soil Remediation. In Plant-Microbe Interactions for Environmental and Agricultural Sustainability; Springer: Berlin/Heidelberg, Germany, 2025; pp. 247–304. [Google Scholar]
- Saleh, H.; Sarkar, D.; Braida, W.; Larson, S.; Datta, R. Lead in Paint-Contaminated Residential Soils with Varying Physicochemical Properties from Three Large US Cities: Assessment of Geochemical Forms and Recommendations on Amendments for Immobilization. Front. Environ. Sci. 2023, 11, 1309169. [Google Scholar] [CrossRef]
- Bostani, A.; Meng, X.; Jiao, L.; Rončević, S.D.; Zhang, P.; Sun, H. Differentiated Effects and Mechanisms of N-, P-, S-, and Fe-Modified Biochar Materials for Remediating Cd-and Pb-Contaminated Calcareous Soil. Ecotoxicol. Environ. Saf. 2025, 289, 117661. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Khanom, S.; Islam, M.R.; Hossain, M. Cadmium Contamination: Sources, Behavior, and Environmental Implications. In Cadmium Toxicity: Challenges and Solutions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 67–101. [Google Scholar]
- Oueld Lhaj, M.; Moussadek, R.; Zouahri, A.; Sanad, H.; Saafadi, L.; Mdarhri Alaoui, M.; Mouhir, L. Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems. Agriculture 2024, 14, 2356. [Google Scholar] [CrossRef]
- Araneo, F.; Bartolucci, E.; Pascarella, F.; Pinzin, F.; Illankoon, W.; Vaccari, M. The Role of Procedure Duration in the Sustainability Assessment of Contaminated Site Management in Italy. Sustainability 2024, 16, 2329. [Google Scholar] [CrossRef]
- Popoola, O.J.; Ogundele, O.D.; Ladapo, E.A.; Senbore, S. The Impact of Heavy Metal Contamination in Soils on Soil Microbial Communities and Its Potential Health Risks for Humans. In Soil Microbiome in Green Technology Sustainability; Springer: Berlin/Heidelberg, Germany, 2024; pp. 351–375. [Google Scholar]
- Soliman, M.; Al-Akeel, R.; Al-Ghamdi, M.; Almadiy, A.; Rawi, S.; Zhang, W.; Al Dhafer, H.; Mohamed, A.; Al Naggar, Y.; Salem, A.M. Trophic Transfer of Heavy Metals across a Food Chain in a Wastewater-Irrigated Agroecosystem. Environ. Monit. Assess. 2024, 196, 1082. [Google Scholar] [CrossRef]
- Amist, N.; Khare, S.; Azim, Z.; Singh, N. Mechanisms of Zinc in the Soil-Plant Interphase: Role and Regulation. In Zinc in Plants; Elsevier: Amsterdam, The Netherlands, 2025; pp. 41–58. [Google Scholar]
- Yuan, Z.; Cai, S.; Yan, C.; Rao, S.; Cheng, S.; Xu, F.; Liu, X. Research Progress on the Physiological Mechanism by Which Selenium Alleviates Heavy Metal Stress in Plants: A Review. Agronomy 2024, 14, 1787. [Google Scholar] [CrossRef]
- Ayyaz, A.; Batool, I.; Qin, T.; Bano, H.; Hannan, F.; Chen, W.; Zafar, Z.U.; Farooq, M.A.; Zhou, W.; Ni, X. Nano-Manganese and H2S Signalling Improve Rapeseed Tolerance to Chromium Stress by Regulating Cellular Metabolism and Downstream Pathways. Physiol. Plant. 2025, 177, e70286. [Google Scholar] [CrossRef] [PubMed]
- Manhou, K.; Taghouti, M.; Moussadek, R.; Elyacoubi, H.; Bennani, S.; Zouahri, A.; Ghanimi, A.; Sanad, H.; Oueld Lhaj, M.; Hmouni, D.; et al. Performance, Agro-Morphological, and Quality Traits of Durum Wheat (Triticum turgidum L. Ssp. Durum Desf.) Germplasm: A Case Study in Jemâa Shaïm, Morocco. Plants 2025, 14, 1508. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Mdarhri Alaoui, M.; Sanad, H.; Iben Halima, O.; Zouahri, A. Assessing the Evolution of Stability and Maturity in Co-Composting Sheep Manure with Green Waste Using Physico-Chemical and Biological Properties and Statistical Analyses: A Case Study of Botanique Garden in Rabat, Morocco. Agronomy 2024, 14, 1573. [Google Scholar] [CrossRef]
- Wang, W.; Sun, N.; Bai, B.; Wu, H.; Cheng, Y.; Geng, H.; Song, J.; Zhou, J.; Pang, Z.; Qian, S. Prediction of Wheat SPAD Using Integrated Multispectral and Support Vector Machines. Front. Plant Sci. 2024, 15, 1405068. [Google Scholar] [CrossRef]
- Salam, A.; Chang, J.; Yang, L.; Zeeshan, M.; Iqbal, A.; Khan, A.R.; Afridi, M.S.; Ulhassan, Z.; Azhar, W.; Zhang, Z. Brassinosteroid-Mediated Resistance to Cobalt-Induced Toxicity by Regulating Hormonal Balance, Cellular Metabolism, and Antioxidant Defense in Maize. Plants 2025, 14, 2076. [Google Scholar] [CrossRef] [PubMed]
- Di Sario, L.; Boeri, P.; Matus, J.T.; Pizzio, G.A. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int. J. Mol. Sci. 2025, 26, 1129. [Google Scholar] [CrossRef] [PubMed]
- Warra, A.A.; Prasad, M.N. Industrial Crops: Bioresources to Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; ISBN 0-429-34627-1. [Google Scholar]
- Yahia, E.M. Sustainable Production and Postharvest Handling of Avocado; Burleigh Dodds Science Publishing: Sawston, UK, 2023; Volume 157, ISBN 1-80146-726-9. [Google Scholar]
- Olas, B. The Pulp, Peel, Seed, and Food Products of Persea Americana as Sources of Bioactive Phytochemicals with Cardioprotective Properties: A Review. Int. J. Mol. Sci. 2024, 25, 13622. [Google Scholar] [CrossRef]
- Sanad, H.; Oueld lhaj, M.; Zouahri, A.; Saafadi, L.; Dakak, H.; Mouhir, L. Groundwater Pollution by Nitrate and Salinization in Morocco: A Comprehensive Review. J. Water Health 2024, 22, 1756–1773. [Google Scholar] [CrossRef]
- Manhou, K.; Moussadek, R.; Yachou, H.; Zouahri, A.; Douaik, A.; Hilal, I.; Ghanimi, A.; Hmouni, D.; Dakak, H. Assessing the Impact of Saline Irrigation Water on Durum Wheat (Cv. Faraj) Grown on Sandy and Clay Soils. Agronomy 2024, 14, 2865. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Soares, P.R.; Guilherme, R.; Vitali, G.; Boulet, A.; Harrison, M.T.; Malamiri, H.; Duarte, A.C.; Kalantari, Z.; Ferreira, A.J.D. Sustainable Water Management in Horticulture: Problems, Premises, and Promises. Horticulturae 2024, 10, 951. [Google Scholar] [CrossRef]
- Balagopal, A.; Alva, A.; Chandrasekhar, H.K.; Thorat, S.A.; Kaniyassery, A.; Koley, A.; Balachandran, S.; Govender, N.; Muthusamy, A. The Fate of Heavy Metals and Metalloids in Plant Systems—A Comprehensive Review. Toxicol. Environ. Chem. 2025, 107, 1114–1171. [Google Scholar] [CrossRef]
- Bharti, A.; Jain, U.; Chauhan, N. Metal–Organic-Frameworks: As Revolutionizing Material Utilized for Distinct Applications in Precision Farming. Bionanoscience 2024, 14, 1798–1818. [Google Scholar] [CrossRef]
- Ouaznati, S.; El Fakhouri, K.; Belkadi, B.; Douira, A.; El Bouhssini, M.; Ouazzani Touhami, A. Biosecurity Practices and Exploratory Survey for Pests and Diseases of Avocados in the Gharb-Loukkos Region, Morocco. In Proceedings of the V All Africa Horticultural Congress-AAHC2024 1422, Marrakech, Morocco, 26 February–1 March 2024; pp. 391–400. [Google Scholar]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Sanad, H.; Manhou, K.; Iben Halima, O.; Yachou, H.; Zouahri, A.; Mdarhri Alaoui, M. Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation. Agronomy 2025, 15, 1045. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Zouahri, A.; Lhaj, M.O.; Mouhir, L.; Dakak, H. Machine Learning-Integrated Hydrogeochemical and Spatial Modeling of Groundwater Quality Indices for Seawater Intrusion and Irrigation Sustainability in Coastal Agroecosystems of Skhirat Region, Morocco. J. Hydrol. Reg. Stud. 2025, 62, 102848. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Dakak, H.; Manhou, K.; Zouahri, A. Monte Carlo Simulation for Evaluating Spatial Dynamics of Toxic Metals and Potential Health Hazards in Sebou Basin Surface Water. Sci. Rep. 2025, 15, 29471. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Oueld Lhaj, M.; Dakak, H.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Zouahri, A. Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy 2024, 14, 1112. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Rahman, S.U.; Qin, A.; Zain, M.; Mushtaq, Z.; Mehmood, F.; Riaz, L.; Naveed, S.; Ansari, M.J.; Saeed, M.; Ahmad, I. Pb Uptake, Accumulation, and Translocation in Plants: Plant Physiological, Biochemical, and Molecular Response: A Review. Heliyon 2024, 10, e27724. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Elbagory, M.; Zayed, A.; El-Khateeb, N.; El-Nahrawy, S.; Omara, A.E.-D.; Mohamed, I.; Elbyaly, M.Y.H.; El-Sharkawy, M.; Singh, J.; Dzaja, A. Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent. Toxics 2025, 13, 497. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Li, J.; Luo, J.; Wang, X.; Ai, S.; Cheng, H.; Liu, Z. Bioavailability (BA)-Based Risk Assessment of Soil Heavy Metals in Provinces of China through the Predictive BA-Models. J. Hazard. Mater. 2024, 465, 133327. [Google Scholar] [CrossRef] [PubMed]
- de Lima, G.S.; Pinheiro, F.W.A.; de Souza, W.B.B.; Soares, L.A.d.A.; Gheyi, H.R.; Nobre, R.G.; de Queiroga, R.C.F.; Fernandes, P.D. Physiological Indices of Sour Passion Fruit under Brackish Water Irrigation Strategies and Potassium Fertilization. Rev. Bras. Eng. Agrícola Ambient. 2023, 27, 383–392. [Google Scholar] [CrossRef]
- Cobzac, S.C.A.; Olah, N.K.; Casoni, D. Application of HPTLC Multiwavelength Imaging and Color Scale Fingerprinting Approach Combined with Multivariate Chemometric Methods for Medicinal Plant Clustering According to Their Species. Molecules 2021, 26, 7225. [Google Scholar] [CrossRef]
- Munawar, A.A.; Mörlein, D. Prediction Accuracy of near Infrared Spectroscopy Coupled with Adaptive Machine Learning Methods for Simultaneous Determination of Chlorogenic Acid and Caffeine on Intact Coffee Beans. Case Stud. Chem. Environ. Eng. 2024, 10, 100913. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Zahidi, K.; Dakak, H.; Manhou, K.; Zouahri, A. Ecological and Human Health Hazards Evaluation of Toxic Metal Contamination in Agricultural Lands Using Multi-Index and Geostatistical Techniques across the Mnasra Area of Morocco’s Gharb Plain Region. J. Hazard. Mater. Adv. 2025, 18, 100724. [Google Scholar] [CrossRef]
- Gorai, T.; Yadav, P.K.; Choudhary, G.L.; Kumar, A. Site-Specific Crop Nutrient Management for Precision Agriculture—A Review. Curr. J. Appl. Sci. Technol. 2021, 40, 37–52. [Google Scholar] [CrossRef]
- Setiyono, T.; Walters, D.; Cassman, K.; Witt, C.; Dobermann, A. Estimating Maize Nutrient Uptake Requirements. Field Crops Res. 2010, 118, 158–168. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Silva, M.G.; Silva, G.N.; Ducatti, K.R.; Rocha, M.d.M.; Reis, A.R.; Rabêlo, F.H.S.; Lavres, J.; Santos, E.F. Agronomic Biofortification Increases Concentrations of Zinc and Storage Proteins in Cowpea Grains. Agriculture 2024, 14, 911. [Google Scholar] [CrossRef]
- Khazaei, H.; Vandenberg, A. Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy 2020, 10, 511. [Google Scholar] [CrossRef]
- Bouchtaoui, E.M.; Haouas, A.; Fahr, M.; Benali, A.; Dababat, A.A.; Alfalahi, A.O.; Khfif, K.; Zouahri, A.; Iraqi, D.; Azim, K.; et al. Harnessing Phosphocompost Extracts to Mitigate Meloidogyne Javanica Impacts on Tomato. Agriculture 2025, 15, 1184. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Lourenço, D.; Ferreira, R.M.A. Effect of Organic Compost and Inorganic Nitrogen Fertigation on Spinach Growth, Phytochemical Accumulation and Antioxidant Activity. Heliyon 2020, 6, e05085. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Ran, J.; Wang, D.; Wang, C.; Zhang, G.; Zhang, H. Heavy Metal Contents, Distribution, and Prediction in a Regional Soil–Wheat System. Sci. Total Environ. 2016, 544, 422–431. [Google Scholar] [CrossRef]
- Xuan, S.L.; Duc, T.T.; Kim, C.D. Study on Growth’s Rule of Hard Clam (Meretrix lyrata) in Bach Dang Estuary, Viet Nam. Environ. Nat. Resour. Res. 2011, 1, 139. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Yang, J.; Zhou, J.; Xu, Y. Linear Discriminant Analysis. Nat. Rev. Methods Primers 2024, 4, 70. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, J.; Tu, Y.; Zhang, Y.; Gao, J. Estimating Low Concentration Heavy Metals in Water through Hyperspectral Analysis and Genetic Algorithm-Partial Least Squares Regression. Sci. Total Environ. 2024, 916, 170225. [Google Scholar] [CrossRef]
- Gharnate, A.; Sanad, H.; Oueld Lhaj, M.; Mhammdi, N. A Comprehensive Review of Polygenetic Signatures, Methodological Advances, and Implications for Coastal Boulder Deposits (CBDs) Assessment. GeoHazards 2025, 6, 69. [Google Scholar] [CrossRef]
- Newett, S.; Rigden, P.; Carr, B. Avocado Plant Nutrition Review; Department of Agriculture and Fisheries: Nambour, QD, Australia, 2018; pp. 1–49. Available online: https://avocado.org.au/wp-content/uploads/2018/08/AVOCADO-PLANT-NUTRITION-REVIEW-2018_cover.pdf (accessed on 22 July 2025).
- Bender, G.S.; Faber, B. Avocado Fertilization. In Avocado Production; University of California: San Diego, CA, USA, 2004; pp. 29–54. [Google Scholar]
- UCANR, U.C.E. Avocado Leaf Analysis Guide|UC Agriculture and Natural Resources. Available online: https://ucanr.edu/county-office/cooperative-extension-ventura-county/avocado-leaf-analysis-guide (accessed on 14 July 2025).
- Magesa, F.; Kibacha, E.E.; Kamduli, Y.P. Lead and Cadmium Levels in Selected Leafy Vegetables and Their Implications for Public Health, Mbeya, Tanzania. Food Humanit. 2025, 4, 100607. [Google Scholar] [CrossRef]
- Latif, A.; Bilal, M.; Asghar, W.; Azeem, M.; Ahmad, M.I.; Abbas, A.; Ahmad, M.Z.; Shahzad, T. Heavy Metal Accumulation in Vegetables and Assessment of Their Potential Health Risk. J. Environ. Anal. Chem. 2018, 5, 2380–2391. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Shakoor, N.; Zain, M.; Bibi, H.; Azeem, K.; Li, Y.; Nadeem, M.; Manan, U.; Zhang, P. Co-Exposure to Tire Wear Particles and Nickel Inhibits Mung Bean Yield by Reducing Nutrient Uptake. Environ. Sci. Process. Impacts 2024, 26, 832–842. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Y.; Xu, M.; Zhao, M.; Chen, H.; Lu, Y.; Pang, S.; Xu, W. Characterization of Low-Temperature Sensitivity and Chlorophyll Fluorescence in Yellow Leaf Mutants of Tomato. Agronomy 2024, 14, 2382. [Google Scholar] [CrossRef]
- Chowdhury, M.; Kumar Khura, T.; Ahmad Parray, R.; Kushwaha, H.L.; Upadhyay, P.K.; Jha, A.; Patra, K.; Kushwah, A.; Kumar Prajapati, V. The Use of Destructive and Nondestructive Techniques in Concrete Nitrogen Assessment in Plants. J. Plant Nutr. 2024, 47, 2271–2294. [Google Scholar] [CrossRef]
- Varga, I.; Pospišil, M.; Iljkić, D.; Markulj Kulundžić, A.; Tkalec Kojić, M.; Antunović, M. Dynamics of SPAD Index, Leaf Pigment, and Macronutrient Relationships in Sugar Beet Leaves Under Spring Nitrogen Fertilization. Nitrogen 2025, 6, 10. [Google Scholar] [CrossRef]
- Natarajan, S.; Karuppasamy, K.S.; Ramasamy, A.; Chellamuthu, T.; Sadasivam, N.; Kovilpillai, B.; Govindan, S.K.; Veerasamy, R.; Muthurajan, R. Exploring Rice Genotypes for Nitrogen Use Efficiency under Different Nitrogen Regimes. Plant Physiol. Rep. 2025, 30, 175–190. [Google Scholar] [CrossRef]
- Gharnate, A.; Cox, R.; Sanad, H.; Taouali, O.; Oueld Lhaj, M.; Mhammdi, N. Hydrodynamic Modelling and Morphometric Assessment of Supratidal Boulder Transport on the Moroccan Atlantic Coast: A Dual-Site Analysis. Earth 2025, 6, 124. [Google Scholar] [CrossRef]
- Abraham, J.; Dowling, K.; Florentine, S. Influence of Controlled Burning on the Mobility and Temporal Variations of Potentially Toxic Metals (PTMs) in the Soils of a Legacy Gold Mine Site in Central Victoria, Australia. Geoderma 2018, 331, 1–14. [Google Scholar] [CrossRef]
- Monib, A.W.; Niazi, P.; Azizi, A.; Sediqi, S.; Baseer, A.Q. Heavy Metal Contamination in Urban Soils: Health Impacts on Humans and Plants: A Review. Eur. J. Theor. Appl. Sci. 2024, 2, 546–565. [Google Scholar] [CrossRef] [PubMed]
- Antonangelo, J.A.; Sun, X.; Eufrade-Junior, H.d.J. Biochar Impact on Soil Health and Tree-Based Crops: A Review. Biochar 2025, 7, 51. [Google Scholar] [CrossRef]
- Biswas, P.; Kumar, A. Advances in Soil and Plant Nutrient Management of Potatoes. In Advances in Research on Potato Production; Springer: Berlin/Heidelberg, Germany, 2025; pp. 205–229. [Google Scholar]
- David, G.; Rana, M.; Saxena, S.; Sharma, S.; Pant, D.; Prajapati, S. A Review on Design, Operation, and Maintenance of Constructed Wetlands for Removal of Nutrients and Emerging Contaminants. Int. J. Environ. Sci. Technol. 2023, 20, 9249–9270. [Google Scholar] [CrossRef]
- Kama, R.; He, J.; Nabi, F.; Aidara, M.; Faye, B.; Diatta, S.; Ma, C.; Li, H. Crop Rotation and Green Manure Type Enhance Organic Carbon Fractions and Reduce Soil Arsenic Content. Agric. Ecosyst. Environ. 2025, 378, 109287. [Google Scholar] [CrossRef]
- Hnizil, O.; Baidani, A.; Khlila, I.; Nsarellah, N.; Laamari, A.; Amamou, A. Integrating NDVI, SPAD, and Canopy Temperature for Strategic Nitrogen and Seeding Rate Management to Enhance Yield, Quality, and Sustainability in Wheat Cultivation. Plants 2024, 13, 1574. [Google Scholar] [CrossRef]










| Site | Macronutrient (%) | Micronutrient (mg/kg) | HM (mg/kg) | Photosynthetic Pigment Profiles | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | P | K | Ca | Mg | B | Fe | Zn | Cu | Mn | Ni | Cd | Pb | SPAD Index | Chlorophyll a (µg/g FW) | Chlorophyll b (µg/g FW) | Chlorophyll a/b Ratio | ||
| S1 | Mean | 3.06 | 0.28 | 2.71 | 2.66 | 0.78 | 49.05 | 220.37 | 38.37 | 9.57 | 32.47 | 4.62 | 0.11 | 0.48 | 49.50 | 67.10 | 36.12 | 1.86 |
| SEM | 0.11 | 0.01 | 0.09 | 0.10 | 0.02 | 3.64 | 11.32 | 2.85 | 0.74 | 1.98 | 0.18 | 0.01 | 0.04 | 1.48 | 0.70 | 1.08 | 0.07 | |
| Sig. | ** | ** | ** | * | ** | * | ns | * | ** | * | ** | ** | ** | * | ** | * | ** | |
| S2 | Mean | 2.46 | 0.25 | 2.04 | 3.50 | 0.60 | 49.80 | 137.05 | 45.05 | 7.85 | 70.00 | 4.24 | 0.20 | 0.76 | 42.75 | 42.77 | 26.70 | 1.61 |
| SEM | 0.08 | 0.01 | 0.11 | 0.00 | 0.03 | 1.09 | 8.96 | 1.55 | 0.96 | 0.00 | 0.20 | 0.22 | 0.01 | 1.07 | 0.34 | 1.74 | 0.09 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | ** | ** | ** | ** | * | ** | * | ** | |
| S3 | Mean | 2.24 | 0.27 | 2.04 | 3.04 | 0.46 | 54.22 | 97.40 | 36.12 | 8.20 | 51.12 | 4.76 | 0.30 | 1.35 | 25.85 | 24.25 | 13.85 | 1.80 |
| SEM | 0.08 | 0.01 | 0.18 | 0.08 | 0.06 | 1.91 | 6.03 | 0.96 | 0.95 | 4.32 | 0.09 | 0.01 | 0.06 | 1.38 | 1.36 | 1.08 | 0.23 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | * | * | ** | ** | ** | * | * | * | ** | |
| S4 | Mean | 2.70 | 0.28 | 1.63 | 2.76 | 0.62 | 51.67 | 144.57 | 39.67 | 10.5 | 35.67 | 4.48 | 0.19 | 0.95 | 39.07 | 47.75 | 24.75 | 1.94 |
| SEM | 0.13 | 0.01 | 0.08 | 0.04 | 0.04 | 0.88 | 9.08 | 2.80 | 0.82 | 2.41 | 0.25 | 0.02 | 0.05 | 1.95 | 2.09 | 0.97 | 0.11 | |
| Sig. | ** | ** | ** | ** | ** | ** | ns | * | ** | * | ** | ** | ** | * | * | ** | ** | |
| S5 | Mean | 2.99 | 0.33 | 1.58 | 3.30 | 0.69 | 54.62 | 150.15 | 45.50 | 9.97 | 67.42 | 4.85 | 0.20 | 0.93 | 41.55 | 46.92 | 23.02 | 2.03 |
| SEM | 0.17 | 0.01 | 0.20 | 0.08 | 0.06 | 2.16 | 2.09 | 2.40 | 0.71 | 1.57 | 0.08 | 0.01 | 0.02 | 1.64 | 2.42 | 1.34 | 0.01 | |
| Sig. | ** | ** | ** | ** | ** | * | * | * | ** | * | ** | ** | ** | * | * | * | ** | |
| S6 | Mean | 2.60 | 0.31 | 1.64 | 3.30 | 0.64 | 47.88 | 146.25 | 42.00 | 11.48 | 67.70 | 4.56 | 0.16 | 1.10 | 40.42 | 44.02 | 22.8 | 1.94 |
| SEM | 0.06 | 0.01 | 0.22 | 0.08 | 0.06 | 1.49 | 10.54 | 2.98 | 0.61 | 1.50 | 0.26 | 0.02 | 0.06 | 1.42 | 3.33 | 0.94 | 0.15 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | * | ** | ** | ** | * | * | * | * | |
| S7 | Mean | 2.65 | 0.32 | 2.28 | 3.50 | 0.86 | 48.92 | 225.20 | 41.12 | 9.05 | 70.0 | 5.00 | 0.11 | 0.33 | 52.65 | 65.68 | 33.48 | 1.98 |
| SEM | 0.12 | 0.01 | 0.14 | 0.00 | 0.05 | 0.59 | 13.36 | 0.51 | 0.64 | 0.00 | 0.00 | 0.02 | 0.01 | 1.27 | 1.71 | 2.07 | 0.13 | |
| Sig. | ** | ** | ** | ** | ** | ** | ns | ** | ** | ** | ** | ** | ** | * | * | * | ** | |
| S8 | Mean | 2.42 | 0.30 | 1.86 | 3.18 | 0.71 | 45.95 | 143.20 | 48.78 | 9.20 | 61.45 | 4.68 | 0.15 | 0.74 | 39.58 | 50.55 | 25.00 | 2.08 |
| SEM | 0.07 | 0.01 | 0.14 | 0.12 | 0.02 | 2.37 | 12.69 | 2.22 | 1.05 | 3.13 | 0.32 | 0.02 | 0.07 | 1.26 | 1.59 | 2.06 | 0.23 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | * | * | ** | ** | ** | * | * | * | ** | |
| S9 | Mean | 2.23 | 0.27 | 1.60 | 2.74 | 0.64 | 55.35 | 144.20 | 34.58 | 7.38 | 38.17 | 4.16 | 0.16 | 1.02 | 40.67 | 50.10 | 26.05 | 1.92 |
| SEM | 0.16 | 0.01 | 0.21 | 0.05 | 0.05 | 3.38 | 8.58 | 3.25 | 0.84 | 3.43 | 0.12 | 0.02 | 0.10 | 1.92 | 2.44 | 0.43 | 0.10 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | * | ** | ** | ** | * | * | ** | ** | |
| S10 | Mean | 2.68 | 0.29 | 2.04 | 2.59 | 0.65 | 48.88 | 152.80 | 58.10 | 10.02 | 38.8 | 4.43 | 0.16 | 0.99 | 42.02 | 49.85 | 24.42 | 2.10 |
| SEM | 0.12 | 0.01 | 0.08 | 0.11 | 0.05 | 2.89 | 9.66 | 3.23 | 1.08 | 0.63 | 0.33 | 0.01 | 0.08 | 1.23 | 1.88 | 2.11 | 0.25 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | * | ** | ** | ** | ** | * | * | * | ** | |
| Site | Macronutrient (%) | Micronutrient (mg/kg) | HM (mg/kg) | Photosynthetic Pigment Profiles | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | P | K | Ca | Mg | B | Fe | Zn | Cu | Mn | Ni | Cd | Pb | SPAD Index | Chlorophyll a (µg/g FW) | Chlorophyll b (µg/g FW) | Chlorophyll a/b Ratio | ||
| S11 | Mean | 2.55 | 0.30 | 2.33 | 3.24 | 0.62 | 50.30 | 166.12 | 52.88 | 9.38 | 58.52 | 4.52 | 0.19 | 0.83 | 41.18 | 48.22 | 24.80 | 1.98 |
| SEM | 0.10 | 0.01 | 0.17 | 0.09 | 0.03 | 3.44 | 9.82 | 3.14 | 0.80 | 2.50 | 0.20 | 0.02 | 0.05 | 1.71 | 1.37 | 1.91 | 0.16 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | * | ** | ** | ** | * | * | * | ** | |
| S12 | Mean | 2.50 | 0.30 | 2.02 | 3.30 | 0.67 | 52.90 | 152.48 | 47.78 | 10.55 | 67.12 | 4.35 | 0.19 | 0.73 | 38.33 | 46.50 | 24.38 | 1.91 |
| SEM | 0.03 | 0.00 | 0.16 | 0.13 | 0.03 | 1.53 | 10.54 | 1.67 | 0.55 | 1.29 | 0.28 | 0.02 | 0.04 | 1.33 | 0.87 | 0.91 | 0.04 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | * | ** | ** | ** | * | ** | ** | ** | |
| S13 | Mean | 2.61 | 0.29 | 1.88 | 2.99 | 0.64 | 47.80 | 129.30 | 44.78 | 8.52 | 49.65 | 4.80 | 0.17 | 0.83 | 39.78 | 47.15 | 24.42 | 1.93 |
| SEM | 0.12 | 0.01 | 0.10 | 0.04 | 0.03 | 3.97 | 2.33 | 2.24 | 1.03 | 3.00 | 0.09 | 0.03 | 0.03 | 1.76 | 0.77 | 0.38 | 0.02 | |
| Sig. | ** | ** | ** | ** | ** | * | * | * | * | * | ** | ** | ** | * | * | * | * | |
| S14 | Mean | 2.90 | 0.29 | 1.88 | 2.23 | 0.62 | 51.92 | 150.93 | 42.50 | 8.07 | 12.6 | 4.62 | 0.20 | 0.93 | 41.08 | 47.40 | 26.02 | 1.88 |
| SEM | 0.10 | 0.01 | 0.18 | 0.10 | 0.06 | 2.96 | 11.79 | 3.13 | 1.02 | 1.18 | 0.04 | 0.01 | 0.13 | 1.48 | 3.31 | 2.02 | 0.28 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | * | * | ** | ** | ** | * | * | * | ** | |
| S15 | Mean | 2.52 | 0.29 | 1.98 | 2.22 | 0.68 | 49.78 | 148.32 | 41.02 | 8.20 | 11.18 | 4.70 | 0.20 | 0.69 | 37.45 | 47.65 | 25.05 | 1.92 |
| SEM | 0.14 | 0.02 | 0.12 | 0.08 | 0.02 | 2.82 | 9.49 | 1.38 | 1.92 | 1.17 | 0.21 | 0.03 | 0.05 | 1.09 | 2.21 | 1.23 | 0.16 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | * | * | ** | ** | ** | * | * | * | ** | |
| S16 | Mean | 2.80 | 0.27 | 2.10 | 2.26 | 0.66 | 50.28 | 144.95 | 43.48 | 8.30 | 10.00 | 4.94 | 0.17 | 0.86 | 37.83 | 45.80 | 25.15 | 1.84 |
| SEM | 0.10 | 0.00 | 0.07 | 0.14 | 0.02 | 1.79 | 11.63 | 1.52 | 0.73 | 0.00 | 0.04 | 0.02 | 0.09 | 1.47 | 1.42 | 1.09 | 0.12 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | ** | ** | ** | ** | * | * | * | ** | |
| S17 | Mean | 2.23 | 0.26 | 1.82 | 1.96 | 0.47 | 49.58 | 91.20 | 25.70 | 8.12 | 11.48 | 3.21 | 0.31 | 1.37 | 28.35 | 23.38 | 16.18 | 1.47 |
| SEM | 0.07 | 0.01 | 0.21 | 0.08 | 0.04 | 3.18 | 5.22 | 0.66 | 0.64 | 1.41 | 0.19 | 0.02 | 0.14 | 0.97 | 1.26 | 1.43 | 0.13 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | ** | ** | * | ** | ** | ** | ** | * | * | ** | |
| S18 | Mean | 2.36 | 0.32 | 1.79 | 2.70 | 0.50 | 53.70 | 101.50 | 42.68 | 10.55 | 30.52 | 4.85 | 0.29 | 1.38 | 26.78 | 24.25 | 15.00 | 1.72 |
| SEM | 0.06 | 0.01 | 0.15 | 0.10 | 0.04 | 1.79 | 3.79 | 1.12 | 1.03 | 3.18 | 0.15 | 0.01 | 0.09 | 1.04 | 0.87 | 1.93 | 0.28 | |
| Sig. | ** | ** | ** | ** | ** | * | * | * | * | * | ** | ** | ** | * | ** | * | ** | |
| S19 | Mean | 2.30 | 0.38 | 1.64 | 2.04 | 0.60 | 54.22 | 153.98 | 55.92 | 18.60 | 10.00 | 5.00 | 0.16 | 0.66 | 39.12 | 47.10 | 25.05 | 1.90 |
| SEM | 0.10 | 0.01 | 0.20 | 0.14 | 0.04 | 1.92 | 8.48 | 2.00 | 0.86 | 0.00 | 0.00 | 0.01 | 0.08 | 1.26 | 2.09 | 1.76 | 0.06 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | * | ** | ** | ** | ** | ** | * | * | * | ** | |
| S20 | Mean | 2.79 | 0.40 | 2.38 | 2.26 | 0.81 | 51.3 | 236.80 | 80.00 | 20.62 | 22.00 | 5.00 | 0.13 | 0.51 | 50.38 | 66.18 | 35.38 | 1.89 |
| SEM | 0.09 | 0.00 | 0.08 | 0.11 | 0.06 | 1.67 | 9.42 | 0.00 | 1.17 | 3.58 | 0.00 | 0.01 | 0.06 | 1.14 | 1.42 | 1.77 | 0.12 | |
| Sig. | ** | ** | ** | ** | ** | * | ns | ** | * | * | ** | ** | ** | * | * | * | ** | |
| Site | BAF-Cd | BAF-Cu | BAF-Ni | BAF-Pb | BAF-Zn | BAF-Fe | BAF-Mn | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | |
| S1 | 1.31 | 0.06 | 0.53 | 0.04 | 0.09 | 0.01 | 0.01 | 0.01 | 0.51 | 0.03 | 17.74 | 0.91 | 9.89 | 0.60 |
| S2 | 1.54 | 0.17 | 0.56 | 0.06 | 0.09 | 0.01 | 0.01 | 0.01 | 0.50 | 0.01 | 31.79 | 2.08 | 8.17 | 0.01 |
| S3 | 4.32 | 0.17 | 0.63 | 0.07 | 0.09 | 0.01 | 0.02 | 0.01 | 0.50 | 0.01 | 26.81 | 1.66 | 9.88 | 0.83 |
| S4 | 3.94 | 0.54 | 0.58 | 0.04 | 0.10 | 0.01 | 0.01 | 0.01 | 0.48 | 0.03 | 50.78 | 3.19 | 9.86 | 0.66 |
| S5 | 6.71 | 0.54 | 0.49 | 0.03 | 0.09 | 0.01 | 0.01 | 0.01 | 0.47 | 0.02 | 52.88 | 0.73 | 10.02 | 0.23 |
| S6 | 1.78 | 0.19 | 0.49 | 0.02 | 0.10 | 0.01 | 0.02 | 0.01 | 0.51 | 0.03 | 43.09 | 3.10 | 10.11 | 0.22 |
| S7 | 0.87 | 0.15 | 0.43 | 0.03 | 0.08 | 0.01 | 0.01 | 0.01 | 0.50 | 0.01 | 32.45 | 1.92 | 7.88 | 0.01 |
| S8 | 2.20 | 0.27 | 0.51 | 0.05 | 0.10 | 0.01 | 0.01 | 0.01 | 0.52 | 0.02 | 31.88 | 2.82 | 10.20 | 0.52 |
| S9 | 5.20 | 0.77 | 0.48 | 0.05 | 0.09 | 0.01 | 0.02 | 0.01 | 0.51 | 0.04 | 41.85 | 2.49 | 10.16 | 0.91 |
| S10 | 5.47 | 0.45 | 0.52 | 0.05 | 0.10 | 0.01 | 0.02 | 0.01 | 0.53 | 0.03 | 22.17 | 1.40 | 10.46 | 0.17 |
| S11 | 2.67 | 0.26 | 0.46 | 0.03 | 0.10 | 0.01 | 0.02 | 0.01 | 0.49 | 0.02 | 24.24 | 1.43 | 9.46 | 0.40 |
| S12 | 2.33 | 0.30 | 0.50 | 0.02 | 0.09 | 0.01 | 0.02 | 0.01 | 0.55 | 0.01 | 27.62 | 1.90 | 9.55 | 0.18 |
| S13 | 8.42 | 1.41 | 0.44 | 0.05 | 0.09 | 0.01 | 0.02 | 0.01 | 0.53 | 0.02 | 22.68 | 0.40 | 9.16 | 0.55 |
| S14 | 1.84 | 0.05 | 0.45 | 0.05 | 0.09 | 0.01 | 0.02 | 0.01 | 0.51 | 0.03 | 46.36 | 3.62 | 12.04 | 1.12 |
| S15 | 4.02 | 0.51 | 0.49 | 0.11 | 0.09 | 0.01 | 0.02 | 0.01 | 0.50 | 0.01 | 51.07 | 3.26 | 11.39 | 1.19 |
| S16 | 4.18 | 0.48 | 0.49 | 0.04 | 0.09 | 0.01 | 0.02 | 0.01 | 0.55 | 0.01 | 49.13 | 3.94 | 12.83 | 0.01 |
| S17 | 5.13 | 0.41 | 0.59 | 0.04 | 0.09 | 0.01 | 0.04 | 0.01 | 0.47 | 0.01 | 51.38 | 2.93 | 37.29 | 4.58 |
| S18 | 4.13 | 0.08 | 0.56 | 0.05 | 0.08 | 0.01 | 0.03 | 0.01 | 0.50 | 0.01 | 25.21 | 0.91 | 9.43 | 0.98 |
| S19 | 1.75 | 0.12 | 0.53 | 0.02 | 0.06 | 0.01 | 0.01 | 0.01 | 0.47 | 0.01 | 53.11 | 2.92 | 14.46 | 0.01 |
| S20 | 2.51 | 0.28 | 0.53 | 0.03 | 0.07 | 0.01 | 0.01 | 0.01 | 0.42 | 0.01 | 22.87 | 0.91 | 11.93 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sanad, H.; Moussadek, R.; Zouahri, A.; Oueld Lhaj, M.; Dakak, H.; Manhou, K.; Mouhir, L. Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks. Plants 2026, 15, 205. https://doi.org/10.3390/plants15020205
Sanad H, Moussadek R, Zouahri A, Oueld Lhaj M, Dakak H, Manhou K, Mouhir L. Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks. Plants. 2026; 15(2):205. https://doi.org/10.3390/plants15020205
Chicago/Turabian StyleSanad, Hatim, Rachid Moussadek, Abdelmjid Zouahri, Majda Oueld Lhaj, Houria Dakak, Khadija Manhou, and Latifa Mouhir. 2026. "Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks" Plants 15, no. 2: 205. https://doi.org/10.3390/plants15020205
APA StyleSanad, H., Moussadek, R., Zouahri, A., Oueld Lhaj, M., Dakak, H., Manhou, K., & Mouhir, L. (2026). Heavy Metal-Induced Variability in Leaf Nutrient Uptake and Photosynthetic Traits of Avocado (Persea americana) in Mediterranean Soils: A Multivariate and Probabilistic Modeling of Soil-to-Plant Transfer Risks. Plants, 15(2), 205. https://doi.org/10.3390/plants15020205

