Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = nucleic acid DNA probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2264 KB  
Article
Thermodynamic Determinants in Antibody-Free Nucleic Acid Lateral Flow Assays (AF-NALFA): Lessons from Molecular Detection of Listeria monocytogenes, Mycobacterium leprae and Leishmania amazonensis
by Leonardo Lopes-Luz, Paula Correa Neddermeyer, Gabryele Cardoso Sampaio, Luana Michele Alves, Matheus Bernardes Torres Fogaça, Djairo Pastor Saavedra, Mariane Martins de Araújo Stefani and Samira Bührer-Sékula
Biomolecules 2025, 15(10), 1404; https://doi.org/10.3390/biom15101404 - 2 Oct 2025
Viewed by 355
Abstract
Antibody-free nucleic acid lateral flow assays (AF-NALFA) are an established approach for rapid detection of amplified pathogens DNA but can yield inconsistent signals across targets. Since AF-NALFA depends on dual hybridization of probes to single-stranded amplicons (ssDNA), site-specific thermodynamic (Gibbs free energy-ΔG) at [...] Read more.
Antibody-free nucleic acid lateral flow assays (AF-NALFA) are an established approach for rapid detection of amplified pathogens DNA but can yield inconsistent signals across targets. Since AF-NALFA depends on dual hybridization of probes to single-stranded amplicons (ssDNA), site-specific thermodynamic (Gibbs free energy-ΔG) at probe-binding regions may be crucial for performance. This study investigated how site-specific-ΔG and sequence complementarity at probe-binding regions determine Test-line signal generation, comparing native and synthetic amplicons and assessing the effects of local secondary structures and mismatches. Asymmetric PCR-generated ssDNA amplicons of Listeria monocytogenes, Mycobacterium leprae, and Leishmania amazonensis were analyzed in silico and tested in AF-NALFA prototypes with gold-labeled thiol probes and biotinylated capture probes. T-line signals were photographed, quantified (ImageJ version 1.4k), and statistically correlated with site-specific-ΔG. While native ssDNA from M. leprae and L. amazonensis failed to produce AF-NALFA T-line signals, L. monocytogenes yielded strong detection. Site-specific-ΔG below −10 kcal/mol correlated with reduced hybridization. Synthetic oligos preserved signals despite structural constraints, whereas ~3–4 mismatches, especially at capture probe regions, markedly impaired T-line intensity. The performance of AF-NALFA depends on the synergism between thermodynamic accessibility, site-specific-ΔG-induced site constraints, and sequence complementarity. Because genomic context affects hybridization, target-specific thermodynamic in silico evaluation is necessary for reliable pathogen DNA detection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 5463 KB  
Article
PEI-Fe3O4/PTA-AuNPs Hybrid System for Rapid DNA Extraction and Colorimetric LAMP Detection of E. faecium
by Muniyandi Maruthupandi, Haang Seok Choi and Nae Yoon Lee
Biosensors 2025, 15(9), 601; https://doi.org/10.3390/bios15090601 - 12 Sep 2025
Viewed by 1013
Abstract
This study introduces a novel nucleic acid testing (NAT) protocol that integrates rapid deoxyribonucleic acid (DNA) extraction, isothermal amplification, and visual detection to enable efficient analysis of opportunistic pathogens. Polyethylenimine-functionalized iron oxide (PEI-Fe3O4) nanoparticles were prepared by combining PEI, [...] Read more.
This study introduces a novel nucleic acid testing (NAT) protocol that integrates rapid deoxyribonucleic acid (DNA) extraction, isothermal amplification, and visual detection to enable efficient analysis of opportunistic pathogens. Polyethylenimine-functionalized iron oxide (PEI-Fe3O4) nanoparticles were prepared by combining PEI, acting as a stabilizing agent, with iron salt, which was utilized as the metal ion precursor by the ultrasonication-assisted co-precipitation method, and characterized for structural, optical, and magnetic properties. PEI-Fe3O4 exhibited cationic and anionic behavior in response to pH variations, enhancing adaptability for DNA binding and release. PEI-Fe3O4 enabled efficient extraction of E. faecium DNA within 10 min at 40 °C, yielding 17.4 ng/µL and achieving an extraction efficiency of ~59% compared to a commercial kit (29.5 ng/µL). The extracted DNA was efficiently amplified by loop-mediated isothermal amplification (LAMP) at 65 °C for 45 min. Pyrogallol-rich poly(tannic acid)-stabilized gold nanoparticles (PTA-AuNPs) served as colorimetric probes for direct visual detection of the DNA amplified using LAMP. The magnetic-nanogold (PEI-Fe3O4/PTA-AuNPs) hybrid system achieved a limit of quantification of 1 fg/µL. To facilitate field deployment, smartphone-based RGB analysis enabled quantitative and equipment-free readouts. Overall, the PEI-Fe3O4/PTA-AuNPs hybrid system used in NAT offers a rapid, cost-effective, and portable solution for DNA detection, making the system suitable for microbial monitoring. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

17 pages, 4006 KB  
Article
A Simple, Rapid, and Contamination-Free Ultra-Sensitive Cronobacter sakazakii Visual Diagnostic Platform Based on RPA Combined with CRISPR/Cas12a
by Yan Liu, Yu Xie, Zhangli Wang, Zuoqi Gai, Xu Zhang, Jiahong Chen, Hongtao Lei, Zhenlin Xu and Xing Shen
Foods 2025, 14(17), 3120; https://doi.org/10.3390/foods14173120 - 6 Sep 2025
Viewed by 596
Abstract
CRISPR/Cas systems have made significant progress in the field of molecular diagnostics in recent years. To overcome the aerosol contamination problem brought on by amplicon transfer in the common two-step procedure, the “one-pot method” has become a major research hotspot in this field. [...] Read more.
CRISPR/Cas systems have made significant progress in the field of molecular diagnostics in recent years. To overcome the aerosol contamination problem brought on by amplicon transfer in the common two-step procedure, the “one-pot method” has become a major research hotspot in this field. However, these methods usually rely on specially designed devices or additional chemical modifications. In this study, a novel “one-pot” strategy was developed to detect the foodborne pathogen Cronobacter sakazakii (C. sakazakii). A specific sequence was screened out from the virulence gene ompA of C. sakazakii as the detection target. Combining with the recombinase polymerase amplification (RPA), a rapid detection platform for C. sakazakii based on the CRISPR/Cas12a system was established for the first time. The sensitivity of this method was determined from three different levels, which are 10−4 ng/μL for genomic DNA (gDNA), 1.43 copies/μL for target DNA, and 6 CFU/mL for pure bacterial culture. Without any microbial enrichment, the detection limits for artificially contaminated cow and goat milk powder samples were 4.65 CFU/mL and 4.35 CFU/mL, respectively. To address the problem brought on by aerosol contamination in the common RPA-CRISPR/Cas12a two-step method, a novel pipette tip-in-tube (PTIT) method for simple and sensitive one-pot nucleic acid detection was further developed under the inspiration of the capillary principle. The RPA and CRISPR/Cas systems were isolated from each other by the force balance of the solution in a pipette tip before amplification. The detection limits of the PTIT method in pure bacterial culture and the spiked samples were exactly the same as that of the two-step method, but with no false positive cases caused by aerosol contamination at all. Compared with other existing one-pot methods, the PTIT method requires no additional or specially designed devices, or any chemical modifications on crRNA and nucleic acid probes. Therefore, the PTIT method developed in this study provides a novel strategy for realizing one-pot CRISPR/Cas detection easily and holds significant potential for the rapid point-on-care testing (POCT) application. Full article
(This article belongs to the Special Issue Food Safety Detection Analysis and Sensors)
Show Figures

Figure 1

14 pages, 2351 KB  
Article
The Effect of 2′F-RNA on I-Motif Structure and Stability
by Cristina Ugedo, Arnau Domínguez, Irene Gómez-Pinto, Ramon Eritja, Carlos González and Anna Aviñó
Molecules 2025, 30(17), 3561; https://doi.org/10.3390/molecules30173561 - 30 Aug 2025
Viewed by 1026
Abstract
I-motifs are non-canonical, cytosine-rich DNA structures stabilized by hemiprotonated C•C+ base pairs, whose formation is highly pH-dependent. While certain chemical modifications can enhance i-motif stability, modifications at the sugar moiety often disrupt essential inter-strand contacts. In this study, we examine the structural [...] Read more.
I-motifs are non-canonical, cytosine-rich DNA structures stabilized by hemiprotonated C•C+ base pairs, whose formation is highly pH-dependent. While certain chemical modifications can enhance i-motif stability, modifications at the sugar moiety often disrupt essential inter-strand contacts. In this study, we examine the structural and thermodynamic impact of incorporating 2′-fluoro-ribocytidine (2′F-riboC) into i-motif-forming sequences derived from d(TCCCCC). Using a combination of UV, 1H NMR, and 19F NMR spectroscopy, we demonstrate that full substitution with 2′F-riboC strongly destabilizes i-motif, whereas partial substitutions (one or two substitutions per strand) support well-folded structures at acidic pH (pH 5). High-resolution NMR structures reveal well-defined i-motif architectures with conserved C•C+ pairing and characteristic interstrand NOEs. Sugar conformational analysis reveals a predominant North pucker for cytosines, which directs the fluorine substituent toward the minor groove of the i-motif. 19F NMR further confirms slow exchange between folded and unfolded species, enabling the simultaneous detection of both under identical experimental conditions and, consequently, highlighting the utility of fluorine at the 2′ sugar position as a spectroscopic probe. These findings provide insights into fluorine-mediated modulation of i-motif stability and further extend the utility of 19F NMR in nucleic acid research. Full article
(This article belongs to the Special Issue Chemistry of Nucleic Acids: From Structure to Biological Interactions)
Show Figures

Graphical abstract

18 pages, 2985 KB  
Review
Carbon Dots for Nucleic Acid-Based Diagnostics and Therapeutics: Focus on Oxidative DNA Damage
by Barbara Pascucci, Maria Moccia, Mariarosaria D’Errico, Fabrizio Vetica, Michele Saviano, Francesca Leonelli and Annalisa Masi
Int. J. Mol. Sci. 2025, 26(16), 8077; https://doi.org/10.3390/ijms26168077 - 21 Aug 2025
Viewed by 712
Abstract
Carbon dots (CDs) are gaining significant attention as multifunctional nanomaterials due to their optical properties, aqueous dispersibility, redox activity, and overall biocompatibility. This review presents a critical overview of the recent advances concerning the application of CDs in nucleic acid-centered diagnostics, with a [...] Read more.
Carbon dots (CDs) are gaining significant attention as multifunctional nanomaterials due to their optical properties, aqueous dispersibility, redox activity, and overall biocompatibility. This review presents a critical overview of the recent advances concerning the application of CDs in nucleic acid-centered diagnostics, with a specific focus on oxidative DNA damage. The use of CDs for the detection of oxidative DNA damage biomarkers, such as 8-oxo-2′-deoxyguanosine (8-oxo-dG), and their potential roles as fluorescent probes in environments related to oxidative stress is discussed in detail. The relationship between surface functionalization and biological performance is examined, highlighting how physicochemical properties dictate both the beneficial and adverse biological responses to CDs. Remarkably, CDs can act as antioxidants, mitigating oxidative damage, or as pro-oxidants, inducing cytotoxic effects, an ambivalent behavior that can be strategically harnessed for cytoprotection or selective tumor cell killing. Overall, this review outlines how CDs can contribute to the development of precision tools for studying oxidative environments affecting nucleic acids, with important implications for both diagnostics and redox-based therapeutic strategies of human diseases. Full article
Show Figures

Graphical abstract

17 pages, 1793 KB  
Article
A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane
by Moutoshi Chakraborty, Shamsul Arafin Bhuiyan, Simon Strachan, Muhammad J. A. Shiddiky, Nam-Trung Nguyen, Narshone Soda and Rebecca Ford
Biosensors 2025, 15(8), 518; https://doi.org/10.3390/bios15080518 - 8 Aug 2025
Cited by 1 | Viewed by 1131 | Correction
Abstract
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its [...] Read more.
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its cryptic nature—characterized by an absence of visible symptoms—renders timely diagnosis particularly difficult, contributing to substantial undetected yield losses across major sugar-producing regions. Here, we report the development of a potential-induced electrochemical (EC) nanobiosensor platform for the rapid, low-cost, and field-deployable detection of Lxx DNA directly from crude sugarcane sap. This method eliminates the need for conventional nucleic acid extraction and thermal cycling by integrating the following: (i) a boiling lysis-based DNA release from xylem sap; (ii) sequence-specific magnetic bead-based purification of Lxx DNA using immobilized capture probes; and (iii) label-free electrochemical detection using a potential-driven DNA adsorption sensing platform. The biosensor shows exceptional analytical performance, achieving a detection limit of 10 cells/µL with a broad dynamic range spanning from 105 to 1 copy/µL (r = 0.99) and high reproducibility (SD < 5%, n = 3). Field validation using genetically diverse sugarcane cultivars from an inoculated trial demonstrated a strong correlation between biosensor signals and known disease resistance ratings. Quantitative results from the EC biosensor also showed a robust correlation with qPCR data (r = 0.84, n = 10, p < 0.001), confirming diagnostic accuracy. This first-in-class EC nanobiosensor for RSD represents a major technological advance over existing methods by offering a cost-effective, equipment-free, and scalable solution suitable for on-site deployment by non-specialist users. Beyond sugarcane, the modular nature of this detection platform opens up opportunities for multiplexed detection of plant pathogens, making it a transformative tool for early disease surveillance, precision agriculture, and biosecurity monitoring. This work lays the foundation for the development of a universal point-of-care platform for managing plant and crop diseases, supporting sustainable agriculture and global food resilience in the face of climate and pathogen threats. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

22 pages, 8351 KB  
Review
Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification
by Jae Eon Lee and Seung Pil Pack
Biosensors 2025, 15(8), 476; https://doi.org/10.3390/bios15080476 - 23 Jul 2025
Viewed by 1177
Abstract
Deoxyribonucleic acid (DNA) is not only a fundamental biological molecule but also a versatile material for constructing sensitive and specific biosensing platforms. Its ability to undergo sequence-specific hybridization via Watson–Crick base pairing enables both precise target recognition and the programmable construction of nanoscale [...] Read more.
Deoxyribonucleic acid (DNA) is not only a fundamental biological molecule but also a versatile material for constructing sensitive and specific biosensing platforms. Its ability to undergo sequence-specific hybridization via Watson–Crick base pairing enables both precise target recognition and the programmable construction of nanoscale structures. The demand for ultrasensitive detection increases in fields such as disease diagnostics, therapeutics, and other areas, and the inherent characteristics of DNA have driven the development of a wide range of signal amplification strategies. Among these, polymerase chain reaction (PCR), rolling circle amplification (RCA), and loop-mediated isothermal amplification (LAMP) represent powerful target-based methods that enzymatically increase the concentration of nucleic acid targets, thereby boosting detection sensitivity. In parallel, structure-based strategies leverage the nanoscale spatial programmability of DNA to construct functional architectures with high precision. DNA can be used as a scaffold, such as DNA nanostructures, to organize sensing elements and facilitate signal transduction. It can also function as a probe, like aptamers, to recognize targets with high affinity. These versatilities enable the creation of highly sophisticated sensing platforms that integrate molecular recognition and signal amplification. Driven by DNA nano-assembly capability, both target-based and structure-based approaches are driving the advancement of highly sensitive, selective, and adaptable diagnostic technologies. This review highlights recent developments in DNA nano-assembly-driven amplification strategies. Full article
(This article belongs to the Special Issue Aptamer-Based Sensing: Designs and Applications)
Show Figures

Figure 1

21 pages, 2191 KB  
Review
Heavy Metal Ion Detection Based on Lateral Flow Assay Technology: Principles and Applications
by Xiaobo Xie, Xinyue Hu, Xin Cao, Qianhui Zhou, Wei Yang, Ranran Yu, Shuaiqi Liu, Huili Hu, Ji Qi and Zhiyang Zhang
Biosensors 2025, 15(7), 438; https://doi.org/10.3390/bios15070438 - 7 Jul 2025
Viewed by 1637
Abstract
Heavy metal ions pose a significant threat to the environment and human health due to their high toxicity and bioaccumulation. Traditional instrumentations, although sensitive, are often complex, costly, and unsuitable for on-site rapid detection of heavy metal ions. Lateral flow assay technology has [...] Read more.
Heavy metal ions pose a significant threat to the environment and human health due to their high toxicity and bioaccumulation. Traditional instrumentations, although sensitive, are often complex, costly, and unsuitable for on-site rapid detection of heavy metal ions. Lateral flow assay technology has emerged as a research hotspot due to its rapid, simple, and cost-effective advantages. This review summarizes the applications of lateral flow assay technology based on nucleic acid molecules and antigen–antibody interactions in heavy metal ion detection, focusing on recognition mechanisms such as DNA probes, nucleic acid enzymes, aptamers, and antigen–antibody binding, as well as signal amplification strategies on lateral flow testing strips. By incorporating these advanced technologies, the sensitivity and specificity of lateral flow assays have been significantly improved, enabling highly sensitive detection of various heavy metal ions, including Hg2+, Cd2+, Pb2+, and Cr3+. In the future, the development of lateral flow assay technology for detection of heavy metal ions will focus on multiplex detection, optimization of signal amplification strategies, integration with portable devices, and standardization and commercialization. With continuous technological advancements, lateral flow assay technology will play an increasingly important role in environmental monitoring, food safety, and public health. Full article
Show Figures

Figure 1

20 pages, 1022 KB  
Review
CRISPR/Cas12a-Based Biosensing: Advances in Mechanisms and Applications for Nucleic Acid Detection
by Kun Du, Qinlong Zeng, Mingjun Jiang, Zhiqing Hu, Miaojin Zhou and Kun Xia
Biosensors 2025, 15(6), 360; https://doi.org/10.3390/bios15060360 - 4 Jun 2025
Cited by 3 | Viewed by 2549
Abstract
Nucleic acid detection technology is crucial for molecular diagnosis. The advent of CRISPR/Cas12a-based nucleic acid detection has considerably broadened its scope, from the identification of infectious disease-causing microorganisms to the detection of disease-associated biomarkers. This innovative system capitalizes on the non-specific single-strand cleavage [...] Read more.
Nucleic acid detection technology is crucial for molecular diagnosis. The advent of CRISPR/Cas12a-based nucleic acid detection has considerably broadened its scope, from the identification of infectious disease-causing microorganisms to the detection of disease-associated biomarkers. This innovative system capitalizes on the non-specific single-strand cleavage activity of Cas12a upon target DNA recognition. By employing a fluorescent probe in the form of a single-stranded DNA/RNA, this technology enables the observation of fluorescence changes resulting from nonspecific cleavage, thereby facilitating detection. CRISPR/Cas12a-based detection systems can be regarded as a new type of biosensor, offering a practical and efficient approach for nucleic acid analysis in various diagnostic settings. CRISPR/Cas12a-based biosensors outperform conventional nucleic acid detection methods in terms of portability, simplicity, speed, and efficiency. In this review, we elucidate the detection principle of CRISPR/Cas12a-based biosensors and their application in disease diagnostics and discuss recent innovations and technological challenges, aiming to provide insights for the research and further development of CRISPR/Cas12a-based biosensors in personalized medicine. Our findings show that although CRISPR/Cas12a-based biosensors have considerable potential for various applications and theoretical research, certain challenges remain. These include simplifying the reaction process, enhancing precision, broadening the scope of disease detection, and facilitating the translation of research findings into clinical practice. We anticipate that ongoing advancements in CRISPR/Cas12a-based biosensors will address these challenges. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

23 pages, 4235 KB  
Review
Recent Advances in the Development of Functional Nucleic Acid Biosensors Based on Aptamer-Rolling Circle Amplification
by Ce Liu and Wanchong He
Molecules 2025, 30(11), 2375; https://doi.org/10.3390/molecules30112375 - 29 May 2025
Cited by 1 | Viewed by 1646
Abstract
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. [...] Read more.
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. Rolling circle amplification (RCA) is an amplification technique that utilizes DNA or RNA templates, where circular primers are extended by polymerases to generate multiple repeated sequences, enabling highly sensitive detection of target molecules. The integration of aptamers with RCA offers significant advantages, enhancing both the specificity and sensitivity of detection while ensuring a fast and straightforward process. This synergy has already been widely applied across various fields, including fluorescence, microfluidics, visualization, and electrochemical technologies. Examples include molecular probe development, rapid detection of disease biomarkers, and environmental monitoring. Looking ahead, the aptamer-RCA platform holds great promise for advancing early disease diagnosis, precision medicine, and the development of nanosensors, driving innovation and new applications in these fields. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensors and Biomedicine Application)
Show Figures

Figure 1

12 pages, 2016 KB  
Article
Ionic Strength Investigation on the Interaction Between miR-155 and a PNA-Based Probe by Atomic Force Spectroscopy
by Davide Atzei, Francesco Lavecchia di Tocco and Anna Rita Bizzarri
Biomolecules 2025, 15(5), 634; https://doi.org/10.3390/biom15050634 - 28 Apr 2025
Cited by 1 | Viewed by 667
Abstract
Peptide nucleic acids (PNAs) are synthetic analogues of DNA/RNA characterized by the absence of negative phosphate groups, which confer a low sensitivity to ionic strength for hybridization with respect to the canonical counterpart. PNAs are a suitable probe for miRNAs, as well as [...] Read more.
Peptide nucleic acids (PNAs) are synthetic analogues of DNA/RNA characterized by the absence of negative phosphate groups, which confer a low sensitivity to ionic strength for hybridization with respect to the canonical counterpart. PNAs are a suitable probe for miRNAs, as well as endogenous molecules of single-strand non-coding RNA whose dysregulation is often linked to several diseases. The interaction forces between PNA and microRNA-155 (miR-155), a multifunctional microRNA overexpressed in a variety of tumors, were investigated by Atomic Force Spectroscopy (AFS) in fluid under different conditions. We found that the unbinding forces acquired at the ionic strength of 150 mM for a rather wide range of loading rates (ΔF/Δt) can be described using the Bell–Evans model. This allows us to extract information on the kinetics and thermodynamic properties of the miR-155/PNA duplex. Additionally, we probed the unbinding forces and the target recognition times between miR-155 and PNA in the 50–300 mM ionic strength range. Our results indicate that both of these parameters are practically independent from the ionic strength in the analyzed range. The results provide information that is useful for a wider use of PNA in biosensors for diagnostics and therapeutics, even in situ. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

61 pages, 23396 KB  
Review
Porphyrins as Chiroptical Conformational Probes for Biomolecules
by Gabriele Travagliante, Massimiliano Gaeta, Roberto Purrello and Alessandro D’Urso
Molecules 2025, 30(7), 1512; https://doi.org/10.3390/molecules30071512 - 28 Mar 2025
Viewed by 1043
Abstract
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The [...] Read more.
Porphyrins are highly conjugated macrocyclic compounds that possess exceptional photophysical and chemical properties, progressively establishing themselves as versatile tools in the structural investigation of biomolecules. This review explores their role as chiroptical conformational probes, focusing on their interactions with DNA and RNA. The planar electron rich structure of porphyrin macrocycle that promote π–π interactions, their easy functionalization at the meso positions, and their capacity to coordinate metal ions enable their use in probing nucleic acid structures with high sensitivity. Emphasis is placed on their induced circular dichroism (ICD) signals in the Soret region, which provide precise diagnostic insights into binding mechanisms and molecular interactions. The review examines the interactions of porphyrins with various DNA structures, including B-, Z-, and A-DNA, single-stranded DNA, and G-quadruplex DNA, as well as less common structures like I-motif and E-motif DNA. The last part highlights recent advancements in the use of porphyrins to probe RNA structures, emphasizing binding behaviors and chiroptical signals observed with RNA G-quadruplexes, as well as the challenges in interpreting ICD signals with other RNA motifs due to their inherent structural complexity. Full article
Show Figures

Graphical abstract

20 pages, 10507 KB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Cited by 1 | Viewed by 859
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

25 pages, 719 KB  
Review
Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry
by Shahan Azeem and Kyoung-Jin Yoon
Viruses 2025, 17(2), 228; https://doi.org/10.3390/v17020228 - 6 Feb 2025
Cited by 1 | Viewed by 4042
Abstract
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its [...] Read more.
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its antigen, its genomic material, and antibodies to the virus. Virus characterization almost always follows virus detection. The present article surveys the current literature on the goals, principles, test performance, advantages, and disadvantages of these diagnostic assays. Virus isolation can be achieved using embryonating eggs or cell cultures in a lab setting. Virus antigens can be detected by antigen-capturing immunoassays or tissue immunoassays. Viral RNA can be detected by PCR-based assays (gel-based reverse transcription–polymerase chain reaction (RT-PCR), or probe or SYBR® Green-based real-time RT-PCR), loop-mediated isothermal amplification, in situ hybridization, and nucleic acid sequence-based amplification. Antibodies to AIV can be detected by ELISA, agar gel immunodiffusion, hemagglutination inhibition, and microneutralization. Avian influenza virus can be characterized by hemagglutination inhibition, neuraminidase inhibition, sequencing (dideoxynucleotide chain-termination sequencing, next-generation sequencing), genetic sequence-based pathotype prediction, and pathogenicity testing. Novel and variant AIVs can be recognized by DNA microarrays, electron microscopy, mass spectroscopy, and Biological Microelectromechanical Systems. A variety of diagnostic tests are employed in AIV surveillance and monitoring. The choice of their use depends on the goal of testing (fit for purpose), the time of testing during the disease, the assay target, the sample matrix, assay performance, and the advantages and disadvantages of the assay. The article concludes with authors’ perspective of the use of diagnostic assays in the surveillance and monitoring of AIV in poultry. Full article
Show Figures

Figure 1

11 pages, 1851 KB  
Article
Rapid Detection of microRNA-122 in Serum and Finger Blood Using a Lateral Flow Nucleic Acid Biosensor
by Min Zhang, Meijing Ma, Jiahui Wang, Yurui Zhou, Xueji Zhang and Guodong Liu
Biosensors 2025, 15(1), 58; https://doi.org/10.3390/bios15010058 - 17 Jan 2025
Viewed by 1825
Abstract
MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and [...] Read more.
MicroRNA122 (miR-122) is a microRNA that is highly expressed in hepatocytes and has been identified as a prospective therapeutic target and biomarker for liver injury. An expanding body of research has demonstrated that miR-122 is a critical regulator in both the initiation and progression of a wide range of liver diseases. Traditional methods for detecting miR-122 mainly include Northern blotting and qRT-PCR, but they are technically complex and cumbersome, requiring expensive instruments and high technical requirements. In this paper, we present a novel rapid testing method utilizing a lateral flow nucleic acid biosensor (LFNAB) for the sensitive and time-efficient detection of miR-122. This approach offers several advantages, including a high specificity for miR-122, the ability to detect low concentrations of the target molecule, and a significantly reduced testing time compared to conventional detection methods. In this study, a thiol-modified single-stranded detection DNA probe (Det-DNA), a biotinylated single-stranded capture DNA probe (Cap-DNA), and a biotinylated single-stranded control DNA probe (Con-DNA) are used to construct the LFNAB. A gold nanoparticle (AuNP) is a colored tag, which is used to label the Det-DNA probe. The principle of detecting miR-122 is based on dual DNA-miRNA hybridization reactions on the LFNAB to form sandwich-type AuNP-Det-DNA-miR-122-Cap-DNA complexes, which are captured on the test area of LFNAB for visualization and quantification. After systematic optimization of conditions of experiment, the response of LFNAB was highly linear within the scope of 0 pM-100 pM miR-122, and the detection limit in 15 min was 3.90 pM. The use of LFNAB to detect miR-122 in serum and fingertip blood has yielded satisfactory results. This successful application indicates the effectiveness of LFNAB in detecting miR-122 in both serum and fingertip blood samples, showcasing its potential utility in clinical and research settings for assessing miR-122 levels in different biological samples. Full article
(This article belongs to the Special Issue Biosensors for Biomedical Diagnostics)
Show Figures

Figure 1

Back to TopTop