Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification
Abstract
1. Introduction
2. Target-Based Signal Amplification
2.1. Polymerase Chain Reaction (PCR)
2.2. Rolling Circle Amplification (RCA)
2.3. Loop-Mediated Isothermal Amplification (LAMP)
3. Structure-Based Signal Amplification
3.1. DNA Nanostructure
3.2. Aptamer with DNA Nanostructure
4. Concluding Remarks and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Minchin, S.; Lodge, J. Understanding biochemistry: Structure and function of nucleic acids. Essays Biochem. 2019, 63, 433–456. [Google Scholar] [CrossRef] [PubMed]
- Cassedy, A.; Parle-McDermott, A.; O’Kennedy, R. Virus detection: A review of the current and emerging molecular and immunological methods. Front. Mol. Biosci. 2021, 8, 637559. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Huang, Y.; Du, Y.; Zhang, Y.; Cui, Y.; Kong, D.-m. Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal. Biosens. Bioelectron. 2022, 197, 113739. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Yan, J.; Ren, K. DNA Self-Assembly: A Tool to Improve Biochemical Reaction Performance. ACS Mater. Lett. 2024, 6, 4183–4208. [Google Scholar] [CrossRef]
- Kiesling, T.; Cox, K.; Davidson, E.A.; Dretchen, K.; Grater, G.; Hibbard, S.; Lasken, R.S.; Leshin, J.; Skowronski, E.; Danielsen, M. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res. 2007, 35, e117. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.K.; Yang, M.; Pack, S.P. Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end. Chem. Commun. 2015, 51, 13090–13093. [Google Scholar] [CrossRef] [PubMed]
- Völker, J.; Gindikin, V.; Breslauer, K.J. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024, 14, 1532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yuan, L.; Hua, X.; Xu, L.; Liu, S. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review. Anal. Chim. Acta 2015, 877, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Liu, Q.; Cui, Y.; Kong, J.; Yang, H.; Liu, Q. DNA based click polymerization for ultrasensitive IFN-γ fluorescent detection. Sens. Actuator B-Chem. 2018, 276, 279–287. [Google Scholar] [CrossRef]
- Chen, K.; Shen, Z.; Wang, G.; Gu, W.; Zhao, S.; Lin, Z.; Liu, W.; Cai, Y.; Mushtaq, G.; Jia, J. Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Front. Bioeng. Biotechnol. 2022, 10, 986233. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, L.; Lyu, J.; Shiyi, L.; Liu, Q.; Pang, R.; Li, W.; Guo, X.; Zhong, X.; He, H. A dual signal amplification system with specific signal identification for rapid and sensitive detection of miRNA. Talanta 2024, 266, 125097. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, C.; Wu, R.; Xue, G.; Song, Q.; Lan, L.; Xue, C.; Xu, L.; Shen, Z. Self-assembly of protein-DNA hybrids dedicated to an accelerated and self-primed strand displacement amplification for reinforced serum microRNA probing. Anal. Chim. Acta 2024, 1308, 342667. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Agrawal, M.; Srivastava, A. Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater. Adv. 2022, 3, 8864–8885. [Google Scholar] [CrossRef]
- Zhou, X.; Schuh, D.A.; Castle, L.M.; Furst, A.L. Recent advances in signal amplification to improve electrochemical biosensing for infectious diseases. Front. Chem. 2022, 10, 911678. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Zhuo, Y.; Chai, Y.; Yuan, R. Bipedal DNA walker mediated enzyme-free exponential isothermal signal amplification for rapid detection of microRNA. Chem. Commun. 2019, 55, 13932–13935. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Q.; Xu, J.; Xiang, Y.; Yuan, R.; Chai, Y. A new hybrid signal amplification strategy for ultrasensitive electrochemical detection of DNA based on enzyme-assisted target recycling and DNA supersandwich assemblies. Chem. Commun. 2013, 49, 2052–2054. [Google Scholar] [CrossRef] [PubMed]
- Zambry, N.S.; Awang, M.S.; Beh, K.K.; Hamzah, H.H.; Bustami, Y.; Obande, G.A.; Khalid, M.F.; Ozsoz, M.; Abd Manaf, A.; Aziah, I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. Lab Chip 2023, 23, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, T.; Chen, Z.; Shi, X.; Chen, C.; Zhang, Z. A universal fast colorimetric method for DNA signal detection with DNA strand displacement and gold nanoparticles. J. Nanomater. 2015, 2015, 407184. [Google Scholar] [CrossRef]
- Pedrero, M.; Campuzano, S.; Pingarrón, J.M. Electrochemical genosensors based on PCR strategies for microorganisms detection and quantification. Anal. Methods 2011, 3, 780–789. [Google Scholar] [CrossRef]
- Giakoumaki, E.; Minunni, M.; Tombelli, S.; Tothill, I.E.; Mascini, M.; Bogani, P.; Buiatti, M. Combination of amplification and post-amplification strategies to improve optical DNA sensing. Biosens. Bioelectron. 2003, 19, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Yan, W.; Liu, L.; Wang, S.; Zhang, X.; Lyu, M. Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals 2018, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhang, R.; Tang, J.; Yang, D. Rolling circle amplification (RCA)-based DNA hydrogel. Nat. Protoc. 2021, 16, 5460–5483. [Google Scholar] [CrossRef] [PubMed]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhou, Y.; Chen, B.; Zhang, Y.; Zhong, X.; Xu, L.; Guo, B.; Yin, C.; Zhou, X.; Li, Q. Nucleic acid amplification with specific signal filtration and magnification for ultrasensitive colorimetric detection. Talanta 2023, 253, 123978. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Sun, F.; Chai, Y.; Zhang, C.; Wang, J.; Li, H. Intelligent dual-drive DNA nanosensor for ultrasensitive detection of prostate cancer-related circulating microRNA-200c. Microchem J. 2023, 192, 108963. [Google Scholar] [CrossRef]
- Li, Y.; Lucci, T.; Villarruel Dujovne, M.; Jung, J.K.; Capdevila, D.A.; Lucks, J.B. A cell-free biosensor signal amplification circuit with polymerase strand recycling. Nat. Chem. Biol. 2025, 21, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Choi, A.; Park, T.-I.; Pack, S.P. Fluorometric and Colorimetric Method for SARS-CoV-2 Detection Using Designed Aptamer Display Particles. Biosensors 2024, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [CrossRef] [PubMed]
- Park, T.-I.; Yang, A.H.; Kanth, B.K.; Pack, S.P. Aptamers as Diagnostic and Therapeutic Agents for Aging and Age-Related Diseases. Biosensors 2025, 15, 232. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Y.; Wang, Z.; Zhang, Y.; Zou, J.; Qiu, L. Aptamer-Based cancer cell analysis and treatment. ChemistryOpen 2022, 11, e202200141. [Google Scholar] [CrossRef] [PubMed]
- Bujold, K.E.; Lacroix, A.; Sleiman, H.F. DNA nanostructures at the interface with biology. Chem 2018, 4, 495–521. [Google Scholar] [CrossRef]
- Hui, L.; Bai, R.; Liu, H. DNA-based nanofabrication for nanoelectronics. Adv. Funct. Mater. 2022, 32, 2112331. [Google Scholar] [CrossRef]
- Bae, W.; Kocabey, S.; Liedl, T. DNA nanostructures in vitro, in vivo and on membranes. Nano Today 2019, 26, 98–107. [Google Scholar] [CrossRef]
- Wang, D.-X.; Wang, J.; Wang, Y.-X.; Du, Y.-C.; Huang, Y.; Tang, A.-N.; Cui, Y.-X.; Kong, D.-M. DNA nanostructure-based nucleic acid probes: Construction and biological applications. Chem. Sci. 2021, 12, 7602–7622. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, F.; Ali, A.; Kircher, M.F.; Pal, S. DNA nanostructures and DNA-functionalized nanoparticles for cancer theranostics. Adv. Sci. 2020, 7, 2001669. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-based diagnostics. Nat. Biomed. Eng 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qian, J.; Shi, T.; Wang, Y.; Ding, Q.; Ye, C. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb. Technol. 2024, 175, 110407. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.K.; Lee, M.J.; Kim, J.; Lee, J.W.; Pack, S.P. Noise-reduced nicking enzyme-based isothermal amplification via blocking the 3′-end of the amplicon using a novel fluorophore-immobilized binder. Sens. Actuator B-Chem. 2023, 375, 132960. [Google Scholar] [CrossRef]
- Kumar, M.; Nandeshwar, R.; Lad, S.B.; Megha, K.; Mangat, M.; Butterworth, A.; Knapp, C.W.; Knapp, M.; Hoskisson, P.A.; Corrigan, D.K. Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes. Sens. Actuator B-Chem. 2021, 343, 130169. [Google Scholar] [CrossRef]
- Jiang, K.; Wu, J.; Qiu, Y.; Go, Y.Y.; Ban, K.; Park, H.J.; Lee, J.-H. Plasmonic colorimetric PCR for Rapid molecular diagnostic assays. Sens. Actuator B-Chem. 2021, 337, 129762. [Google Scholar] [CrossRef]
- Lee, H.G.; Choi, W.; Yang, S.Y.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y.; Jung, H.S. PCR-coupled paper-based surface-enhanced Raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sens. Actuator B-Chem. 2021, 326, 128802. [Google Scholar] [CrossRef]
- Li, Z.; Zou, S.; Wu, S.; Miao, X.; Ma, D.-L. Polymerase chain reaction-based ultrasensitive detection of HBV DNA via G-quadruplex selective iridium (III) complex luminescent probe. Talanta 2021, 221, 121661. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, D.; Huang, G.; Zhou, L.; Wen, Q.; Zhu, W.; Pan, H. Signal-on electrochemical DNA (E-DNA) sensor for accurate quantification of nicking-assisted rolling circle amplification (N-RCA) products with attomolar sensitivity. Anal. Methods 2021, 13, 5679–5684. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Xiang, G.; Pu, X.; Yu, J.; Chen, M.; Chen, G. A novel ultrasensitive ECL sensor for DNA detection based on nicking endonuclease-assisted target recycling amplification, rolling circle amplification and hemin/g-quadruplex. Sensors 2015, 15, 2629–2643. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Li, J.; Liu, R.; Liu, M.; Tram, K.; Schmitt, N.; Li, Y. A Colorimetric Biosensing Platform with Aptamers, Rolling Circle Amplification and Urease-Mediated Litmus Test. Angew. Chem.-Int. Edit. 2023, 135, e202315185. [Google Scholar] [CrossRef]
- Chen, F.; Lu, W.; Din, L.; Li, F.-R. A novel RCA-based DNA sensor system for specific and quantitative detection of Klebsiella pneumonia. Microchem J. 2024, 196, 109584. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhou, X.; Lin, H.; Zhu, X.; Lou, Y.; Zheng, L. CRISPR-Responsive RCA-Based DNA Hydrogel Biosensing Platform with Customizable Signal Output for Rapid and Sensitive Nucleic Acid Detection. Anal. Chem. 2024, 96, 15998–16006. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Hu, J.; Shen, Y.; Zhang, L.; Bai, W.; Wang, L.; Li, J.; Yan, L.; Zhang, Z.; Bai, H. ISFET Biosensor with Loop-Mediated Isothermal Amplification for Electronic Rapid Detection of Mycoplasma Pneumoniae. Sensors 2025, 25, 1562. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xue, H.; Fei, Y.; Yang, Y.; Huang, D.; Wang, L.; Xiong, X.; Xiong, X. A rapid and closed-tube method based on the dual-color fluorescence loop-mediated isothermal amplification for visual detection of Atlantic salmon (Salmo salar). Food Chem. 2023, 405, 134975. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Masetty, M.; Weerakoon, S.; Morris, C.; Yadav, J.S.; Apewokin, S.; Trannguyen, J.; Broom, M.; Priye, A. based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens. Bioelectron. 2024, 257, 116292. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Ma, W.; Xu, L.; Wang, L.; Xu, C. Nanoscale superstructures assembled by polymerase chain reaction (PCR): Programmable construction, structural diversity, and emerging applications. Accounts Chem. Res. 2013, 46, 2341–2354. [Google Scholar] [CrossRef] [PubMed]
- Waters, D.L.; Shapter, F.M. The polymerase chain reaction (PCR): General methods. Cereal Genom. Methods Protoc. 2014, 1099, 65–75. [Google Scholar]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Li, Y.; Qiao, Z.; Song, W.; Bi, S. Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends Biotechnol. 2021, 39, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Levine, C.; Hiasa, H.; Marians, K.J. DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta, Gene Struct. Expr. 1998, 1400, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Fapohunda, F.O.; Qiao, S.; Pan, Y.; Wang, H.; Liu, Y.; Chen, Q.; Lü, P. CRISPR Cas system: A strategic approach in detection of nucleic acids. Microbiol. Res. 2022, 259, 127000. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Wang, J.; Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 2019, 37, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhang, H.; Han, X.; Liu, Z.; Lu, Y. Advancements and applications of loop-mediated isothermal amplification technology: A comprehensive overview. Front. Microbiol. 2024, 15, 1406632. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Liu, Y.; Gao, L.; Wang, T.; Zhang, X.; Hu, J.; Ding, L.; Zhang, Y.; Wang, Q.; Wang, L. A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing. Biosens. Bioelectron. 2024, 248, 115968. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Li, P.; He, W.; Liu, C.; Li, Z. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens. Bioelectron. 2019, 128, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, J.; Li, Y.; Wang, Y.; Zhang, Q.; Hussain, E.; Yang, M.; Shahzad, S.A.; Yu, D.; Yu, C. Nucleic acid-controlled quantum dots aggregation: A label-free fluorescence turn-on strategy for alkaline phosphatase detection. Talanta 2017, 169, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lin, X.; Rivnay, J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 2023, 14, 1665. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Son, S.U.; Ki, J.; Kim, S.; Lee, J.; Jang, S.; Seo, S.B.; Jang, H.; Kang, T.; Jung, J. Dual structure-switching aptamer-mediated signal amplification cascade for SARS-CoV-2 detection. Biosens. Bioelectron. 2024, 259, 116375. [Google Scholar] [CrossRef] [PubMed]
- Idili, A.; Parolo, C.; Alvarez-Diduk, R.; Merkoçi, A. Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sens. 2021, 6, 3093–3101. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-g.; Lai, R.Y. A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta 2018, 176, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Idili, A.; Gerson, J.; Parolo, C.; Kippin, T.; Plaxco, K.W. An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan. Anal. Bioanal. Chem. 2019, 411, 4629–4635. [Google Scholar] [CrossRef] [PubMed]
- Asai, K.; Yamamoto, T.; Nagashima, S.; Ogata, G.; Hibino, H.; Einaga, Y. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond. Analyst 2020, 145, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Downs, A.M.; Gerson, J.; Leung, K.K.; Honeywell, K.M.; Kippin, T.; Plaxco, K.W. Improved calibration of electrochemical aptamer-based sensors. Sci. Rep. 2022, 12, 5535. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ali, H.; Nabok, A.; Smith, T.J. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. Chemosensors 2019, 7, 27. [Google Scholar] [CrossRef]
- Kim, H.; Surwade, S.P.; Powell, A.; O’Donnell, C.; Liu, H. Stability of DNA origami nanostructure under diverse chemical environments. Chem. Mat. 2014, 26, 5265–5273. [Google Scholar] [CrossRef]
- Williamson, P.; Piskunen, P.; Ijäs, H.; Butterworth, A.; Linko, V.; Corrigan, D.K. Signal amplification in electrochemical DNA biosensors using target-capturing DNA origami tiles. ACS Sens. 2023, 8, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zheng, X.; Chai, H.; Miao, P. DNA nanostructure disintegration-assisted SPAAC ligation for electrochemical biosensing. Nano Lett. 2024, 24, 12233–12238. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Pei, H.; Shen, Y.; Xi, J.; Lin, M.; Lu, N.; Shen, X.; Li, J.; Fan, C. DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci. Rep. 2012, 2, 867. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Lu, N.; Wen, Y.; Song, S.; Liu, Y.; Yan, H.; Fan, C. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv. Mater. 2010, 22, 4754. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, M.; Weng, X.; Zhang, Y.; Li, J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 2021, 15, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Chen, Y.; Tan, X.; Ge, S.; Zhang, L.; Li, L.; Yu, J.; Li, L. Tetrahedral DNA nanostructure-engineered paper-based sensor with an enhanced antifouling ability for photoelectrochemical sensing. Anal. Chem. 2023, 95, 4760–4767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, W.; Huang, Y.; Li, H.; Wang, K.; Zhu, X.; Xie, M. DNA tetrahedron based biosensor for Argonaute2 assay in single cells and human immunodeficiency virus type-1 related ribonuclease H detection in vitro. Anal. Chem. 2019, 91, 7086–7096. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, F.; Zhang, F.; Zhang, Z.; Huang, Z.; Liu, J. Dopamine and melamine binding to gold nanoparticles dominates their aptamer-based label-free colorimetric sensing. Anal. Chem. 2020, 92, 9370–9378. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kumar, A.; Kumar, S.; Pinnaka, A.K.; Singhal, N.K. Naked eye colorimetric detection of Escherichia coli using aptamer conjugated graphene oxide enclosed Gold nanoparticles. Sens. Actuator B-Chem. 2021, 329, 129100. [Google Scholar] [CrossRef]
- Zong, C.; Liu, J. The arsenic-binding aptamer cannot bind arsenic: Critical evaluation of aptamer selection and binding. Anal. Chem. 2019, 91, 10887–10893. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, X.; Lu, J.; Mao, X.; Xiang, Y.; Shu, Y.; Li, G. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem. Sci. 2018, 9, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Suo, Z.; Liu, Y.; Wei, M.; Jin, H. An amplifiable ratiometric fluorescent aptasensor for aflatoxin B1 detection based on dendrimer-like DNA nanostructures coupled with catalytic hairpin self-assembly. Sens. Actuator B-Chem. 2023, 380, 133328. [Google Scholar] [CrossRef]
- Wang, M.; Lv, Z.; Liu, Y.; Wei, M. Simultaneous detection of ochratoxin A and aflatoxin B1 based on stable tuning fork-shaped DNA fluorescent aptasensor. J. Fluoresc. 2025, 35, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C.; Teng, I.-T.; Shi, M. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 2017, 11, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duan, H.; Yalikun, Y.; Cheng, S.; Li, M. Chronoamperometric interrogation of an electrochemical aptamer-based sensor with tetrahedral DNA nanostructure pendulums for continuous biomarker measurements. Anal. Chim. Acta 2024, 1305, 342587. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, Z.; Chai, H.; Liu, X.; Miao, P. Electrochemical Aptasensing of Vascular Endothelial Growth Factor by Construction of DNA Triangular Pyramid Frustum Reaction Interface. ACS Electrochem. 2025, 1, 853–859. [Google Scholar] [CrossRef]
- Walter, H.-K.; Bauer, J.; Steinmeyer, J.; Kuzuya, A.; Niemeyer, C.M.; Wagenknecht, H.-A. “DNA origami traffic lights” with a split aptamer sensor for a bicolor fluorescence readout. Nano Lett. 2017, 17, 2467–2472. [Google Scholar] [CrossRef] [PubMed]
- Nameghi, M.A.; Danesh, N.M.; Ramezani, M.; Hassani, F.V.; Abnous, K.; Taghdisi, S.M. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A. Anal. Bioanal. Chem. 2016, 408, 5811–5818. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Chen, H.; Cai, R.; Tian, Y.; Zhou, N. An electrochemical aptasensor for ATP based on a configuration-switchable tetrahedral DNA nanostructure. Anal. Methods 2020, 12, 3285–3289. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Gu, Y.; Li, F.; Zhang, H.; Qin, W. DNA nanostructure-based magnetic beads for potentiometric aptasensing. Anal. Chem. 2015, 87, 6465–6469. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.; Xiong, Y.; Ren, S.; Dwivedy, A.; Magazine, N.; Zhou, L.; Jin, X.; Zhang, T.; Cunningham, B.T.; Yao, S. Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus. J. Am. Chem. Soc. 2022, 145, 20214–20228. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, X.; Zhang, B.; Zhang, Y.; Li, S.; Liu, Z.; Gao, Y.; Zhao, Y.; Yan, L.; Li, Y. DNA framework signal amplification platform-based high-throughput systemic immune monitoring. Signal Transduct. Target. Ther. 2024, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Sleiman, H.F. DNA nanostructures: Current challenges and opportunities for cellular delivery. ACS Nano 2021, 15, 3631–3645. [Google Scholar] [CrossRef] [PubMed]
- Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater. 2017, 3, 17068. [Google Scholar] [CrossRef]
- Mathur, D.; Medintz, I.L. The growing development of DNA nanostructures for potential healthcare-related applications. Adv. Healthc. Mater. 2019, 8, 1801546. [Google Scholar] [CrossRef] [PubMed]
- Abu-Salah, K.M.; Zourob, M.M.; Mouffouk, F.; Alrokayan, S.A.; Alaamery, M.A.; Ansari, A.A. DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 2015, 15, 14539–14568. [Google Scholar] [CrossRef] [PubMed]
- Abu-Salah, K.M.; Alrokyan, S.A.; Khan, M.N.; Ansari, A.A. Nanomaterials as analytical tools for genosensors. Sensors 2010, 10, 963–993. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.-B.; Peng, X.; Yang, Z.-Z.; Zhuo, Y.; Chai, Y.-Q.; Liang, W.-B.; Yuan, R. A dynamic 3D DNA nanostructure based on silicon-supported lipid bilayers: A highly efficient DNA nanomachine for rapid and sensitive sensing. Chem. Commun. 2019, 55, 13414–13417. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Wan, Y.; Li, J.; Hu, H.; Su, Y.; Huang, Q.; Fan, C. Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. Chem. Commun. 2011, 47, 6254–6256. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.K.; Koike, Y.; Ide, Y.; Tajima, K.; Kanaori, K.; Pack, S.P. Nucleobase-involved native chemical ligation: A novel reaction between an oxanine nucleobase and N-terminal cysteine for oligonucleotide–peptide conjugation. Chem. Commun. 2020, 56, 5508–5511. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.K.; Ki, M.-R.; Pack, S.P. Design of reactive-end DNA oligomers via incorporation of oxanine into oligonucleotides using terminal deoxynucleotidyl transferase. Process Biochem. 2017, 62, 99–105. [Google Scholar] [CrossRef]
- Jang, E.K.; Son, R.G.; Pack, S.P. Novel enzymatic single-nucleotide modification of DNA oligomer: Prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Res. 2019, 47, e102. [Google Scholar] [CrossRef] [PubMed]
- Domsicova, M.; Korcekova, J.; Poturnayova, A.; Breier, A. New insights into aptamers: An alternative to antibodies in the detection of molecular biomarkers. Int. J. Mol. Sci. 2024, 25, 6833. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trac-Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Park, K.S.; Choi, A.; Kim, H.J.; Park, I.; Eom, M.-S.; Yeo, S.-G.; Son, R.G.; Park, T.-I.; Lee, G.; Soh, H.T. Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples. Biosens. Bioelectron. 2023, 228, 115202. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Cha, H.; Niu, J.; Soh, H.T.; Lee, J.H.; Pack, S.P. DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels. Nucleic Acids Res. 2024, 52, 8063–8071. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; Lee, N.Z.; Cao, X. Multivalent aptamer approach: Designs, strategies, and applications. Micromachines 2022, 13, 436. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Park, T.-I.; Lee, J.E.; Hwang, S.-Y.; Choi, A.; Pack, S.P. Aptamers and Nanobodies as new bioprobes for SARS-CoV-2 diagnostic and therapeutic system applications. Biosensors 2024, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Dong, H.; Han, J.; Zhang, M.; Huang, J.; Sun, J.; Guan, F.; Shen, Z.; Xu, D.; Sun, X. Interference-resistant aptasensor with tetrahedral DNA nanostructure for profenofos detection based on the composites of graphene oxide and polyaniline. Bioelectrochemistry 2022, 148, 108227. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, J.; Dong, H.; Wang, G.; Han, J.; Xu, R.; Kong, Q.; Huang, J.; Xiang, Y.; Yang, Q. A novel label-free electrochemiluminescence aptasensor using a tetrahedral DNA nanostructure as a scaffold for ultrasensitive detection of organophosphorus pesticides in a luminol–H2O2 system. Analyst 2022, 147, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, D.; Zhang, Q.; Zhang, Y.; Peng, R.; Tan, W. Leveraging aptamer-based DNA nanotechnology for bioanalysis and cancer therapeutics. Accounts Mater. Res. 2024, 5, 438–452. [Google Scholar] [CrossRef]
- Ma, W.; Zhan, Y.; Zhang, Y.; Mao, C.; Xie, X.; Lin, Y. The biological applications of DNA nanomaterials: Current challenges and future directions. Signal Transduct. Target. Ther. 2021, 6, 351. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.; Liang, X.; Jin, H.; He, B.; Wei, M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB 1. Anal. Bioanal. Chem. 2021, 413, 7587–7595. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dong, J.; Suo, Z.; Wang, Q.; Wei, M.; He, B.; Jin, H. A convenient fluorescent/electrochemical dual-mode biosensor for accurate detection of Pb2+ based on DNAzyme cycle. Bioelectrochemistry 2023, 152, 108452. [Google Scholar] [CrossRef] [PubMed]
- Artés, J.M.; Li, Y.; Qi, J.; Anantram, M.; Hihath, J. Conformational gating of DNA conductance. Nat. Commun. 2015, 6, 8870. [Google Scholar] [CrossRef] [PubMed]
- Fahlman, R.P.; Sen, D. DNA conformational switches as sensitive electronic sensors of analytes. J. Am. Chem. Soc. 2002, 124, 4610–4616. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Li, W.; Liu, X.; Chen, J.; Wei, D.; Luo, L.; Yuan, Q.; Yang, Y.; Zhu, X.; Tan, W. Rolling-circle-amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes. Chem 2025, 11, 102335. [Google Scholar] [CrossRef]
- Bai, H.; Bu, S.; Liu, W.; Wang, C.; Li, Z.; Hao, Z.; Wan, J.; Han, Y. An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157: H7. Analyst 2020, 145, 7340–7348. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Sun, J.; Ye, Y.; Lu, X.; Wang, W.; Sun, X. Ultrasensitive Aptasensor for α-Amatoxin Detection Based on the DNA Tetrahedral Nanostructure Triggering Rolling Circle Amplification and Signal Amplification. J. Agric. Food Chem. 2024, 72, 10046–10054. [Google Scholar] [CrossRef] [PubMed]
Method | Target | Transducer | Biosensing Method | Dynamic Range | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
Polymerase Chain Reaction (PCR) | Nucleocapsid gene from SARS-CoV-2 isolate Wuhan-Hu-1 [DNA] | Printed Circuit Board (PCB) | Electrochemical | 10 pg/μL to 200 pg/μL | 102~2 × 103 copies/μL | [39] |
Lambda DNA | Plasmonic Photothermal Colorimetric PCR (PPT-cPCR) | Colorimetric | 0.5 ng/μL to 3 fg/μL | 63.7 aM | [40] | |
Mycoplasma pneumoniae [DNA] | Surface-enhanced Raman Scattering (SERS) | Optical | 3.12 pg/μL to 50 pg/μL | 3.12 pg/μL | [41] | |
Hepatitis B virus [DNA] | G-quadruplex selective iridium (III) complex | Fluorescent | 3 fM to 800 pM | 1.6 fM | [42] | |
Rolling Circle Amplification (RCA) | miR-7a [microRNA] from human serum | Electrochemical DNA (E-DNA) sensor | Electrochemical | 1 fM to 100 fM | 0.59 fM | [43] |
Staphylococcus aureus nuc gene [DNA] | Electrochemiluminescent (ECL) sensor | Electrochemical | 10 aM to 1 pM | 3.8 M | [44] | |
Thrombin, platelet-derived growth factor (PDGF), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [Protein] | Aptameric sensor | Colorimetric | - | 50 pM for thrombin, 5 pM for PDGF, 3.2 × 103 copies/mL for SARS-CoV-2 | [45] | |
Klebsiella pneumoniae topoisomerase IV [Protein] | RCA-based DNA sensor | Fluorescent | - | 70 colony-forming units (CFU)/µL | [46] | |
mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) [DNA] | RCA-based DNA hydrogel biosensor | Electrochemical, Colorimetric, Fluorescent | - | 10 copies/μL | [47] | |
Loop-Mediated Isothermal Amplification (LAMP) | Mycoplasma pneumoniae (MP) | Ion-sensitive field-effect transistor | Electrochemical | 103 to 107 copies/mL | 103 copies/mL | [48] |
African swine fever virus (ASFV) p72 gene [DNA], SARS-CoV-2 N gene fragment [RNA] | Self-replication catalyzed hairpin assembly (SRCHA) | Colorimetric | - | 5 copies per reaction for DNA, 10 copies per reaction for RNA | [24] | |
Atlantic salmon [DNA] | Dual-color fluorescence LAMP (dfLAMP) | Fluorescent | 0.1 fg to 100 ng | 1 fg of DNA | [49] | |
SARS-CoV-2 RNA of envelope protein (E) and nucleocapsid protein (N) | Paper-based LAMP-CRISPR Integrated Diagnostics (PLACID) | Fluorescent | 102 to 106 copies/μL | 50 copies/μL | [50] | |
Polymerization/Nickase cycle | miR-200c [microRNA-200c] from prostate cancer | Catalytic Hairpin Assembly (CHA) | Fluorescent | 10 fM to 10 nM | 5.5 fM | [25] |
Polymerase Strand Recycling (PSR) | miRNA, Tetracycline, Zinc | Cell-free biosensor | Fluorescent | - | 5 nM for miRNA, 25 nM for Tetracycline, 100 nM for Zinc | [26] |
Template Structure | Target | Transducer | Biosensing Method | Dynamic Range | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
DNA Nanostructure | blaOXA-1 β-lactamase gene sequence (DNA) | Electrochemical DNA (e-DNA) biosensor | Electrochemical | 10 pM to 1 nM | 8.86 pM | [77] |
miR-141 | e-DNA biosensor | Electrochemical | - | 31 aM | [78] | |
miR-21 | Electrochemical miRNAs sensor (EMRS) | Electrochemical | 10 fM to 10 nM | 10 fM | [79] | |
Model DNA | e-DNA sensor | Electrochemical | 1 pM to 1 nM | 1 pM | [80] | |
miRNA-196a | Photoelectrochemical (PEC) biosensor | Photoelectrochemical | 10 amol/L to 10 pmol/L | 3.1 amol/L (3 S/N) | [81] | |
miRNA-182-5p | Paper-based PEC sensor | Photoelectrochemical | 0.1 fM to 100 pM | 0.09 fM | [82] | |
Argonaute2 (Ago2)/miR-21, RNase H of human immunodeficiency virus type-1 (HIV-1) | DNA tetrahedron-based biosensor (DTB) | Fluorescence | - | 4.54 nM for Ago2, 3.41 U/mL for RNase H | [83] | |
Aptamer | Ampicillin | Electrochemical aptamer-based (E-AB) sensor | Electrochemical | - | 1 µM | [70] |
L-tryptophan | E-AB sensor | Electrochemical | 0.7 µM to 40 µM | 30 µM | [71] | |
Doxorubicin | Boron-doped diamond (BDD) based E-AB sensor | Electrochemical | 49 nM to 2.3 µM | 49 nM | [72] | |
SARS-CoV-2 spike (S) protein | E-AB sensor | Electrochemical | 760 pg/mL to 76 ng/mL | 760 pg/mL | [69] | |
Transforming growth factor beta 1 (TGF-β1) | Referenced- organic electrochemical transistors (ref-OECTs)-based E-AB sensor | Electrochemical | 1 ng/mL to 1 µg/mL | 1 ng/mL | [67] | |
Dopamine, Melamine | Gold nanoparticles (AuNPs) based label-free sensor | Colorimetric | - | 4 μM dopamine for dopamine, 1 μM for melamine | [84] | |
Escherichia coli (E. coli) | Graphene-coated AuNPs sensor | Colorimetric | 10 to 107 cells/mL | 10 cells/mL | [85] | |
Arsenic (As) | AuNP | Colorimetric | - | 0.5 µM | [86] | |
SARS-CoV-2 nucleocapsid (N) protein | Dual structure-switching aptamer-mediated signal amplification | Fluorescence | 10 fg to 1 ng | 0.59 pg/mL, 12.5 fM | [68] | |
Aptamer with DNA Nanostructure | ATP | DNA nanostructure-based electrochemical (E-nanoDNA) sensor | Electrochemical | 10 nM to 1µM | 5 nM | [87] |
Aflatoxin B1 (AFB1) | Ratiometric fluorescent aptasensor | Fluorescence | 0.1 ng/mL to 50 ng/mL | 5 pg/mL | [88] | |
Ochratoxin A (OTA), AFB1 | Fork-shaped DNA (TF-DNA) fluorescence aptasensor | Fluorescence | 0.05 ng/mL to 100 ng/mL for OTA, 0.1 ng/mL to 100 ng/mL for AFB1 | 0.015 ng/mL for OTA, 0.045 ng/mL for AFB1 | [89] | |
Exosomes from hepatocarcinoma cells (HepG2) | Nanotetrahedron (NTH)-assisted aptasensor | Electrochemical | 105 to 1012 exosomes/mL | 3.96 × 105 exosomes/mL | [90] | |
Thrombin | E-AB sensor | Electrochemical | 1 pM to 1 nM | 1 pM | [91] | |
Vascular endothelial growth factor (VEGF) | e-DNA biosensor | Electrochemical | 10 pg/mL to 100 ng/mL | 5 pg/mL | [92] | |
ATP | Nanomechanical DNA origami device | Fluorescence | - | - | [93] | |
OTA | Fluorescent aptasensor | Fluorescence | 0.3 nM to 10 nM | 0.135 nM (54.5 pg/mL) | [94] | |
ATP | Electrochemical aptasensor | Electrochemical | 0.1 nM to 1 mM | 50 pM | [95] | |
Bisphenol A | Potentiometric Aptasensing | Electrochemical | 0.1 nM to 100 nM | 80 pM | [96] | |
SARS-CoV-2 | Portable fluorimeter | Fluorescence | 7.32 nM to 20.26 nM | 1000 viral genome copies/mL | [97] | |
CD4+ T, CD8+ T lymphocytes | DNA framework signal amplification platform (DSAP) | Fluorescence | - | 1/100 μL for CD4+ T cell, 4/100 μL for CD8+ T cell | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.E.; Pack, S.P. Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification. Biosensors 2025, 15, 476. https://doi.org/10.3390/bios15080476
Lee JE, Pack SP. Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification. Biosensors. 2025; 15(8):476. https://doi.org/10.3390/bios15080476
Chicago/Turabian StyleLee, Jae Eon, and Seung Pil Pack. 2025. "Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification" Biosensors 15, no. 8: 476. https://doi.org/10.3390/bios15080476
APA StyleLee, J. E., & Pack, S. P. (2025). Recent Progress in DNA Biosensors: Target-Specific and Structure-Guided Signal Amplification. Biosensors, 15(8), 476. https://doi.org/10.3390/bios15080476