A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Source of Inoculum and Culture Conditions
2.3. Field Trial and Sample Collection
2.4. DNA Isolation
2.5. Target Selection and Primer Design
2.6. Probe Hybridization and Magnetic Isolation
2.7. Sensor Fabrication and Assay Optimization
2.8. Electrochemical Detection
2.9. qPCR Validation and Gel Electrophoresis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Assay Design
3.2. Assay Optimization
3.3. Assay Sensitivity and Specificity
3.4. Detection of Lxx in Sugarcane Xylem Sap Samples
3.5. Validation with qPCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSD | Ratoon Stunting Disease |
Lxx | Leifsonia xyli subsp. xyli |
Xalb | Xanthomonas albilineans |
Cpar | Ceratocystis paradoxa |
PCR | Polymerase Chain Reaction |
qPCR | Quantitative Polymerase Chain Reaction |
LAMP | Loop-Mediated Isothermal Amplification |
EC | Eectrochemical |
DNA | Deoxyribonucleic Acid |
RNA | Ribonucleic Acid |
SPGE | Screen-Printed Gold Electrode |
PDA | Potato Dextrose Agar |
RCB | Randomized Complete Block |
mL | Milliliter |
EC | Electrochemical |
Bp | Base pair |
IGS | Intergenic Spacer |
NCBI | National Center for Biotechnology Information |
BLASTn | Basic Local Alignment Search Tool for nucleotides |
[Fe(CN)6]3– | Ferricyanide ion |
cm2 | Square centimeter |
Fe3+ | Ferric ion |
Fe2+ | Ferrous ion |
n | Number |
s−1 | Per second |
Vs−1 | Volts per second |
mol cm−3 | Mole per cubic centimeter |
Ag/AgCl | Silver/Silver Chloride |
mV | Millivolts |
AuNPs | Gold Nanoparticles |
CV | Cyclic Voltammetry |
DPV | Differential Pulse Voltammetry |
mM | Millimolar |
V | Volt |
i | Current |
Cq | Cycle Quantification |
µL | Microliter |
SD | Standard Deviation |
r | Correlation coefficient |
TAE | Tris-Acetate-EDTA |
LxxCP1 | Lxx-specific Capture probe-1 |
mA cm−2 | Milliamps per square centimeter |
nM | Nanomolar |
fM | Femtomolar |
pM | Picomolar |
References
- Gillaspie, A.G., Jr. Ratoon Stunting Disease, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 16–55. [Google Scholar]
- James, G. A review of ratoon stunting disease. Int. Sugar J. 1996, 1174, 532–541. [Google Scholar]
- Bailey, R.A.; Bechet, G.R. Further evidence of the effects of ratoon stunting disease on production under irrigated and rainfed conditions. Proc. South Afr. Sugar Technol. Assoc. 1997, 71, 97–101. [Google Scholar]
- Que, Y.X.; Xu, J.S.; Xu, L.P.; Gao, S.J.; Chen, R.K. PCR detection for Leifsonia xyli subsp. xyli, pathogen of the sugarcane ratoon stunting disease. Fujian J. Agric. Sci. 2008, 23, 364–367. [Google Scholar]
- Davis, M.J.; Gillaspie, A.G.R., Jr.; Harris, W.; Lawson, R.H. Ratoon stunting disease of sugarcane: Isolation of the causal bacterium. Science 1980, 210, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Soda, N.; Strachan, S.; Ngo, C.N.; Bhuiyan, S.A.; Shiddiky, M.J.A.; Ford, R. Ratoon stunting disease (RSD) of sugarcane: A review emphasizing detection strategies and challenges. Phytopathology 2024, 114, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.S.; Xu, L.P.; Que, Y.X.; Gao, S.J.; Chen, R.K. Advances in the ratoon stunting disease of sugarcane. J. Trop. Subtrop. Bot. 2008, 16, 184–188. [Google Scholar]
- Brumbley, S.M.; Petrasovits, L.A.; Hermann, S.R.; Young, A.J.; Croft, B.J. Recent advances in the molecular biology of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease. Australas. Plant Pathol. 2006, 35, 681–689. [Google Scholar] [CrossRef]
- Luo, L.F.; Wei, C.Z.; Tang, J.H. Progress on detection technologies of sugarcane ratoon stunting disease. Agric. Res. Appl. 2011, 6, 25–27. [Google Scholar]
- Harrison, N.; Davis, M. Comparison of serological techniques for diagnosis of ratoon stunting disease. Sugar Cane 1990, 1, 5–9. [Google Scholar]
- Croft, B.J.; Greet, A.D.; Lehmann, T.M.; Teakle, D.S. RSD diagnosis and varietal resistance screening in sugarcane using the EB-EIA technique. Proc. Aust. Soc. Sugar Cane Technol. 1994, 16, 143–151. [Google Scholar]
- Pan, Y.; Grisham, M.; Burner, D.; Wei, Q.; Damann, K., Jr. Detecting Clavibacter xyli subsp. xyli by tissue blot DNA hybridization. Sugar Cane 1998, 3, 3–8. [Google Scholar]
- Taylor, P.; Petrasovits, L.; Vall der Velde, R.; Birch, R.; Croft, B.; Fegan, M.; Smith, G.; Brumbley, S. Development of PCR-based markers for detection of Leifsonia xyli subsp. xyli in fibrovascular fluid of infected sugarcane plants. Australas. Plant Pathol. 2003, 32, 367–375. [Google Scholar] [CrossRef]
- Davis, M.J.; Rott, P.; Astua Monge, G. Nested, multiplex PCR for detection of both Clavibacter xyli subsp. xyli and Xanthomonas albilineans in sugarcane. Int. Cong. Plant Pathol. 1998, 3, 9–16. [Google Scholar]
- Farahani, A.S.; Taghavi, S.; Taher-Khani, K. Comparison of conventional, nested, and real-time PCR for detection of the causal agent of ratoon stunt in Iran. J. Plant Pathol. 2015, 97, 10–23. [Google Scholar]
- Carvalho, G.; da Silva, T.; Munhoz, A.; Monteiro-Vitorello, C.; Azevedo, R.; Melotto, M.; Camargo, L.E.A. Development of a qPCR for Leifsonia xyli subsp. xyli and quantification of the effects of heat treatment of sugarcane cuttings on Lxx. Crop Prot. 2016, 80, 51–55. [Google Scholar] [CrossRef]
- Grisham, M.; Pan, Y.-B.; Richard, E., Jr. Early detection of Leifsonia xyli subsp. xyli in sugarcane leaves by real-time polymerase chain reaction. Plant Dis. 2007, 91, 430–434. [Google Scholar] [CrossRef]
- Ghai, M.; Singh, V.; Martin, L.; McFarlane, S.; van Antwerpen, T.; Rutherford, R. A rapid and visual loop-mediated isothermal amplification assay to detect Leifsonia xyli subsp. xyli targeting a transposase gene. Lett. Appl. Microbiol. 2014, 59, 648–657. [Google Scholar] [CrossRef]
- Brumbley, S.M.; Petrasovits, L.A.; Birch, R.G.; Taylor, P.W. Transformation and transposon mutagenesis of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease of sugarcane. Mol. Plant-Microbe Interact. 2002, 15, 262–268. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Liu, Y.; Wang, X.; Li, Y.; Ma, P.; Gu, B.; Li, H. Recent advances in rapid pathogen detection method based on biosensors. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1021–1037. [Google Scholar] [CrossRef]
- Shiddiky, M.J.A.; Rahman, M.A.; Shim, Y.-B. Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal. Chem. 2007, 79, 6886–6890. [Google Scholar] [CrossRef]
- Boriachek, K.; Umer, M.N.; Islam, M.N.; Gopalan, V.; Lam, A.K.; Nguyen, N.-T.; Shiddiky, M.J.A. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst 2018, 143, 1662–1669. [Google Scholar] [CrossRef]
- Bilkiss, M.; Shiddiky, M.J.A.; Ford, R. Advanced diagnostic approaches for necrotrophic fungal pathogens of temperate legumes with a focus on Botrytis spp. Front. Microbiol. 2019, 10, 1889. [Google Scholar]
- Dyussembayev, K.; Sambasivam, P.; Bar, I.; Brownlie, J.C.; Shiddiky, M.J.A.; Ford, R. Biosensor technologies for early detection and quantification of plant pathogens. Front. Chem. 2021, 9, 636245. [Google Scholar] [CrossRef] [PubMed]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Ferapontova, E.E. DNA Electrochemistry and electrochemical sensors for nucleic acids. Annu. Rev. Anal. Chem. 2018, 11, 197–218. [Google Scholar] [CrossRef]
- Nezhad, A.S. Future of portable devices for plant pathogen diagnosis. Lab Chip 2014, 14, 2887–2904. [Google Scholar] [CrossRef]
- Wongkaew, P.; Poosittisak, S. Diagnosis of sugarcane white leaf disease using the highly sensitive DNA-based voltammetric electrochemical determination. Am. J. Plant Sci. 2014, 5, 2256–2268. [Google Scholar] [CrossRef]
- Fang, Y.; Ramasamy, R.P. Current and prospective methods for plant disease detection. Biosensors 2015, 5, 537–561. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muñiz, A.; Merkoci, A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 2017, 93, 72–86. [Google Scholar] [CrossRef]
- Dawson, W.J. Plant Diseases Due to Bacteria, 2nd ed.; Cambridge University Press: Cambridge, UK, 1957; Volume 1, p. 48. [Google Scholar]
- Rahman, M.A.; Begum, M.F.; Alam, M.F. Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology 2009, 37, 277–285. [Google Scholar] [CrossRef]
- Croft, B.; Johnson, A. Ratoon stunting disease resistance of Australian sugarcane varieties. Proc. Conf. Aust. Soc. Sugar Cane Technol. 2013, 1, 13–22. [Google Scholar]
- Croft, B.J. A method for rating sugarcane cultivars for resistance to ratoon stunting disease based on an enzyme-linked immunoassay. Australas. Plant Pathol. 2002, 31, 63–66. [Google Scholar] [CrossRef]
- Ngo, C.N.; Gibbs, L.; Garlic, L.; Bhuiyan, S.A.; Wei, X. Revisiting variety ratings for ratoon stunting disease. Proc. Conf. Aust. Soc. Sugar Cane Technol. 2023, 44, 273–275. [Google Scholar]
- National Center for Biotechnology Information (NCBI). Leifsonia xyli subsp. xyli, Complete Genome; Accession No. AE016822. 1988. Available online: https://www.ncbi.nlm.nih.gov/nuccore/AE016822 (accessed on 8 December 2022).
- Monteiro-Vitorello, C.B.; Camargo, L.E.; Van Sluys, M.A.; Kitajima, J.P.; Do Amaral, D.; Harakava, A.M.; De Oliveira, R.; Truffi, J.C.; De Oliveira, D.; Wood, M.C. The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. Mol. Plant Microbe Interact. 2004, 17, 827–836. [Google Scholar] [CrossRef]
- Monteiro-Vitorello, C.B.; Zerillo, M.M.; Van Sluys, M.-A.; Camargo, L.E.A.; Kitajima, J.P. Complete genome sequence of Leifsonia xyli subsp. cynodontis strain DSM46306, a gram-positive bacterial pathogen of grasses. Genome Announc. 2013, 1, e00915-13. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High-speed BLASTN: An accelerated Mega BLAST search tool. Nucleic Acids Res. 2015, 43, 7762–7768. [Google Scholar] [CrossRef]
- Clack, K.; Soda, N.; Kasetsirikul, S.; Kline, R.; Salomon, C.; Shiddiky, M.J.A. An interfacial affinity interaction-based method for detecting HOTAIR lncRNA in cancer plasma samples. Biosensors 2022, 12, 287. [Google Scholar] [CrossRef]
- Koo, K.M.; Soda, N.; Shiddiky, M.J.A. Magnetic nanomaterial–based electrochemical biosensors for the detection of diverse circulating cancer biomarkers. Curr. Opin. Electrochem. 2021, 25, 100645. [Google Scholar] [CrossRef]
- Zhang, J.; Song, S.; Wang, L.; Pan, D.; Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc. 2007, 2, 2888–2895. [Google Scholar] [CrossRef]
- Shiddiky, M.J.A.; Torriero, A.A.J.; Zhao, C.; Burgar, I.; Kennedy, G.; Bond, A.M. Nonadditivity of faradaic currents and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltocenium cation in protic and aprotic ionic liquids. J. Am. Chem. Soc. 2009, 131, 7976–7989. [Google Scholar] [CrossRef]
- Leung, K.K.; Yu, H.Z.; Bizzotto, D. Electrodepositing DNA self-assembled monolayers on Au: Detailing the influence of electrical potential perturbation and surface crystallography. ACS Sens. 2019, 4, 513–520. [Google Scholar] [CrossRef]
- Leung, K.K.; Martens, I.; Yu, H.Z.; Bizzotto, D. Measuring and controlling the local environment of surface-bound DNA in Self-assembled monolayers on gold when prepared using potential-assisted deposition. Langmuir 2020, 36, 6837–6847. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R, Version 2022.07.1 “Spotted Wakerobin”; RStudio, PBC: Boston, MA, USA, 2022.
- BioRender, BioRender: Version accessed June 2022; BioRender: Toronto, ON, Canada, 2022.
- Renedo, O.D.; Martínez, M.J.A. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal. Chim. Acta 2007, 589, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ye, Y.; Liu, S. Gold nanoparticle-based signal amplification for biosensing. Anal. Biochem. 2011, 417, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.; Guo, X.; Musavi, L.; Lin, C.-S.; Chen, S.-H.; Wu, V.C.H. Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes. Ind. Biotechnol. 2013, 9, 31–36. [Google Scholar] [CrossRef]
- Wang, Y.; Alocilja, E.C. Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng. 2015, 9, 16. [Google Scholar] [CrossRef]
- Tian, L.; Liu, L.; Li, Y.; Wei, Q.; Cao, Q.; Al, E. Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA. Sci. Rep. 2016, 6, 30849. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muñiz, A.; Quesada-González, D.; Merkoçi, A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal. Chim. Acta 2019, 1046, 123–131. [Google Scholar] [CrossRef]
- Randviir, E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochim. Acta 2018, 286, 179–186. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Pengfei, J.; Wang, Y.; Zhao, L.; Ji, C.; Chen, D.; Nie, L. Applications of gold nanoparticles in non-optical biosensors. Nanomaterials 2018, 8, 977. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Schluesener, H.J. Gold nanoparticle-based biosensors. Gold Bull. 2010, 43, 29–41. [Google Scholar] [CrossRef]
- Koo, K.M.; Carrascosa, L.G.; Shiddiky, M.J.A.; Trau, M. Amplification-free detection of gene fusions in prostate cancer urinary samples using mRNA–Gold affinity interactions. Anal. Chem. 2016, 88, 6781–6788. [Google Scholar] [CrossRef]
- Islam, M.N.; Masud, M.K.; Haque, M.S.; Al Hossain, M.S.; Yamauchi, Y.; Nguyen, N.T.; Shiddiky, M.J.A. A PCR-free electrochemical method for messenger RNA detection in cancer tissue samples. Biosens. Bioelectron. 2017, 1, 15–24. [Google Scholar] [CrossRef]
- Murugappan, K.; Sundaramoorthy, U.; Damry, A.M.; Nisbet, D.R.; Jackson, C.J.; Tricoli, A. Electrodetection of small molecules by conformation-mediated signal enhancement. JACS Au 2022, 2, 2481–2490. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.; Aziz, N.B.; Al Jabri, S.; Bhuiyan, S.A.; Shiddiky, M.J.A. Naked eye evaluation and quantitative detection of the sugarcane leaf scald pathogen, Xanthomonas albilineans, in sugarcane xylem sap. Crop Pasture Sci. 2021, 72, 361–371. [Google Scholar] [CrossRef]
- Siddiquee, S.; Rovina, K.; Yusof, N.A.; Rodrigues, K.F.; Suryani, S. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens. Bio-Sens. Res. 2014, 2, 16–22. [Google Scholar] [CrossRef]
Variety | RSD Rating | Rating Category |
---|---|---|
Q253 | 8 | Susceptible |
SRA26 | 6 | Intermediate susceptible |
Q242 | 7 | Susceptible |
Q232 | 6 | Intermediate susceptible |
SRA20 | 8 | Susceptible |
WSRA24 | 4 | Intermediate resistant |
SRA22 | 3 | Moderately resistant |
Q208 | 5 | Intermediate resistant |
CP72-2086 | 3 | Moderately resistant |
Ho06-537 | 3 | Moderately resistant |
Method | Label | Detection Limit | Dynamic Range | Assay Time | Reference |
---|---|---|---|---|---|
This work | None | 1 fM | 1 fM–10 nM | ~30 min | This work |
MB-modified probe | Methylene blue | 10 fM | 10 fM–1 nM | ~1.5 h | [28] |
Ferrocene–DNA hybrid sensor | Ferrocene | 50 fM | 50 fM–5 nM | ~2 h | [29] |
MB + LAMP | Methylene blue | 1 fM | 1 fM–100 pM | ~90 min | [28] |
Fc-DNA on gold nanocomposite | Ferrocene | 100 fM | 100 fM–10 nM | ~1.5 h | [57] |
Factors a | qPCR | Resistance Rating |
---|---|---|
EC b | 0.84 ** | −0.78 * |
qPCR c | −0.87 ** |
Methods | Nucleic Acid Extraction | Detection Limit | Sample Preparation-to-Result | Reference |
---|---|---|---|---|
This study (EC biosensor) | Boiling (2 min) | 10 cells/µL or 1 fM | ~30 min | This work |
Conventional PCR | Commercial kit | ~103–104 cells/µL | 4–5 h | [12,13] |
Real-time PCR (qPCR) | Commercial kit | ~100 cells/µL | 3–5 h | [16,17] |
Nested PCR | Commercial kit | ~10 cells/µL | 4–6 h | [15] |
LAMP | Commercial kit or crude | ~10–100 cells/µL | 60–90 min | [18] |
Dot Blot/Hybridization | Commercial kit or crude | ~104–105 cells/µL | 6–8 h | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, M.; Bhuiyan, S.A.; Strachan, S.; Shiddiky, M.J.A.; Nguyen, N.-T.; Soda, N.; Ford, R. A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane. Biosensors 2025, 15, 518. https://doi.org/10.3390/bios15080518
Chakraborty M, Bhuiyan SA, Strachan S, Shiddiky MJA, Nguyen N-T, Soda N, Ford R. A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane. Biosensors. 2025; 15(8):518. https://doi.org/10.3390/bios15080518
Chicago/Turabian StyleChakraborty, Moutoshi, Shamsul Arafin Bhuiyan, Simon Strachan, Muhammad J. A. Shiddiky, Nam-Trung Nguyen, Narshone Soda, and Rebecca Ford. 2025. "A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane" Biosensors 15, no. 8: 518. https://doi.org/10.3390/bios15080518
APA StyleChakraborty, M., Bhuiyan, S. A., Strachan, S., Shiddiky, M. J. A., Nguyen, N.-T., Soda, N., & Ford, R. (2025). A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane. Biosensors, 15(8), 518. https://doi.org/10.3390/bios15080518