Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry
Abstract
:1. The Virus
2. AIV Surveillance and Monitoring
Terminology
3. Diagnostic Assays for AIV Surveillance and Monitoring
3.1. Assay to Detect Viable Virus
Virus Isolation
3.2. Assays to Detect Viral Antigen
3.2.1. Antigen-Capturing Immunoassays
3.2.2. Immunohistochemistry
3.3. Assays to Detect Viral RNA
3.3.1. Reverse Transcription–Polymerase Chain Reaction
Fluorescent Reporter Probe Methods
SYBR Green Reporter Method
3.3.2. Loop-Mediated Isothermal Amplification Method
3.3.3. Nucleic Acid Sequence-Based Amplification
3.4. Assays to Detect AIV-Specific Antibodies
3.4.1. Serum-Virus Neutralization Test
3.4.2. Enzyme-Linked Immunosorbent Assay
3.4.3. Agar Gel Immunodiffusion Test
3.4.4. Hemagglutination Inhibition Test
3.5. Assays and Methods to Characterize AIVs
3.5.1. Subtyping
3.5.2. Pathotype Prediction Based on Proteolytic Cleavage Site of HA Protein
3.5.3. Assessment of Pathogenicity
3.6. Miscellaneous Assays to Detect Variant and Novel AIVs
3.6.1. DNA Microarrays
3.6.2. Electron Microscopy
3.6.3. Mass Spectroscopy
3.6.4. Biosensors
4. Application of Diagnostic Assays for AIV Surveillance
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- ICTV. Orthomyxoviridae. International Committee on Taxonomy of Viruses [Internet]. 2019. Available online: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/209/orthomyxoviridae (accessed on 29 January 2025).
- Lamb, R.A.; Krug, R.M. Orthomyxoviridae: The viruses and their replication. In Fields Virology, 4th ed.; Knipe, D.M., Howley, P.M., Griffin, D.E., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 1487–1531. [Google Scholar]
- He, J.; Kam, Y.-W. Insights from Avian Influenza: A Review of Its Multifaceted Nature and Future Pandemic Preparedness. Viruses 2024, 16, 458. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Rogers, G.N.; Paulson, J.C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 1983, 127, 361–373. [Google Scholar] [CrossRef]
- Rogers, G.N.; Pritchett, T.J.; Lane, J.L.; Paulson, J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology 1983, 131, 394–408. [Google Scholar] [CrossRef]
- Bosch, F.X.; Garten, W.; Klenk, H.-D.; Rott, R. Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 1981, 113, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J.; et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013, 9, e1003657. [Google Scholar] [CrossRef] [PubMed]
- Perroncito, E. Epizoozia tifoide nei gallinacei. Ann. R. Accad. d’Agric. Torino 1878, 21, 87–126. [Google Scholar]
- Becker, W.B. The isolation and classification of tern virus: Influenza A/Tern/South Africa/1961. J. Hyg. (Lond.) 1966, 64, 309–320. [Google Scholar] [CrossRef]
- Swayne, D.E.; Halvorson, D.A. Influenza. In Diseases of Poultry, 12th ed.; Saif, Y.M., Barnes, H.J., Fadly, A.M., Glisson, J.R., McDougald, L.R., Swayne, D., Eds.; Iowa State University Press: Ames, IA, USA, 2008; pp. 153–184. [Google Scholar]
- García, M.; Crawford, J.M.; Latimer, J.W.; Rivera-Cruz, E.; Perdue, M.L. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J. Gen. Virol. 1996, 77, 1493–1504. [Google Scholar] [CrossRef]
- Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992, 11, 2407–2414. [Google Scholar] [CrossRef]
- WOAH (OIE). Glossary. Terrestrial Animal Health Code, 27th ed.; International Office of Epizootics, World Organization for Animal Health: Paris, France, 2018; p. ix. [Google Scholar]
- Thursfield, M.; Christley, R.; Brown, H.; Diggle, P.J.; French, N.; Howe, K.; Kelly, L.; O’Connor, A.; Sargeant, J.; Wood, H. Veterinary Epidemiology, 4th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Sergeant, E.; Perkins, N. Epidemiology for Field Veterinarians: An Introduction; CABI: Oxfordshire, UK, 2015. [Google Scholar]
- Paskins, R. Manual on Livestock Disease Surveillance and Information Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Teutsch, S.M. Considerations in planning a surveillance system. In Principles and Practice of Public Health Surveillance, 3rd ed.; Lee, L., Teutsch, S., Thacker, S., St. Louis, M., Eds.; Oxford University Press: New York, NY, USA, 2010; p. 22. [Google Scholar]
- Spackman, E.; Killian, M.L. Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs. In Animal Influenza Virus, Methods in Molecular Biology (Methods and Protocols), 3rd ed.; Spackman, E., Ed.; Humana Press: New York, NY, USA, 2020; Volume 2123, pp. 149–164. [Google Scholar] [CrossRef]
- WOAH, World Organization for Animal Health. Avian Influenza (Including Infection with High Pathogenicity Avian Influenza Viruses). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; WOAH: Paris, France, 2021; Chapter 3.3.4; pp. 1–28. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.03.04_AI.pdf (accessed on 29 January 2025).
- Reid, S.M.; Byrne, A.M.P.; Lean, F.Z.X.; Ross, C.S.; Pascu, A.; Hepple, R.; Dominguez, M.; Frost, S.; Coward, V.J.; Núñez, A.; et al. A multi-species, multi-pathogen avian viral disease outbreak event: Investigating potential for virus transmission at the wild bird—Poultry interface. Emerg. Microb. Infect. 2024, 13, 2348521. [Google Scholar] [CrossRef] [PubMed]
- Moresco, K.A.; Stallknecht, D.E.; Swayne, D.E. Evaluation of different embryonating bird eggs and cell cultures for isolation efficiency of avian influenza A virus and avian paramyxovirus serotype 1 from real-time reverse transcription polymerase chain reaction-positive wild bird surveillance samples. J. Vet. Diagn. Investig. 2012, 24, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Laleye, A.; Adeyemi, M.; Abolnik, C. Propagation of avian influenza virus in embryonated ostrich eggs. Onderstepoort J. Vet. Res. 2022, 89, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Cattoli, G.; Suarez, D.L. Diagnostics and surveillance methods. In Animal Influenza Virus, 2nd ed.; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 31–44. [Google Scholar] [CrossRef]
- Lira, J.; Moresco, K.A.; Stallknecht, D.E.; Swayne, D.E.; Fisher, D.S. Single and combination diagnostic test efficiency and cost analysis for detection and isolation of avian influenza virus from wild bird cloacal swabs. Avian Dis. 2010, 54, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Tobita, K.; Sugiura, A.; Enomoto, C.; Furuyama, M. Plaque assay and primary isolation of influenza a viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med. Microbiol. Immunol. 1975, 162, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Govorkova, E.A.; Kaverin, N.V.; Gubareva, L.V.; Meignier, B.; Webster, R.G. Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). J. Infect. Dis. 1995, 172, 250–253. [Google Scholar] [CrossRef]
- de Ona, M.; Melon, S.; de la Iglesia, P.; Hidalgo, F.; Verdugo, A.F. Isolation of influenza virus in human lung embryonated fibroblast cells (MRC-5) from clinical samples. J. Clin. Microbiol. 1995, 33, 1948–1949. [Google Scholar] [CrossRef]
- Schultz-Cherry, S.; Dybdahl-Sissoko, N.; McGregor, M.; Hinshaw, V.S. Mink lung epithelial cells: Unique cell line that supports influenza A and B virus replication. J. Clin. Microbiol. 1998, 36, 3718–3720. [Google Scholar] [CrossRef]
- Zhirnov, O.P.; Vorobjeva, I.V.; Saphonova, O.A.; Malyshev, N.A.; Ovcharenko, A.V.; Klenk, H.D. Specific biochemical features of replication of clinical influenza viruses in human intestinal cell culture. Biochem. Biokhimiia 2007, 72, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Yu, W.L.; Lin, M.; Davis, S.A.N.; Elmgren, C.; MacKenzie, R.; Tanha, J.; Li, S.; Dubuc, G.; Brown, E.G.; et al. Prototype single step lateral flow technology for detection of avian influenza virus and chicken antibody to avian influenza virus. J. Immunoassay Immunochem. 2007, 28, 307–318. [Google Scholar] [CrossRef]
- Wiriyachaiporn, N.; Apiwat, N.; Chantima, W.; Dharakul, T. Combined gold nanoparticle-antibody conjugate enhances sensitivity of influenza A antigen detection in lateral flow assay. In Proceedings of the 6th IEEE International Conference on Nano/Molecular Medicine and Engineering, Bangkok, Thailand, 4–7 November 2012; pp. 36–40. [Google Scholar] [CrossRef]
- Manzoor, R.; Sakoda, Y.; Sakabe, S.; Mochizuki, T.; Namba, Y.; Tsuda, Y.; Kida, H. Development of a pen-site test kit for the rapid diagnosis of H7 highly pathogenic avian influenza. J. Vet. Med. Sci. 2008, 70, 557–562. [Google Scholar] [CrossRef]
- NPIP. National Poultry Improvement Plan and Auxiliary Provisions as of August 8, 2016 as Found in the Code of Federal Regulations, Title 9, Animals and Animal Products, Parts 145–147 and Part 56; Animal and Plant Health Inspection Service: Riverdale Park, MD, USA, 2016; pp. 1–151. [Google Scholar]
- Xu, K.; Li, C.; Gravel, C.; Jiang, Z.; Jaentschke, B.; Van Domselaar, G.; Li, X.; Wang, J. Universal type/subtype-specific antibodies for quantitative analyses of neuraminidase in trivalent influenza vaccines. Sci. Rep. 2018, 8, 1067. [Google Scholar] [CrossRef] [PubMed]
- Woolcock, P.R.; Cardona, C.J. Commercial immunoassay kits for the detection of influenza virus type A: Evaluation of their use with poultry. Avian Dis. 2005, 49, 477–481. [Google Scholar] [CrossRef]
- Vascellari, M.; Granato, A.; Trevisan, L.; Basilicata, L.; Toffan, A.; Milani, A.; Mutinelli, F. Pathologic findings of highly pathogenic avian influenza virus A/Duck/Vietnam/12/05 (H5N1) in experimentally infected pekin ducks, based on immunohistochemistry and in situ hybridization. Vet. Pathol. 2007, 44, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Dabbs, D.J. Diagnostic Immunohistochemistry: Theranostic and Genomic Applications, 4th ed.; Elsevier Saunders: Amsterdam, The Netherlands, 2014; ISBN 978-1-4557-4461-9. [Google Scholar]
- Bóna, M.; Kiss, I.; Dénes, L.; Szilasi, A.; Mándoki, M. Tissue Tropism of H9N2 Low-Pathogenic Avian Influenza Virus in Broiler Chickens by Immunohistochemistry. Animals 2023, 13, 1052. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J. Immunohistochemical Staining of Influenza Virus in Tissues. In Methods in Molecular Biology, Vol. 2123: Animal Influenza Virus; Spackman, E., Ed.; Springer: New York, NY, USA, 2020; Chapter 3; pp. 29–36. ISBN 978-1-0716-0346-8. [Google Scholar] [CrossRef]
- Spackman, E. Avian influenza virus detection and quantitation by real-time RT-PCR. In Animal Influenza Virus, Methods in Molecular Biology (Methods and Potocols), 3rd ed.; Spackman, E., Ed.; Humana Press: New York, NY, USA, 2020; Volume 2123, pp. 137–148. [Google Scholar] [CrossRef]
- Okamatsu, M.; Hiono, T.; Kida, H.; Sakoda, Y. Recent developments in the diagnosis of avian influenza. Vet. J. 2016, 215, 82–86. [Google Scholar] [CrossRef]
- Wittwer, C.T.; Herrmann, M.G.; Gundry, C.N.; Elenitoba-Johnson, K.S.J. Real-time multiplex PCR assays. Methods 2001, 25, 430–442. [Google Scholar] [CrossRef]
- Tyagi, S.; Kramer, F.R. Molecular beacons in diagnostics. F1000Rep. Med. 2012, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Bratu, D.P.; Kramer, F.R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 1998, 16, 49–53. [Google Scholar] [CrossRef]
- Wang, L.; Blasic, J.R., Jr.; Holden, M.J.; Pires, R. Sensitivity comparison of real-time PCR probe designs on a model DNA plasmid. Anal. Biochem. 2005, 344, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Kramer, F.R. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.-M.; Gu, L.; Shen, H.-X.; Mi, H.-F. A modified molecular beacon combining the properties of TaqMan probe. Chem. Commun. 2002, 8, 854–855. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.T.; Omar, A.R.; Ideris, A.; Hassan, S.S. Development of a multiplex real-time PCR assay using SYBR Green 1 chemistry for simultaneous detection and subtyping of H9N2 influenza virus type A. J. Virol. Methods 2007, 144, 57–64. [Google Scholar] [CrossRef]
- Tajadini, M.; Panjehpour, M.; Javanmard, S.H. Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv. Biomed. Res. 2014, 3, 85. [Google Scholar] [CrossRef]
- Wang, W.; Ren, P.; Mardi, S.; Hou, L.; Tsai, C.; Chan, K.H.; Cheng, P.; Sheng, J.; Buchy, P.; Sun, B.; et al. Design of multiplexed detection assays for identification of avian influenza a virus subtypes pathogenic to humans by SmartCycler real-time reverse transcription-PCR. J. Clin. Microbiol. 2009, 47, 86–92. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Jayawardena, S.; Cheung, C.Y.; Barr, I.; Chan, K.H.; Chen, H.; Guan, Y.; Peiris, J.M.; Poon, L.L. Loop-mediated isothermal amplification for influenza A (H5N1) virus. Emerg. Infect. Dis. 2007, 13, 899–901. [Google Scholar] [CrossRef]
- Liu, J.; Nian, Q.-G.; Li, J.; Hu, Y.; Li, X.-F.; Zhang, Y.; Deng, Y.-Q.; Zhu, S.-Y.; Zhu, Q.-Y.; Qin, E.-D.; et al. Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection of novel avian influenza A (H7N9) virus. BMC Microbiol. 2014, 14, 271. [Google Scholar] [CrossRef]
- Poon, L.L.M.; Leung, C.S.W.; Chan, K.H.; Lee, J.H.C.; Yuen, K.Y.; Guan, Y.; Peiris, J.S.M. Detection of human influenza A viruses by loop-mediated isothermal amplification. J. Clin. Microbiol. 2005, 43, 427–430. [Google Scholar] [CrossRef]
- Mahony, J.; Chong, S.; Bulir, D.; Ruyter, A.; Mwawasi, K.; Waltho, D. Multiplex loop-mediated isothermal amplification (M-LAMP) assay for the detection of influenza A/H1, A/H3 and influenza B can provide a specimen-to-result diagnosis in 40 min with single genome copy sensitivity. J. Clin. Virol. 2013, 58, 127–131. [Google Scholar] [CrossRef]
- Golabi, M.; Flodrops, M.; Grasland, B.; Vinayaka, A.C.; Quyen, T.L.; Nguyen, T.; Bang, D.D.; Wolff, A. Development of reverse transcription loop-mediated isothermal amplification assay for rapid and on-site detection of avian influenza virus. Front. Cell Infect. Microbiol. 2021, 11, 652048. [Google Scholar] [CrossRef]
- Lin, S.H.; Yu, X.W.; Wei, Y.A.; Yu, B.L.; He, L.K.; Yuan, G.A.; Zhang, Y.X.; Tian, G.B.; Ping, J.H.; Wang, X.R. Development of a reverse-transcription loop-mediated isothermal amplification assay to detect avian influenza viruses in clinical specimens. J. Integr. Agric. 2019, 18, 1428–1435. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Han, X.; Liu, Z.; Lu, Y. Advancements and applications of loop-mediated isothermal amplification technology: A comprehensive overview. Front. Microbiol. 2024, 15, 1406632. [Google Scholar] [CrossRef] [PubMed]
- Warmt, C.; Yaslanmaz, C.; Henkel, J. Investigation and validation of labelling loop mediated isothermal amplification (LAMP) products with different nucleotide modifications for various downstream analysis. Sci. Rep. 2022, 12, 7137. [Google Scholar] [CrossRef]
- Sooknanan, R.; Malek, L.T. NASBA: A detection and amplification system uniquely suited for RNA. Nat. Biotechnol. 1995, 13, 563–564. [Google Scholar] [CrossRef]
- Lau, L.-T.; Banks, J.; Aherne, R.; Brown, I.H.; Dillon, N.; Collins, R.A.; Chan, K.-Y.; Fung, Y.-W.W.; Xing, J.; Yu, A.C. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem. Biophys. Res. Commun. 2004, 313, 336–342. [Google Scholar] [CrossRef]
- Rodríguez-Lázaro, D.; Hernández, M.; Agostino, M.D.; Cook, N. Amplification of nucleic acid sequence-based amplification for the detection of viable foodborne pathogens: Progress and challenges. J. Rapid Methods Autom. Microbiol. 2006, 14, 218–236. [Google Scholar] [CrossRef]
- Wang, T.E.; Chao, T.L.; Tsai, H.T.; Lin, P.H.; Tsai, Y.L.; Chang, S.Y. Differentiation of Cytopathic Effects (CPE) induced by influenza virus infection using deep Convolutional Neural Networks (CNN). PLoS Comput Biol. 2020, 16, e1007883. [Google Scholar] [CrossRef]
- Rowe, T.; Abernathy, R.A.; Hu-Primmer, J.; Thompson, W.W.; Lu, X.; Lim, W.; Fukuda, K.; Cox, N.J.; Katz, J.M. Detection of antbody to Avian Influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 1999, 37, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Stallknecht, D.E.; Berghaus, R.D.; Luttrell, M.P.; Velek, K.; Kistler, W.; Costa, T.; Yabsley, M.J.; Swayne, D. Evaluation of a commercial blocking enzyme-linked immunosorbent assay to detect avian influenza virus antibodies in multiple experimentally infected avian species. Clin. Vaccine Immunol. 2009, 16, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.T.; Hsu, C.H.; Tsai, H.J.; Lin, C.H.; Lo, P.Y.; Wang, S.L.; Wang, L.C. Influenza A plasma and serum virus antibody detection comparison in dogs using blocking enzyme-linked immunosorbent assay. Vet. World. 2015, 8, 580–583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smit, P.W.; Elliott, I.; Peeling, R.W.; Mabey, D.; Newton, P.N. An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am. J. Trop. Med. Hyg. 2014, 90, 195–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovalenko, G.; Galat, M.; Ishchenko, L.; Halka, I. Serological Evidence for Influenza A Viruses Among Domestic Dogs and Cats in Kyiv, Ukraine. Vector Borne Zoonotic Dis. 2021, 21, 483–489. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velumani, S.; Du, Q.; Fenner, B.J.; Prabakaran, M.; Wee, L.C.; Nuo, L.Y.; Kwang, J. Development of an antigen-capture ELISA for detection of H7 subtype avian influenza from experimentally infected chickens. J. Virol. Methods 2008, 147, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Lelli, D.; Brocchi, E.; Sozzi, E.; Vinco, L.J.; Grilli, G.; Cordioli, P. Monoclonal antibody-based ELISA for detection of antibodies against H5 avian influenza viruses. J. Virol. Methods 2013, 187, 424–430. [Google Scholar] [CrossRef]
- Luo, Q.; Huang, H.; Zou, W.; Dan, H.; Guo, X.; Zhang, A.; Yu, Z.; Chen, H.; Jin, M. An indirect sandwich ELISA for the detection of avian influenza H5 subtype viruses using anti-hemagglutinin protein monoclonal antibody. Vet. Microbiol. 2009, 137, 24–30. [Google Scholar] [CrossRef]
- Sala, G.; Cordioli, P.; Moreno-Martin, A.; Tollis, M.; Brocchi, E.; Piccirillo, A.; Lavazza, A. ELISA test for the detection of influenza H7 antibodies in avian sera. Avian Dis. 2003, 47, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Brocchi, E.; Lelli, D.; Gamba, D.; Tranquillo, M.; Cordioli, P. Monoclonal antibody based ELISA tests to detect antibodies against neuraminidase subtypes 1, 2 and 3 of avian influenza viruses in avian sera. Vaccine 2009, 27, 4967–4974. [Google Scholar] [CrossRef] [PubMed]
- Barr, I.G.; McCaig, M.; Durrant, C.; Shaw, R. The rapid identification of human influenza neuraminidase N1 and N2 subtypes by ELISA. Vaccine 2006, 24, 6675–6678. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Pantin-Jackwood, M.J.; Swayne, D.E.; Suarez, D.L. An evaluation of avian influenza diagnostic methods with domestic duck specimens. Avian Dis. 2009, 53, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.E.; Slomka, M.J.; Breed, A.C.; Hjulsager, C.K.; Pritz-Verschuren, S.; Venema-Kemper, S.; Bouwstra, R.J.; Trebbien, R.; Zohari, S.; Ceeraz, V.; et al. Evaluation of ELISA and haemagglutination inhibition as screening tests in serosurveillance for H5/H7 avian influenza in commercial chicken flocks. Epidemiol. Infect. 2018, 146, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Killian, M.L. Detection of influenza A antibodies in avian samples by ELISA. In Animal Influenza Virus, Methods in Molecular Biology (Methods and Protocols), 3rd ed.; Spackman, E., Ed.; Humana Press: New York, NY, USA, 2020; Volume 2123, pp. 177–193. [Google Scholar] [CrossRef]
- Jensen, T.H.; Andersen, J.H.; Hjulsager, C.K.; Chriél, M.; Bertelsen, M.F. Evaluation of a commercial competitive enzyme-linked immunosorbent assay for detection of avian influenza virus subtype H5 antibodies in zoo birds. J. Zoo Wildl. Med. 2017, 48, 882–885. [Google Scholar] [CrossRef]
- United States Department of Agriculture, National Veterinary Services Laboratory. Agar Gel Immunodiffusion Test to Detect Antibodies to Type A Influenza Virus (NVSL-SOP-0045, Rev. 03). 2021. Available online: https://www.aphis.usda.gov/sites/default/files/Avian_AGID_SOP.pdf (accessed on 29 January 2025).
- Stallknecht, D.E.; Nagy, E.; Hunter, D.B.; Slemons, R.D. Avian influenza. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Blackwell: Ames, IA, USA, 2008; pp. 108–130. [Google Scholar]
- Slemons, R.D.; Easterday, B.C. Host response differences among 5 avian species to an influenzavirus-A/turkey/Ontario/7732/66 (Hav5N?). Bull. World Health Organ. 1972, 47, 521–525. [Google Scholar]
- Jenson, T.A. Agar gel immunodiffusion assay to detect antibodies to type A influenza virus. In Animal Influenza Virus, Methods in Molecular Biology (Methods and Protocols), 3rd ed.; Spackman, E., Ed.; Humana Press: New York, NY, USA, 2020; Volume 2123, pp. 165–175. [Google Scholar] [CrossRef]
- Trampel, D.W.; Zhou, E.-M.; Yoon, K.-J.; Koehler, K.J. Detection of antibodies in serum and egg yolk following infection of chickens with an H6N2 avian influenza virus. J. Vet. Diagn. Investig. 2006, 18, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Henzler, D.J.; Kradel, D.C.; Davison, S.; Ziegler, A.F.; Singletary, D.; DeBok, P.; Castro, A.E.; Lu, H.; Eckroade, R.; Swayne, D.; et al. Epidemiology, production losses, and control measures associated with an outbreak of avian influenza subtype H7N2 in Pennsylvania (1996–1998). Avian Dis. 2003, 47, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Sicca, F.; Martinuzzi, D.; Montomoli, E.; Huckriede, A. Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: Good correlation but poor agreement. Vaccine 2020, 38, 2527–2541. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Sitaras, I. Hemagglutination Inhibition Assay. In Animal Influenza Virus. Methods in Molecular Biology; Spackman, E., Ed.; Humana: New York, NY, USA, 2020; Volume 2123, pp. 11–28. [Google Scholar] [CrossRef]
- MacLachlan, N.J.; Dubovi, E.J. (Eds.) Laboratory Diagnosis of Viral Infections in Fenner’s Veterinary Virology, 5th ed.; Academic Press/Elsevier: London, UK, 2017; p. 125. [Google Scholar]
- Trombetta, C.M.; Remarque, E.J.; Mortier, D.; Montomoli, E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influenza Other Respir. Viruses 2018, 12, 675–686. [Google Scholar] [CrossRef]
- Wang, T.T.; Tan, G.S.; Hai, R.; Pica, N.; Petersen, E.; Moran, T.M.; Palese, P. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 2010, 6, e1000796. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.Z. Monoclonal antibodies as diagnostics; an appraisal. Indian. J. Pharm. Sci. 2010, 72, 12–17. [Google Scholar] [CrossRef]
- Malik, A.; Mallajosyula, V.V.A.; Mishra, N.N.; Varadarajan, R.; Gupta, S.K. Generation and characterization of monoclonal antibodies specific to avian influenza H5N1 hemagglutinin protein. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Higgins, A.; Navarro, A.; Huang, Y.; Esper, F.L.; Barton, N.; Esch, D.; Shaw, C.; Olivo, P.D.; Miao, L.Y. Subtyping influenza A virus with monoclonal antibodies and an indirect immunofluorescence assay. J. Clin. Microbiol. 2012, 50, 396–400. [Google Scholar] [CrossRef]
- Zeng, Y.B.; Jiao, X.A.; Pan, Z.M.; Huang, J.L.; Zhang, P.H.; Zhang, S.H.; Sun, Q.Y.; Liu, X.F. Preparation and characterization of monoclonal antibodies against the hemagglutinin of H9 subtype of avian influenza virus. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2004, 20, 702–704. [Google Scholar] [PubMed]
- Cai, Z.; Zhang, T.; Wan, X.F. Concepts and applications for influenza antigenic cartography. Influenza Other Respir. Viruses. 2011, 5, 204–207. [Google Scholar]
- Kandeil, A.; Hicks, J.T.; Young, S.G.; El Taweel, A.N.; Kayed, A.S.; Moatasim, Y.; Kutkat, O.; Bagato, O.; McKenzie, P.P.; Cai, Z.; et al. Active surveillance and genetic evolution of avian influenza viruses in Egypt, 2016–2018. Emerg. Microbes Infect. 2019, 8, 1370–1382. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.C. Neuraminidase-inhibition assay for the identification of influenza A virus neuraminidase virus subtype or neuraminidase antibody specificity. In Animal Influenza Virus, Methods in Molecular Biology (Methods and Protocols); Spackman, E., Ed.; Humana Press: New York, NY, USA, 2014; Volume 1161, pp. 27–36. [Google Scholar] [CrossRef]
- Kaplan, B.S.; Vincent, A.L. Detection and titration of influenza A virus Neuraminidase Inhibiting (NAI) antibodies using an Enzyme-Linked Lectin Assay (ELLA). In Animal Influenza Virus. Methods in Molecular Biology, 3rd ed.; Spackman, E., Ed.; Humana Press: New York, NY, USA, 2020; Volume 2123, pp. 335–344. [Google Scholar] [CrossRef]
- Bernard, M.C.; Waldock, J.; Commandeur, S.; Strauß, L.; Trombetta, C.M.; Marchi, S.; Zhou, F.; van de Witte, S.; van Amsterdam, P.; Ho, S.; et al. Validation of a harmonized Enzyme-Linked-Lectin-Assay (ELLA-NI) Based Neuraminidase Inhibition assay standard operating procedure (SOP) for quantification of N1 influenza antibodies and the use of a calibrator to improve the reproducibility of the ELLA-NI with reverse genetics viral and recombinant neuraminidase antigens: A FLUCOP collaborative study. Front. Immunol. 2022, 13, 909297. [Google Scholar] [CrossRef]
- Azeem, S.; Guo, B.; Sun, D.; Killian, M.L.; Baroch, J.A.; Yoon, K.J. Evaluation of PCR-based hemagglutinin subtyping as a tool to aid in surveillance of avian influenza viruses in migratory wild birds. J. Virol. Methods 2022, 308, 114594. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Liao, Y.C.; Lai, Y.H.; Chuang, M.C. Recognition of dual targets by a molecular beacon-based sensor: Subtyping of influenza A virus. Anal. Chem. 2015, 87, 5410–5416. [Google Scholar] [CrossRef]
- Lang, A.S.; Kelly, A.; Runstadler, J.A. Prevalence and diversity of avian influenza viruses in environmental reservoirs. J. Gen. Virol. 2008, 89, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Chander, Y.; Jindal, N.; Stallknecht, D.E.; Sreevatsan, S.; Goyal, S.M. Full length sequencing of all nine subtypes of the neuraminidase gene of influenza A viruses using subtype specific primer sets. J. Virol. Methods 2010, 165, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Kapgate, S.S.; Barbuddhe, S.B.; Kumanan, K. Next generation sequencing technologies: Tool to study avian virus diversity. Acta Virol. 2015, 59, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.X.; Jacob, S.A.; Chan, K.G.; Lee, L.H. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans. Front. Microbiol. 2015, 6, 140. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Jin, T.; Wang, H.; Si, W.; Yang, H.; Wu, J.; Yan, Y.; Liu, G.; Sang, X.; et al. Newly emergent highly pathogenic H5N9 subtype avian influenza A virus. J. Virol. 2015, 89, 8806–8815. [Google Scholar] [CrossRef]
- Yeo, S.J.; Than, D.D.; Park, H.S.; Sung, H.W.; Park, H. Molecular characterization of a novel avian influenza a (H2N9) strain isolated from wild duck in Korea in 2018. Viruses 2019, 11, 1046. [Google Scholar] [CrossRef] [PubMed]
- Greninger, A.L.; Chen, E.C.; Sittler, T.; Scheinerman, A.; Roubinian, N.; Yu, G.; Kim, E.; Pillai, D.R.; Guyard, C.; Mazzulli, T.; et al. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS ONE 2010, 5, e13381. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Torchetti, M.K.; Killian, M.L.; Swayne, D.E. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016. Virology 2017, 507, 216–219. [Google Scholar] [CrossRef]
- Wood, G.W.; Banks, J.; Strong, I.; Parsons, G.; Alexander, D.J. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathol. 1996, 25, 799–806. [Google Scholar] [CrossRef]
- Londt, B.Z.; Banks, J.; Alexander, D.J. Highly pathogenic avian influenza viruses with low virulence for chickens in in vivo tests. Avian Pathol. 2007, 36, 347–350. [Google Scholar] [CrossRef]
- Margine, I.; Krammer, F. Animal models for influenza viruses: Implications for universal vaccine development. Pathogens 2014, 3, 845–874. [Google Scholar] [CrossRef]
- Mcloughlin, K.S. Microarrays for pathogen detection and analysis. Brief. Funct. Genom. 2011, 10, 342–353. [Google Scholar] [CrossRef]
- Zhao, J.; Ragupathy, V.; Liu, J.; Wang, X.; Vemula, S.V.; El Mubarak, H.S.; Ye, Z.; Landry, M.L.; Hewlett, I. Nanomicroarray and multiplex next-generation sequencing for simultaneous identification and characterization of influenza viruses. Emerg. Infect. Dis. 2015, 21, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Paulin, L.F.; de los D Soto-Del Río, M.; Sánchez, I.; Hernández, J.; Gutiérrez-Ríos, R.M.; López-Martínez, I.; Wong-Chew, R.M.; Parissi-Crivelli, A.; Isa, P.; López, S.; et al. PhyloFlu, a DNA microarray for determining the phylogenetic origin of influenza A virus gene segments and the genomic fingerprint of viral strains. J. Clin. Microbiol. 2014, 52, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Sun, J.S.; Yang, Z.P.; Bao, H.M.; Jiang, Y.P.; Xiong, Y.Z.; Cao, D.; Yu, X.W.; Chen, H.L.; Zheng, S.M.; et al. Development of a DNA microarray-based multiplex assay of avian influenza virus subtypes H5, H7, H9, N1, and N2. Acta Virol. 2014, 58, 14–19. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Evans, D.H. Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR. J. Clin. Microbiol. 2001, 39, 696–704. [Google Scholar] [CrossRef]
- Petrova, I.D.; Zaitsev, B.N.; Taranov, O.S. Concentration of viruses and electron microscopy. Vavilovskii Zhurnal Genet. Selektsii 2020, 24, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.E. Electron microscopy: A brief history and review of current clinical application. In Histopathology Methods in Molecular Biology (Methods and Protocols); Day, C., Ed.; Humana Press: New York, NY, USA, 2014; Volume 1180, pp. 119–135. [Google Scholar] [CrossRef]
- Wrigley, N.G. Electron microscopy of influenza virus. Br. Med. Bull. 1979, 35, 35–38. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, Y.; Si, K.; Yu, C.; Shang, K.; Yu, Z.; Wei, Y.; Ding, C.; Sarker, S.; Chen, S. Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China. BMC Genom. 2024, 25, 1249. [Google Scholar] [CrossRef] [PubMed]
- Louisirirotchanakul, S.; Rojanasang, P.; Thakerngpol, K.; Choosrichom, N.; Chaichoune, K.; Pooruk, P.; Namsai, A.; Webster, R.; Puthavathana, P. Electron micrographs of human and avian influenza viruses with high and low pathogenicity. Asian Biomed. 2013, 7, 155–167. [Google Scholar]
- Nishida, T.; Nakajima, E.; Imoto, Y.; Seino, S. Observation of influenza virus particles by ultra-high resolution scanning electron microscope. Microscopy 2019, 68, i46. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef]
- Jang, H.B.; Sung, H.W.; Nho, S.W.; Park, S.B.; Cha, I.S.; Aoki, T.; Jung, T.S. Enhanced reliability of avian influenza virus (AIV) and Newcastle disease virus (NDV) identification using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Anal. Chem. 2011, 83, 1717–1725. [Google Scholar] [CrossRef]
- Han, G.; Liu, L.; Sui, Z.; Zhou, W.; Jiang, B.; Yang, K.; Zhang, L.; Liang, Z.; Zhang, Y. Discrimination of influenza A virus subtypes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int. J. Mass Spectrom. 2023, 484, 116979. [Google Scholar] [CrossRef]
- Chou, T.-C.; Hsu, W.; Wang, C.-H.; Chen, Y.-J.; Fang, J.-M. Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J. Nanobiotechnol. 2011, 9, 52. [Google Scholar] [CrossRef]
- Downard, K.M. Proteotyping for the rapid identification of influenza virus and other biopathogens. Chem. Soc. Rev. 2013, 42, 8584–8595. [Google Scholar] [CrossRef]
- Lozano, C.; Pible, O.; Eschlimann, M.; Giraud, M.; Debroas, S.; Gaillard, J.C.; Bellanger, L.; Taysse, L.; Armengaud, J. Universal identification of pathogenic viruses by liquid chromatography coupled with tandem mass spectrometry proteotyping. Mol. Cell. Proteom. 2024, 23, 100822. [Google Scholar] [CrossRef]
- Zhang, Y.; Okada, H.; Kobayashi, T.; Itoh, T. Novel MEMS digital temperature sensor for wireless avian-influenza monitoring system in poultry farm. In Proceedings of the 2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP), Aix-en-Provence, France, 11–13 May 2011; pp. 222–226. [Google Scholar]
- Okada, H.; Suzuki, K.; Kenji, T.; Itoh, T. Avian influenza surveillance system in poultry farms using wireless sensor network. In Proceedings of the 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), Seville, Spain, 5–7 May 2010; pp. 253–258. [Google Scholar]
- Fu, X.; Wang, Q.; Ma, B.; Zhang, B.; Sun, K.; Yu, X.; Ye, Z.; Zhang, M. Advances in detection techniques for the H5N1 avian influenza virus. Int. J. Mol. Sci. 2023, 24, 17157. [Google Scholar] [CrossRef]
- USDA-APHIS-VS. National Poultry Improvement Plan Program Standards, June 2024. Available online: https://www.poultryimprovement.org/documents/2024-NPIP-Program-Standards-A-E-June-11-2024.pdf (accessed on 29 January 2025).
- Elvinger, F.; Akey, B.L.; Senne, D.A.; Pierson, F.W.; Porter-Spalding, B.A.; Spackman, E.; Suarez, D.L. Characteristics of diagnostic tests used in the 2002 low-pathogenicity avian influenza H7N2 outbreak in Virginia. J. Vet. Diagn. Investig. 2007, 19, 341–348. [Google Scholar] [CrossRef]
- Muñoz-Aguayo, J.; Flores-Figueroa, C.; VanBeusekom, E.; McComb, B.; Wileman, B.; Anderson, J.; Halvorson, D.A.; Kromm, M.; Lauer, D.; Marusak, R.; et al. Environmental sampling for influenza A viruses in Turkey Barns. Avian Dis. 2019, 63, 17–23. [Google Scholar] [CrossRef]
- Leung, Y.H.; Zhang, L.J.; Chow, C.K.; Tsang, C.L.; Ng, C.F.; Wong, C.K.; Guan, Y.; Peiris, J.S. Poultry drinking water used for avian influenza surveillance. Emerg. Infect. Dis. 2007, 13, 1380–1382. [Google Scholar] [CrossRef] [PubMed]
- Scoizec, A.; Niqueux, E.; Thomas, R.; Daniel, P.; Schmitz, A.; Le Bouquin, S. Airborne detection of H5N8 highly pathogenic avian influenza virus genome in poultry farms, France. Front. Vet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef]
- Dhumpa, R.; Handberg, K.J.; Jørgensen, P.H.; Yi, S.; Wolff, A.; Bang, D.D. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase-polymerase chain reaction assay. Diagn. Microbiol. Infect. Dis. 2011, 69, 258–265. [Google Scholar] [CrossRef] [PubMed]
- USDA. Post C&D Environmental Sampling Guidance—Poultry. 2019; pp. 1–5. Available online: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/hpai/env_sampling_proced.pdf (accessed on 29 January 2025).
- Azeem, S.; Gauger, P.; Sato, Y.; Baoqing, G.; Wolc, A.; Carlson, J.; Harmon, K.; Zhang, J.; Hoang, H.; Yuan, J.; et al. Environmental sampling for avian influenza virus detection in commercial layer facilities. Avian Dis. 2021, 65, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Senne, D.A. Avian Influenza; United States Animal Health Association: Greensboro, NC, USA, 2004; pp. 545–547. [Google Scholar]
- Walsh, D.P.; Ma, T.F.; Ip, H.S.; Zhu, J. Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses. Transbound. Emerg. Dis. 2019, 66, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Luttrell, M.P.; Berghaus, R.D.; Kistler, W.; Keeler, S.P.; Howey, A.; Wilcox, B.; Hall, J.; Niles, L.; Dey, A.; et al. Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays. J. Wildl. Dis. 2010, 46, 896–911. [Google Scholar] [CrossRef]
- Lu, B.-L.; Webster, R.G.; Hinshaw, V.S. Failure to detect hemagglutination-inhibiting antibodies with intact avian influenza virions. Infect. Immun. 1982, 38, 530–535. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, S.; Yoon, K.-J. Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry. Viruses 2025, 17, 228. https://doi.org/10.3390/v17020228
Azeem S, Yoon K-J. Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry. Viruses. 2025; 17(2):228. https://doi.org/10.3390/v17020228
Chicago/Turabian StyleAzeem, Shahan, and Kyoung-Jin Yoon. 2025. "Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry" Viruses 17, no. 2: 228. https://doi.org/10.3390/v17020228
APA StyleAzeem, S., & Yoon, K.-J. (2025). Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry. Viruses, 17(2), 228. https://doi.org/10.3390/v17020228