Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = mycotoxin removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6706 KB  
Article
From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix
by Huynh Minh Tan Trinh, Léna Dole, Coline Nazet, Christophe Jourdan, Véronique Martinez, Charlie Poss, Noël Durand, Caroline Strub, Angélique Fontana-Tachon and Sabine Schorr-Galindo
Toxins 2026, 18(2), 70; https://doi.org/10.3390/toxins18020070 - 27 Jan 2026
Viewed by 102
Abstract
Alternaria alternata is a common postharvest mold affecting tomato products, including cherry tomatoes, and causing their contamination with mycotoxins. When consumers encounter moldy fruits, some may remove the visibly contaminated part and consume the rest, to reduce waste. However, the extent to which [...] Read more.
Alternaria alternata is a common postharvest mold affecting tomato products, including cherry tomatoes, and causing their contamination with mycotoxins. When consumers encounter moldy fruits, some may remove the visibly contaminated part and consume the rest, to reduce waste. However, the extent to which A. alternata toxins migrate beyond visible fungal growth remains unclear, potentially posing health risks. This study investigated (i) the within-fruit migration of A. alternata in cherry tomatoes together with the associated mycotoxin production, and (ii) the diffusion of purified Alternaria toxins in tomatoes in the absence of any fungal activity. Toxins were quantified using LC-MS/MS, while fungal colonization was assessed through visual inspection and DNA quantification across fruit sections. In the absence of fungal growth, toxins remained largely confined to the spiking site and were degraded over time. In contrast, in inoculated samples, Alternaria DNA was detected at notable levels even in sections lacking visible fungal growth, while Alternaria toxins were found both in these regions and in lower fruit sections where fungal DNA was below the qPCR detection limit. These findings highlight the limitations of relying solely on visual inspection to assess food safety. A consumer recommendation is proposed to help minimize health risks while reducing food waste. Full article
Show Figures

Figure 1

26 pages, 4110 KB  
Article
Bentonite–Chitosan–Surfactant Composite with Antimicrobial, Antioxidant, and Mycotoxin Adsorption Properties
by Marija Marković, Aleksandra Daković, Milica Ožegović, Milena Obradović, Danina Krajišnik, Milena Pantić, Maja Kozarski and Jugoslav Krstić
Minerals 2026, 16(1), 118; https://doi.org/10.3390/min16010118 - 22 Jan 2026
Viewed by 87
Abstract
This study aimed to design a new composite with promising antimicrobial and antioxidant properties by a simple modification process of natural bentonite (B) with polysaccharide chitosan isolated from edible mushrooms Agaricus bisporus—ChM (sample B–ChM) and subsequently with a cationic surfactant—hexadecyltrimethylammonium bromide—HB (sample [...] Read more.
This study aimed to design a new composite with promising antimicrobial and antioxidant properties by a simple modification process of natural bentonite (B) with polysaccharide chitosan isolated from edible mushrooms Agaricus bisporus—ChM (sample B–ChM) and subsequently with a cationic surfactant—hexadecyltrimethylammonium bromide—HB (sample B–ChM–HB) for effective removal of mycotoxin zearalenone (ZEN). Characterization confirmed the presence of ChM in B–ChM and both ChM and HB in B–ChM–HB. Compared to non- or slightly inhibitory activity of B and B–ChM, B–ChM–HB showed fungicidal activity against yeast Candida albicans and mycotoxigenic mold Aspergillus flavus, with a reduction of 6.00 log10 (CFU/mL) and 5.32 log10 (CFU/mL), respectively. B–ChM–HB showed a very high neutralization ability on •DPPH (89.03%–95.99%) in the concentration range of 0.625–5.0 mg/mL, the highest ferrous ion chelating ability (80.25%) at a concentration of 0.625 mg/mL, and did not induce lipid peroxidation in the linoleic acid model system. While B and B–ChM exhibited low adsorption of ZEN, its adsorption by B–ChM–HB was significantly higher. The equilibrium results of B–ChM–HB for ZEN were in accordance with the linear isotherm model at pH 3 and 7, pointing out that hydrophobic interactions (partitioning process) were relevant for toxin adsorption by the composite. Similar maximum ZEN adsorbed amounts under the applied experimental conditions (14.4 mg/g) at both pH values suggested that its adsorption was independent of the pH. This study reported for the first time that a novel composite of B with ChM and HB showed promising antimicrobial and antioxidant properties and was an efficient adsorbent for mycotoxin ZEN. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

15 pages, 2366 KB  
Article
Identification of a Novel Dihydroneopterin Aldolase as a Key Enzyme for Patulin Biodegradation in Lactiplantibacillus plantarum 6076
by Yixiang Shi, Wenli Yang, Aidi Ding, Yuan Wang, Yu Wang and Qianqian Li
Toxins 2026, 18(1), 48; https://doi.org/10.3390/toxins18010048 - 16 Jan 2026
Viewed by 182
Abstract
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency [...] Read more.
Patulin (PAT) is a fatal mycotoxin that exerts serious threats to human and animal health. Biodegradation of PAT is considered to be one of the promising ways for controlling its contamination. In this study, Lactiplantibacillus plantarum 6076 (LP 6076) with reliable removal efficiency on PAT was screened out from three lactic acid bacteria (LAB) strains. It was found that the PAT was eliminated through degradation by LP 6076, and the intracellular proteins played a crucial role in PAT degradation with the induction of PAT. The proteomic analysis showed that the response of LP 6076 to PAT was by a concerted effort to repair DNA damage, in parallel to adaptive changes in cell wall biosynthesis and central metabolism. Eleven differentially expressed proteins with high fold changes were picked out and identified as PAT degradation candidate enzymes. The 3D structures of the candidate enzymes were predicted, and molecular docking between the enzymes and PAT was performed. Five enzymes, including Acetoin utilization AcuB protein (AU), GHKL domain-containing protein (GHLK), Dihydroneopterin aldolase (DA), YdeI/OmpD-associated family protein (YDEL), and Transcription regulator protein (TR), could dock with PAT with lower affinity and shorter distance. Through molecular docking analysis, DA was ultimately identified as a potential key degrading enzyme. The choice of DA was substantiated by its superior combination of strong binding affinity and a productive binding pose with PAT. VAL84 and GLN51 residues of DA were likely the active sites, forming four hydrogen bonds with PAT. Our study could accelerate the commercial application of biodegradation toward PAT decontamination. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 3873 KB  
Article
Eco-Friendly ZnO Nanomaterial Coatings for Photocatalytic Degradation of Emerging Organic Pollutants in Water Systems: Characterization and Performance
by Dušica Jovanović, Szabolcs Bognár, Nina Finčur, Vesna Despotović, Predrag Putnik, Branimir Bajac, Sandra Jakšić, Bojan Miljević and Daniela Šojić Merkulov
Nanomaterials 2026, 16(1), 23; https://doi.org/10.3390/nano16010023 - 24 Dec 2025
Viewed by 351
Abstract
The present study targets key limitation ‘separation after the process’ that is responsible for the loss of the photocatalyst in water treatment during heterogeneous photocatalysis. Therefore, eco-friendly nanostructured ZnO coatings were engineered by the doctor blade technique through the immobilization of green ZnO [...] Read more.
The present study targets key limitation ‘separation after the process’ that is responsible for the loss of the photocatalyst in water treatment during heterogeneous photocatalysis. Therefore, eco-friendly nanostructured ZnO coatings were engineered by the doctor blade technique through the immobilization of green ZnO nanomaterials onto alumina substrate. ZnO/BPE 30 and ZnO/BPE 60 coatings were obtained from banana peel extract-based ZnO powder (ZnO/BPE). Likewise, ZnO/GTE 30 and ZnO/GTE 60 were prepared using green tea extract-based ZnO powder (ZnO/GTE). XRD characterization verified hexagonal wurtzite ZnO phase, while HRSEM analysis revealed that the flat surface of ZnO/BPE had rod-like nanostructures below 120 nm, and ZnO/GTE had spherical, porous nanoparticle networks with less than 70 nm. According to UV–vis spectrometry, all four coatings have bandgaps of ~5 eV. The highest efficiency for the solar-driven photocatalytic degradation of emerging organic pollutants was for ciprofloxacin (among pesticides clomazone and tembotrione; pharmaceuticals ciprofloxacin and 17α-ethinylestradiol; and mycotoxin zearalenone) in ultrapure water with the presence of all studied ZnO-based coatings, after 60 min of simulated solar irradiation. Its highest removal (89.1%) was achieved with ZnO/GTE 30, also having good reusability across three consecutive cycles in river water, thus supporting the application of eco-friendly, immobilized ZnO nanomaterials for wastewater treatment and environmental remediation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (3rd Edition))
Show Figures

Graphical abstract

17 pages, 1002 KB  
Review
Application of Saccharomyces cerevisiae var. boulardii for Biological Detoxification of Chemical Contaminants in Foods: A Comprehensive Review
by Karina Nascimento Pereira, Amanda Cristina Dias de Oliveira, Handray Fernandes de Souza, Sana Ullah, Usama Nasir, Sher Ali and Carlos Augusto Fernandes de Oliveira
Foods 2025, 14(24), 4260; https://doi.org/10.3390/foods14244260 - 10 Dec 2025
Viewed by 884
Abstract
The global food supply is increasingly challenged by toxicologically relevant natural and synthetic chemicals, including mycotoxins, pesticides, heavy metals, and migrants from food packaging. Conventional physical and chemical detoxification approaches can reduce contaminant loads but may compromise nutritional and sensory quality or leave [...] Read more.
The global food supply is increasingly challenged by toxicologically relevant natural and synthetic chemicals, including mycotoxins, pesticides, heavy metals, and migrants from food packaging. Conventional physical and chemical detoxification approaches can reduce contaminant loads but may compromise nutritional and sensory quality or leave residues, motivating a shift toward biological strategies. This review synthesizes current evidence on Saccharomyces cerevisiae var. boulardii, a clinically established probiotic yeast, as a multifaceted biological detoxification agent in foods. We outline its dual modes of action: (i) rapid, reversible adsorption of contaminants mediated by the architecture of the yeast cell wall (β glucans, mannans, chitin), and (ii) active biotransformation through secreted proteins and enzymes. S. cerevisiae var. boulardii has been reported to remove up to 96.9% of aflatoxin M1 in reconstituted milk, depending on strain, dose, contact time, pH, and matrix effects. We collate findings for other contaminant classes and highlight practical variables that govern efficacy, while comparing detoxification performance with bacterial probiotics and conventional methods. Critical knowledge gaps were highlighted, including standardized testing protocols, mechanistic resolution of adsorption versus degradation, stability and regeneration of binding capacity, sensory impacts, with scale up and regulatory pathways. A roadmap is proposed to harmonize methods and unlock the full potential of this promising biotherapeutic yeast for food safety applications. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

21 pages, 1632 KB  
Article
Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2
by Carolina Gómez-Albarrán, Silvia Rodríguez-Pires, Alba Sáez-Matía, Carlos Luz, Belén Patiño and Jéssica Gil-Serna
Foods 2025, 14(24), 4181; https://doi.org/10.3390/foods14244181 - 5 Dec 2025
Viewed by 529
Abstract
The presence of mycotoxins in food poses a significant risk to food safety, and it is essential to develop effective and safe detoxification strategies. In this study, we demonstrate the strong ability of Pichia fermentans KCB21_L2, a yeast isolated from kefir, to eliminate [...] Read more.
The presence of mycotoxins in food poses a significant risk to food safety, and it is essential to develop effective and safe detoxification strategies. In this study, we demonstrate the strong ability of Pichia fermentans KCB21_L2, a yeast isolated from kefir, to eliminate aflatoxin B1, fumonisin B1 and ocratoxin A. Viable cells removed aflatoxin B1 and fumonisin B1 more efficiently than heat-inactivated cells, particularly at pH values of 5.5 and 7.0, suggesting the involvement of an active removal process. Subsequently, we evaluated the capacity of P. fermentans KCB21_L2 to remove mycotoxins at high concentrations and investigated the underlying molecular and cellular responses. The yeast effectively eliminated high levels of all three mycotoxins. Transcriptional analysis revealed the activation of metabolic pathways related to amino acid catabolism and fatty acid metabolism, likely reflecting an adaptive stress response. However, no significant upregulation of specific genes related to mycotoxin-degrading enzymes was observed. In conclusion, the reduction process may involve multiple factors, including stress response pathways, possible production of organic acids, adsorption of mycotoxins into the cell wall, and constitutively expressed enzymes capable of degrading mycotoxins. In general, these findings highlight the multifactorial nature of yeast-mediated mycotoxin removal and establish P. fermentans KCB21_L2 as a promising candidate for safe biological decontamination in food systems. Full article
(This article belongs to the Special Issue Microbial Detoxification of Mycotoxins in Food)
Show Figures

Figure 1

24 pages, 1672 KB  
Review
Innovative Detection and Mitigation of Ergot Alkaloids in Cereals: Advancing Food Safety
by Maria Balatsou, Aikaterini Koutsaviti, Yiannis Sarigiannis and Christos C. Petrou
Metabolites 2025, 15(12), 778; https://doi.org/10.3390/metabo15120778 - 3 Dec 2025
Viewed by 771
Abstract
Background/Objectives: Ergot alkaloids are mycotoxins produced mainly by fungi of the genus Claviceps, infecting a wide variety of plants, especially cereals. These toxins usually manifest as black, hardened sclerotia (ergots), though they may also be invisible when dispersed in grain. They [...] Read more.
Background/Objectives: Ergot alkaloids are mycotoxins produced mainly by fungi of the genus Claviceps, infecting a wide variety of plants, especially cereals. These toxins usually manifest as black, hardened sclerotia (ergots), though they may also be invisible when dispersed in grain. They pose a significant risk to animals and humans when present in contaminated cereals. They can cause ergotism, with vasoconstriction, ischemia, hallucinations, and in severe cases gangrene. This study was carried out in response to the European legislative actions which determine the permissible levels of ergot alkaloids in cereals. Historically, consumers manually removed visible sclerotia from grain, and farmers applied fertilizers or timed harvests to specific periods to mitigate contamination. However, these traditional methods have proven insufficient. We therefore explored advanced techniques for detecting and quantifying ergot-contaminated cereals, as well as methods for reducing ergot alkaloid concentrations. Methods: Searches were conducted in scientific databases including Google Scholar, PubMed, and Scopus to identify research articles, reviews, and experimental studies published mainly between 2012 and August 2025, including accepted or in-press manuscripts, with special attention to works from 2021 onward to capture the most recent advancements. Results/Conclusions: Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) is the reference method for confirmatory, epimer-aware quantification of ergot alkaloids, and is already standardized. Recent QuEChERS-UHPLC-MS/MS workflows in cereal matrices, including oat-based products, routinely achieve limits of quantification of about 0.5–1.0 µg/kg with single-run analysis times of about 5–15 min. Rapid screening options complement, rather than replace, confirmatory mass spectrometry: magnetic bead-based immunoassays that use magnetic separation and a smartphone-linked potentiostat provide sub-hour turnaround and field portability for trained quality-assurance staff, although external validation and calibration traceable to LC-MS/MS remain prerequisites for routine use. In practice, operators are adopting tiered, orthogonal workflows (e.g., immunoassay or electronic-nose triage at intake followed by DNA-based checks on grain washings and LC–MS/MS confirmation, or hydrazinolysis “sum parameter” screening followed by targeted MS speciation). Such combinations reduce turnaround time while preserving analytical rigor. Biotechnology also offers potential solutions for reducing ergot alkaloid concentrations at the source. Finally, to enhance consumer safety, artificial intelligence and blockchain-based food traceability appear highly effective. These systems can connect all stakeholders from producers to consumers, allowing for real-time updates on food safety and rapid responses to contamination issues. This review primarily synthesizes advances in analytical detection of ergot alkaloids, while mitigation strategies and supply chain traceability are covered concisely as supporting context for decision making. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Graphical abstract

22 pages, 2245 KB  
Review
Adsorption–Degradation Integrated Approaches to Mycotoxin Removal from Food Matrices: A Comprehensive Review
by Xiyu Yang, Mingjian Yao, Wenchao Liao and Xiaoyang Li
Toxins 2025, 17(11), 556; https://doi.org/10.3390/toxins17110556 - 12 Nov 2025
Viewed by 1446
Abstract
Mycotoxin contamination is a crucial issue in food safety. However, the removal of trace amounts of mycotoxins from complex food and feed matrices without significant loss of nutritional and flavor quality remains a significant challenge. The integrated adsorption–catalysis strategy involves immobilizing catalytic modules [...] Read more.
Mycotoxin contamination is a crucial issue in food safety. However, the removal of trace amounts of mycotoxins from complex food and feed matrices without significant loss of nutritional and flavor quality remains a significant challenge. The integrated adsorption–catalysis strategy involves immobilizing catalytic modules onto adsorption materials, enabling in situ degradation while enriching the mycotoxins. This approach can significantly reduce the dosage of detoxification agents and achieve efficient removal of trace mycotoxins in food. This review provides an overview of adsorbents with enrichment capabilities and their applications in the targeted removal of mycotoxins from food. The adsorption–degradation coupled systems are categorized into the following two main types: adsorption–photocatalysis coupled systems and adsorption–biocatalysis coupled systems. The review introduces recent advances in the design of bifunctional catalysts, focusing on their synergistic mechanisms and practical applications for detoxifying various mycotoxins in food matrices. Finally, the review discusses current industrial challenges and offers insights into future directions for this field. Full article
(This article belongs to the Special Issue Advances in Detection and Removal of Mycotoxins in Food)
Show Figures

Figure 1

16 pages, 316 KB  
Article
Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation
by Mamta Rani, Mohammad Jamil Kaddoura, Jamil Samsatly, Guy Chamberland, Suha Jabaji and Saji George
Toxins 2025, 17(11), 528; https://doi.org/10.3390/toxins17110528 - 28 Oct 2025
Viewed by 1908
Abstract
Cannabis plants are susceptible to microbial contamination, including fungi capable of producing harmful mycotoxins. The presence of these toxins in cannabis products poses serious health risks, especially when used for medical purposes in immunocompromised people. This study evaluated the presence of fungi and [...] Read more.
Cannabis plants are susceptible to microbial contamination, including fungi capable of producing harmful mycotoxins. The presence of these toxins in cannabis products poses serious health risks, especially when used for medical purposes in immunocompromised people. This study evaluated the presence of fungi and mycotoxins in dried cannabis buds following gamma irradiation, using culture-based techniques, PCR/qPCR, and ELISA. Irradiation significantly reduced fungal and bacterial loads, eliminating culturable bacteria but did not achieve complete sterilization. Viable spores of toxigenic fungal genera, such as Aspergillus, Penicillium, and Fusarium, persisted. Sequencing of ITS amplicons revealed dominant mycotoxigenic fungi in non-irradiated (NR), irradiated (IR) and licensed producer (LP) samples, while next-generation sequencing (NGS) revealed additional non-culturable toxigenic species. PCR/qPCR detected biosynthetic genes for aflatoxins, trichothecenes, ochratoxins, and deoxynivalenol across all samples, with gene copy numbers remaining stable post-irradiation, suggesting DNA damage without full degradation. ELISA confirmed aflatoxin, ochratoxin, DON, and T2 toxins in both IR and LP samples at variable concentrations. While LP samples showed lower microbial counts and gene abundance, residual DNA and toxins were still detected. Our study shows that while irradiation decreases microbial loads, it does not completely remove toxigenic fungi or their metabolites. Ensuring the safety of cannabis products necessitates a multifaceted assessment that incorporates cultural, molecular, and immunological techniques, in parallel with more stringent microbial standards during production stage. Full article
18 pages, 3033 KB  
Article
Self-Sufficient Aflatoxin Decontamination System: MOF-Based Composite Membrane with Peroxidase-Mimic and Controlled H2O2 Generation
by Xiaofei Cheng, Wenzhong Zhu, Xueting Zhu, Jinmin Zhang, Jia Yang, Huali Wang, Xiaoqin Mo, Chi Zhang and Lina Wu
Toxins 2025, 17(10), 516; https://doi.org/10.3390/toxins17100516 - 20 Oct 2025
Viewed by 904
Abstract
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative [...] Read more.
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative polyvinylidene fluoride (PVDF) composite membrane incorporating Fe/Co-based metal-organic frameworks (MOF) (Named Fe/Co-MIL-88B(NH2)) and CaO2 for targeted aflatoxin removal from milk. This system integrates two synergistic mechanisms: (1) hierarchical porous MOF structures enabling superior aflatoxin adsorption capacity and peroxidase-like catalytic activity, and (2) CaO2 acts as a controllable-release H2O2 donor, supplying a steady flux of reactive oxygen species without the addition of exogenous H2O2. Moreover, the PVDF membrane with mechanical stability offers uniform immobilization of active components, which prevents the aggregation of nanozymes. As a result, the integrated membrane achieves high degradation efficiency for AFB1 and AFM1, exceeding 95% within 60 min. By eliminating external oxidant addition and minimizing collateral nutrient damage, the technology demonstrates remarkable operational stability (>10 cycles) and milk quality preservation capability. This breakthrough establishes an efficient and reusable detoxification method, providing new opportunities for mycotoxin mitigation in dairy products through spatiotemporal control of reactive oxygen species. Full article
(This article belongs to the Special Issue Detection, Biosynthesis and Control of Mycotoxins (4th Edition))
Show Figures

Figure 1

16 pages, 574 KB  
Article
In Vitro Evaluation of Aflatoxin B1 Detoxification by Lactobacillus, Pediococcus, and Bacillus Strains
by Sarra Rafai, Ana Moreno, Alessandra Cimbalo, Pilar Vila-Donat, Lara Manyes and Giuseppe Meca
Toxins 2025, 17(8), 403; https://doi.org/10.3390/toxins17080403 - 11 Aug 2025
Cited by 2 | Viewed by 1810
Abstract
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in [...] Read more.
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in the human body once ingested. In this study, the detoxification potential of bacterial strains belonging to the genera Lactobacillus/Pediococcus (n = 10) and Bacillus (n = 10) was evaluated using extracts from naturally contaminated corn flour. Detoxification was assessed after incubation for 12, 24, and 48 h in specific culture media. AFB1 quantification and metabolite profiling were performed at each time point using Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS). The highest detoxification rates were observed with Lactobacillus curvatus 14 (L. curvatus 14) (41.1 ± 19.3%) and Pediococcus pentosaceus 4 (P. pentosaceus 4) (25.4 ± 11.3%) after 48 h, and Bacillus firmus 6 (B. firmus 6) (25.1 ± 12.9%) after 24 h. An in vitro digestion model was also applied to assess detoxification under gastrointestinal conditions. Results showed substantial AFB1 reduction at the colonic stage, reaching 72.26 ± 7.54% for P. pentosaceus 4 and 69.67 ± 9.70% for L. curvatus 14. These findings underscore the potential application of Lactobacillus, Pediococcus, and Bacillus strains in biological detoxification strategies to reduce dietary exposure to AFB1. Full article
(This article belongs to the Special Issue Aflatoxins: Contamination, Analysis and Control)
Show Figures

Figure 1

42 pages, 8737 KB  
Review
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Cited by 3 | Viewed by 7177
Abstract
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis [...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility. Full article
Show Figures

Graphical abstract

17 pages, 2819 KB  
Article
Isolation and Mechanistic Investigation of the Efficient Zearalenone-Removing Strain Bacillus licheniformis YJ25
by Yuting Wu, Feina Wu, Pan Zhao, Yan Gao, Mengyao Li, Mengjiao Luo, Qian Zhou, Siyuan Zhou, Xinhui Li, Yaling Hong, Yang Wu, Zhaorong Zhou, Yang Liu, Yandong Xia, Lijun Zou and Jia Yin
Toxins 2025, 17(6), 263; https://doi.org/10.3390/toxins17060263 - 23 May 2025
Cited by 1 | Viewed by 1145
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin produced by Fusarium graminearum species, poses a significant threat to both human food safety and animal feed quality. In this study, we isolated a strain, designated as Bacillus licheniformis YJ25, from a contaminated moldy corn sample, demonstrating [...] Read more.
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin produced by Fusarium graminearum species, poses a significant threat to both human food safety and animal feed quality. In this study, we isolated a strain, designated as Bacillus licheniformis YJ25, from a contaminated moldy corn sample, demonstrating substantial effectiveness in removing ZEN. Our findings revealed that YJ25’s ZEN removal occurs primarily through cell wall adsorption, with enzymatic degradation representing a potential mechanism. In practical applications, enzymatic degradation may yield metabolites with heightened toxicity. However, liquid chromatography–mass spectrometry (LC–MS) analysis revealed that ZEN was not converted into α-/β-zearalenol (α-/β-ZEL) or α-/β-zearalanol (α-/β-ZAL) by YJ25, substantiating the safety profile of YJ25 in the removal of ZEN. Our mechanistic investigations revealed that the cell wall components peptidoglycan and teichoic acid serve as the primary binding sites for ZEN adsorption. Fourier-transform infrared spectroscopy (FTIR) analysis identified O-H, C-H, C=O, and C-O as the principal functional groups participating in the cell wall adsorption process. These investigations establish a scientific foundation for the prospective application of this strain as an efficient biological detoxification agent in food and feed safety management systems. Full article
Show Figures

Graphical abstract

22 pages, 4725 KB  
Review
Advances in Ozone Technology for Environmental, Energy, Food and Medical Applications
by Kang Zhang, Jianzheng Liu, Hongkun Lv, Xianyang Zeng, Zhongqian Ling, Liwei Ding and Chenyang Jin
Processes 2025, 13(4), 1126; https://doi.org/10.3390/pr13041126 - 9 Apr 2025
Cited by 6 | Viewed by 3426
Abstract
Ozone (O3), a strong oxidizing agent, has found widespread applications since its structure was confirmed by Schubbe in 1839. It can be produced through ultraviolet radiation, electrochemical methods, or dielectric barrier discharge (DBD), with DBD being the most efficient for large-scale [...] Read more.
Ozone (O3), a strong oxidizing agent, has found widespread applications since its structure was confirmed by Schubbe in 1839. It can be produced through ultraviolet radiation, electrochemical methods, or dielectric barrier discharge (DBD), with DBD being the most efficient for large-scale production due to its high stability. Ozone is widely used in environmental management, particularly in water treatment, air pollution control, and soil remediation. In water treatment, ozone effectively removes microorganisms and contaminants without generating secondary pollutants. In air pollution control, it degrades organic compounds in industrial waste and neutralizes toxic gases in automobile exhausts. Ozone also breaks down persistent pollutants like polycyclic aromatic hydrocarbons in soil, improving soil quality. However, challenges remain related to ozone’s stability and high production costs. Beyond environmental uses, ozone is critical in industries and medicine. It helps remove pathogens and heavy metals in wastewater treatment, extends shelf life and deactivates mycotoxins in food processing, and shows promise in medical fields like orthopedics and cancer therapy. In the power industry, ozone plays a key role in water treatment and air purification. Overall, ozone technology offers significant potential for both environmental and industrial applications. Full article
Show Figures

Figure 1

19 pages, 2329 KB  
Article
Effects of Deoxynivalenol Detoxifier on Growth Performance, Blood Biochemical Indices, and Microbiota Composition of Piglets
by Luyao Zhang, Yongwei Wang, Weiwei Wang, Li Wang, Jingjing Shi, Junlin Cheng, Jing Zhang, Aike Li, Beibei He and Zhiyong Fan
Int. J. Mol. Sci. 2025, 26(5), 2045; https://doi.org/10.3390/ijms26052045 - 26 Feb 2025
Cited by 2 | Viewed by 1710
Abstract
Deoxynivalenol (DON), also known as vomitoxin, has a high detection and exceeding rate in feed and is prone to causing symptoms such as loss of appetite, weight loss, vomiting, and diarrhoea in animals, which brings great harm to the aquaculture industry. The common [...] Read more.
Deoxynivalenol (DON), also known as vomitoxin, has a high detection and exceeding rate in feed and is prone to causing symptoms such as loss of appetite, weight loss, vomiting, and diarrhoea in animals, which brings great harm to the aquaculture industry. The common mycotoxin adsorbents have low adsorption rates for DON, and the use of biological methods to remove DON in feeds has gradually become a research trend. One hundred and twenty crossbred barrows were randomly divided into four groups, which included the normal diet group (CON), normal diet + detoxifier group (Det), DON-polluted diet group (DON), and DON-polluted diet + DON detoxifier group (DON + Det); the experiment lasted for 28 d. The results showed that, compared with piglets fed a normal diet, those piglets fed DON-polluted diets significantly decreased their average daily gain (ADG) and average daily feed intake (ADFI) during the 1–14 d and 1–28 d periods; the content of immunoglobulin G (IgG), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), interleukin-4 (IL-4), and interleukin-10 (IL-10) in serum was decreased; and the content of aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), diamine oxidase (DAO), and endotoxin (LPS) was increased in pigs fed DON-polluted diets; meanwhile, feeding piglets DON-polluted diets significantly reduced the levels of acetic acid, propionic acid, and total short-chain fatty acids (SCFAs) as well as gut microbiota health index (GMHI) in piglet faeces, but increased the relative abundance of Treponema, Prevotellaceae_UGG-001, Lachnospiraceae_XPB1014_group, Frisingicoccus and Sphaerochaeta. In contrast, the addition of a composite detoxifier effectively ameliorated the reduction in ADG and ADFI in piglets caused by DON-polluted diets. It suppressed the reduction in CAT, SOD, GSH-PX, IL-4, and IL-10 and the elevation of TNF-α, IL-2, IL-6, IL-12, MDA, LPS, and DAO in serum; the composite detoxifier also restrained the decrease in SCFA in piglet faeces and increased the relative abundance of Ruminococcus, Lachnospiraceae_NK4A136_group, Lachnospiraceae_AC2044_group, UCG-009, and Eubacterium_siraeum_group bacteria. The composite detoxifier effectively mitigated the adverse effects of a DON-polluted diet on piglet growth performance, blood biochemical indices, and gut microbiota composition. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop