From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix
Abstract
1. Introduction
2. Results
2.1. Fungal Growth and Mycotoxin Production in Different Media
2.2. Inoculation Site Determines the Directionality and Depth of Fungal Migration in Tomato Tissues
2.3. Visual and Molecular Assessments of Fungal Growth in Cherry Tomato Tissue
- Level 1—Early contamination stage: Limited visible mold was observed on the fruit surface, typically around the pedicel, although minor internal fungal growth could also be detected.
- Level 2—Spreading stage: Signs of surface darkening became clearly apparent, while internal colonization extended up to 1 cm from the inoculation site, representing approximately 16% of the fruit’s total volume.
- Level 3—Invasive stage: Clear external mold symptoms were visible, and internal growth extended up to 1.5 cm deep, corresponding to approximately 28% of the total fruit volume. About half of the fruit tissue became softened and wrinkled around the visibly colonized surface.
- Level 4—Rotten stage: The fruit appeared visibly softened, blackened and wrinkled, with extensive internal fungal invasion reaching 2 cm deep, affecting nearly 60% of the fruit’s internal volume.
2.4. In Vivo Molecular Assessment and Production of Mycotoxins by Alternaria alternata in Cherry Tomatoes
2.5. Spatial Toxin Production Activity Based on Toxin to DNA Ratios
2.6. Diffusion of Toxins in Tomato Sections After Artificial Toxin Contamination
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Isolation, Culture Conditions and Molecular Identification of an Alternaria Strain
5.2. Fungal DNA Quantification
5.3. Preparation of Conidial Suspension
5.4. In Vitro Toxin Production Assay
5.5. In Vivo Inoculation Model
5.6. Artificial Toxin Contamination Model
5.7. Mycotoxin Extraction and Quantification
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A | Mobile Phase A |
| AOH | Alternariol |
| AME | Alternariol Monomethyl Ether |
| B | Mobile Phase B |
| bp | Base Pair(s) |
| CID | Collision-induced Dissociation |
| CIRAD | French Agricultural Research Centre for International Development |
| cm | Centimeter |
| cm2 | Square Centimeter |
| cm3 | Cubic Centimeter |
| dpi | Post-inoculation day |
| CTAB | Cetrimonium Bromide |
| DNA | Deoxyribonucleic Acid |
| EU | European Union |
| FAO | Food and Agriculture Organization of the United Nations |
| g | Gram |
| gpd | Glyceraldehyde-3-phosphate Dehydrogenase |
| HACCP | Hazard Analysis Critical Control Point |
| Kg | Kilogram |
| kPa | Kilopascal |
| LC-MS/MS | Liquid Chromatography With Tandem Mass Spectrometry |
| LOQ | Limit Of Quantification |
| MEA | Malt Extract Agar |
| Min | Minute |
| MN | Macherey-Nagel |
| MRM | Multiple Reaction Monitoring |
| NaCl | Sodium Chloride |
| Na2SO4 | Sodium Sulfate |
| PDA | Potato Dextrose Agar |
| PCR | Polymerase Chain Reaction |
| pKW | p-value Kruskal–Wallis |
| PTFE | Polytetrafluoroethylene |
| q | Qualifier Transition |
| Q | Quantifier Transition |
| qPCR | Quantitative Polymerase Chain Reaction |
| rRNA | Ribosomal Ribonucleic Acid |
| R | Pearson Correlation Coefficient |
| RT-PCR | Real-time Polymerase Chain Reaction |
| S(n) | Section (number) |
| TCA | Tomato Coulis Agar |
| TeA | Tenuazonic Acid |
| µg | Microgram |
| µL | Microliter |
| UV | Ultraviolet |
| mm | Millimeter |
References
- Yadav, A.; Kumar, N.; Upadhyay, A.; Sethi, S.; Singh, A. Edible Coating as Postharvest Management Strategy for Shelf-Life Extension of Fresh Tomato (Solanum lycopersicum L.): An Overview. J. Food Sci. 2022, 87, 2256–2290. [Google Scholar] [CrossRef] [PubMed]
- Coton, M.; Dantigny, P. Mycotoxin Migration in Moldy Foods. Curr. Opin. Food Sci. 2019, 29, 88–93. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Liao, Q.; Wang, Y.; Sui, Y.; Gong, C. Current Status and Future Trends of Eco-Friendly Management of Postharvest Fungal Decays in Tomato Fruit. npj Sci. Food 2025, 9, 104. [Google Scholar] [CrossRef]
- Nan, M.; Xue, H.; Bi, Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef]
- Ji, X.; Deng, T.; Xiao, Y.; Jin, C.; Lyu, W.; Wu, Z.; Wang, W.; Wang, X.; He, Q.; Yang, H. Emerging Alternaria and Fusarium Mycotoxins in Tomatoes and Derived Tomato Products from the China Market: Occurrence, Methods of Determination, and Risk Evaluation. Food Control 2023, 145, 109464. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Bianchini, A. Stability of Mycotoxins during Food Processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Hasan, H.A. Alternaria Mycotoxins in Black Rot Lesion of Tomato Fruit: Conditions and Regulation of Their Production. Acta Microbiol. Immunol. Hung. 1996, 43, 125–133. [Google Scholar] [CrossRef]
- Sun, F.; Fan, Y.; Dai, Y.; Tang, M.; Du, J.; Xu, A.; Liu, M.; Chu, Q.; Yu, D.; Tian, Y.; et al. Elucidating the Occurrence Patterns of Alternaria Toxin Tenuazonic Acid in Individual Tomatoes through MALDI-MSI and LC-MS/MS. Food Chem. 2025, 488, 144912. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P. Model Studies on the Diffusion Behavior of the Mycotoxin Patulin in Apples, Tomatoes, and Wheat Bread. Eur. Food Res. Technol. 2001, 212, 274–278. [Google Scholar] [CrossRef]
- Rodrigues, M.H.P.; Furlong, E.B. Fungal Diseases and Natural Defense Mechanisms of Tomatoes (Solanum lycopersicum): A Review. Physiol. Mol. Plant Pathol. 2022, 122, 101906. [Google Scholar] [CrossRef]
- Habib, W.; Masiello, M.; El Ghorayeb, R.; Gerges, E.; Susca, A.; Meca, G.; Quiles, J.M.; Logrieco, A.F.; Moretti, A. Mycotoxin Profile and Phylogeny of Pathogenic Alternaria Species Isolated from Symptomatic Tomato Plants in Lebanon. Toxins 2021, 13, 513. [Google Scholar] [CrossRef] [PubMed]
- Salotti, I.; Giorni, P.; Battilani, P. Biology, Ecology, and Epidemiology of Alternaria Species Affecting Tomato: Ground Information for the Development of a Predictive Model. Front. Plant Sci. 2024, 15, 1430965. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Xu, W.; Liu, W.; Xu, X.; Bi, Y.; Prusky, D. Aabrm1-Mediated Melanin Synthesis Is Essential to Growth and Development, Stress Adaption, and Pathogenicity in Alternaria Alternata. Front. Microbiol. 2023, 14, 1327765. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Fan, Y.; Jia, Q.; Duan, S.; Liu, F.; Jia, B.; Wang, G.; Guo, W.; Wang, C. The Potential of Alternaria Toxins Production by A. Alternata in Processing Tomatoes. Toxins 2022, 14, 827. [Google Scholar] [CrossRef]
- Dole, L.; Durand, N.; Poss, C.; Gousselot, M.; Strub, C.; Fontana, A.; Schorr-Galindo, S. Routine LC-MS/MS Method for Quantifying Alternaria Toxins in Tomatoes at Harvest Stage and during Processing. Food Addit. Contam. Part A 2025, 42, 774–785. [Google Scholar] [CrossRef]
- Salotti, I.; Giorni, P.; Dall’Asta, C.; Battilani, P. Modeling Temperature Requirements for Growth and Toxin Production of Alternaria Spp. Associated with Tomato. Toxins 2025, 17, 361. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; van der Fels-Klerx, H.J. Occurrence, Toxicity, Dietary Exposure, and Management of Alternaria Mycotoxins in Food and Feed: A Systematic Literature Review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70085. [Google Scholar] [CrossRef]
- Fehr, M.; Pahlke, G.; Fritz, J.; Christensen, M.O.; Boege, F.; Altemöller, M.; Podlech, J.; Marko, D. Alternariol Acts as a Topoisomerase Poison, Preferentially Affecting the IIalpha Isoform. Mol. Nutr. Food Res. 2009, 53, 441–451. [Google Scholar] [CrossRef]
- Commission Recommendation (EU) 2022/553 of Strada Lex Europe. Available online: https://www.stradalex.eu/en/se_src_publ_leg_eur_jo/toc/leg_eur_jo_3_20220406_107/doc/ojeu_2022.107.01.0090.01 (accessed on 16 December 2025).
- Arcella, D.; Eskola, M.; Gómez Ruiz, J.A. Dietary Exposure Assessment to Alternaria Toxins in the European Population, EFSA Report. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Brzonkalik, K.; Herrling, T.; Syldatk, C.; Neumann, A. Process Development for the Elucidation of Mycotoxin Formation in Alternaria Alternata. AMB Express 2011, 1, 27. [Google Scholar] [CrossRef]
- Stinson, E.E.; Osman, S.F.; Heisler, E.G.; Siciliano, J.; Bills, D.D. Mycotoxin Production in Whole Tomatoes, Apples, Oranges, and Lemons. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf00106a025 (accessed on 4 January 2026).
- Somma, S.; Pose, G.; Pardo, A.; Mulè, G.; Pinto, V.F.; Moretti, A.; Logrieco, A.F. AFLP Variability, Toxin Production, and Pathogenicity of Alternaria Species from Argentinean Tomato Fruits and Puree. Int. J. Food Microbiol. 2011, 145, 414–419. [Google Scholar] [CrossRef]
- Brzonkalik, K.; Hümmer, D.; Syldatk, C.; Neumann, A. Influence of pH and Carbon to Nitrogen Ratio on Mycotoxin Production by Alternaria Alternata in Submerged Cultivation. AMB Express 2012, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Swartz, D.D. Growth and Production of Mycotoxins by Alternaria alternata in Synthetic, Semisynthetic and Rice Media. J. Food Prot. 1985, 48, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Brzonkalik, K.; Herrling, T.; Syldatk, C.; Neumann, A. The Influence of Different Nitrogen and Carbon Sources on Mycotoxin Production in Alternaria alternata. Int. J. Food Microbiol. 2011, 147, 120–126. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, D.-S.; Kozukue, N.; Kim, H.-J.; Nishitani, Y.; Mizuno, M.; Levin, C.E.; Friedman, M. Protein, Free Amino Acid, Phenolic, β-Carotene, and Lycopene Content, and Antioxidative and Cancer Cell Inhibitory Effects of 12 Greenhouse-Grown Commercial Cherry Tomato Varieties. J. Food Compos. Anal. 2014, 34, 115–127. [Google Scholar] [CrossRef]
- Peptone Pepsique de Viande USP—BIOKAR Diagnostics. BIOKAR Diagn. Available online: https://www.solabia.com/biokar-diagnostics/fr/?s=peptone+pepsique+de+viande+USP (accessed on 19 December 2025).
- Pęksa, A.; Miedzianka, J.; Nemś, A. Amino Acid Composition of Flesh-Coloured Potatoes as Affected by Storage Conditions. Food Chem. 2018, 266, 335–342. [Google Scholar] [CrossRef]
- Mao, X.; Chen, A.; Qu, J.; Luo, P.; You, Y.; Gao, Y.; Dong, F.; Wu, Y.; Li, Y. New Insights into in Mycotoxins Production in Alternaria Infected Apple during Postharvest Storage. Postharvest Biol. Technol. 2023, 198, 112238. [Google Scholar] [CrossRef]
- Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of Six Alternaria Toxins with UPLC-MS/MS and Their Occurrence in Tomatoes and Tomato Products from the Swiss Market. Mycotoxin Res. 2011, 27, 265–271. [Google Scholar] [CrossRef]
- Maldonado Haro, M.L.; Cabrera, G.; Fernández Pinto, V.; Patriarca, A. Alternaria Toxins in Tomato Products from the Argentinean Market. Food Control 2023, 147, 109607. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Pietri, A.; Giorni, P. Alternaria Toxins in Tomato Products in Northern Italy in the Period 2017–2019. Food Addit. Contam. Part B 2021, 14, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Stickings, C.E. Studies in the Biochemistry of Micro-Organisms. 106. Metabolites of Alternaria Tenuis Auct.: The Structure of Tenuazonic Acid. Biochem. J. 1959, 72, 332–340. [Google Scholar] [CrossRef]
- Pinto, V.E.F.; Patriarca, A. Alternaria Species and Their Associated Mycotoxins. In Mycotoxigenic Fungi: Methods and Protocols; Moretti, A., Susca, A., Eds.; Springer: New York, NY, USA, 2017; pp. 13–32. [Google Scholar]
- Erastov, O.A.; Ignat’eva, S.N.; Saifullin, R.K. Differentiation Effect of Solvents on the Keto-Enol Equilibrium of Heterocyclic β-Dicarbonyl Compounds. Chem. Heterocycl. Compd. 1975, 11, 294–298. [Google Scholar] [CrossRef]
- Rolin, D.; Baldet, P.; Just, D.; Chevalier, C.; Biran, M.; Raymond, P. NMR Study of Low Subcellular pH during the Development of Cherry Tomato Fruit. Aust. J. Plant Physiol. 2000, 27, 61–69. [Google Scholar] [CrossRef]
- Olives, A.I.; Martin, M.A.; del Castillo, B.; Torija, M.E. Assaying Vitamins and Micronutrients in Tomato. In Tomatoes and Tomato Products; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Royles, B.J.L. Naturally Occurring Tetramic Acids: Structure, Isolation, and Synthesis. Available online: https://pubs.acs.org/doi/pdf/10.1021/cr00038a009 (accessed on 4 January 2026).
- van der Putten, A.; Elzing, A.; Visscher, W.; Barendrecht, E. Redox Potential and Electrocatalysis of O2 Reduction on Transition Metal Chelates. J. Electroanal. Chem. Interfacial Electrochem. 1987, 221, 95–104. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Moreno, D.A.; Ferreres, F.; del Mar Rubio-Wilhelmi, M.; Ruiz, J.M. Differential Responses of Five Cherry Tomato Varieties to Water Stress: Changes on Phenolic Metabolites and Related Enzymes. Phytochemistry 2011, 72, 723–729. [Google Scholar] [CrossRef]
- Morales-Roque, J.; Carrillo-Cárdenas, M.; Jayanthi, N.; Cruz, J.; Pandiyan, T. Theoretical and Experimental Interpretations of Phenol Oxidation by the Hydroxyl Radical. J. Mol. Struct. THEOCHEM 2009, 910, 74–79. [Google Scholar] [CrossRef]
- Soukup, S.T.; Kohn, B.N.; Pfeiffer, E.; Geisen, R.; Metzler, M.; Bunzel, M.; Kulling, S.E. Sulfoglucosides as Novel Modified Forms of the Mycotoxins Alternariol and Alternariol Monomethyl Ether. J. Agric. Food Chem. 2016, 64, 8892–8901. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M. Recent Advances on Alternaria Mycotoxins. Curr. Opin. Food Sci. 2017, 17, 57–61. [Google Scholar] [CrossRef]
- Pavón, M.Á.; González, I.; Martín, R.; García, T. A Real-Time Reverse-Transcriptase PCR Technique for Detection and Quantification of Viable Alternaria Spp. in Foodstuffs. Food Control 2012, 28, 286–294. [Google Scholar] [CrossRef]
- Leiminger, J.; Bäßler, E.; Knappe, C.; Bahnweg, G.; Hausladen, H. Quantification of Disease Progression of Alternaria Spp. on Potato Using Real-Time PCR. Eur. J. Plant Pathol. 2015, 141, 295–309. [Google Scholar] [CrossRef]
- Chhaya, R.S.; O’Brien, J.; Cummins, E. Feed to Fork Risk Assessment of Mycotoxins under Climate Change Influences—Recent Developments. Trends Food Sci. Technol. 2022, 126, 126–141. [Google Scholar] [CrossRef]
- (PDF) Introduction to Hazard Analysis and Critical Control Points (HACCP). Available online: https://www.researchgate.net/publication/340579693_Introduction_to_Hazard_Analysis_and_Critical_Control_Points_HACCP (accessed on 4 January 2026).
- Dudeja, P.; Singh, A. Food Safety from Farm-to-Fork—Food-Safety Issues Related to Processing. In Food Safety in the 21st Century; Academic Press: New York, NY, USA, 2017; pp. 203–216. [Google Scholar]
- FAO; University of Akureyri Symposium. FAO fisheries and aquaculture proceedings. In Proceedings of the International Seafood Trade: Challenges and Opportunities, Akureyri, Iceland, 1–2 February 2007; Einarsson, H., Emerson, W., Emerson, W.K., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Motarjemi, Y.; Stadler, R.H.; Studer, A.; Damiano, V. Application of the Haccp Approach for the Management of Processing Contaminants. In Process-Induced Food Toxicants; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 563–620. [Google Scholar]
- Berbee, M.L.; Pirseyedi, M.; Hubbard, S. Cochliobolus Phylogenetics and the Origin of Known, Highly Virulent Pathogens, Inferred from ITS and Glyceraldehyde-3-Phosphate Dehydrogenase Gene Sequences. Mycologia 1999, 91, 964–977. [Google Scholar] [CrossRef]
- Hong, S.G.; Cramer, R.A.; Lawrence, C.B.; Pryor, B.M. Alt a 1 Allergen Homologs from Alternaria and Related Taxa: Analysis of Phylogenetic Content and Secondary Structure. Fungal Genet. Biol. 2005, 42, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Butt, T.M. Effects of Successive Subculturing on Stability, Virulence, Conidial Yield, Germination and Shelf-Life of Entomopathogenic Fungi. J. Appl. Microbiol. 2011, 110, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, X.; Chen, C.; Cheng, Z.; Wang, W.; Yun, J. Successive Mycelial Subculturing Decreased Lignocellulase Activity and Increased ROS Accumulation in Volvariella Volvacea. Front. Microbiol. 2022, 13, 997485. [Google Scholar] [CrossRef]








| Medium | ||||
|---|---|---|---|---|
| Toxin (µg/cm2) | Day | MEA | PDA | TCA |
| 3 | 2.98–6.55 (b) 1 | 3.63–8.03 (b) 1 | 6.70–12.17 (b) 1 | |
| TEA | 7 | 11.74–24.11 (bc) 1 | 6.95–10.11 (b) 1 | 19.05–35.62 (c) 1 |
| 10 | 31.20–49.24 (cd) 1 | 30.06–68.86 (cd) 1 | 18.88–26.29 (c) 1 | |
| 3 | <LOQ–0.01 (a) 1 | 0.09–0.27 (ab) 1 | 0.01–0.03 (a) 1 | |
| AOH | 7 | 0.09–0.38 (ab) 1 | 0.12–0.25 (ab) 1 | 0.08–0.23 (ab) 1 |
| 10 | 19.79–26.84 (c) 1 | 0.71–0.89 (b) 1 | 0.52–1.11 (b) 1 | |
| 3 | <LOQ | 0.02–0.08 (a) 1 | <LOQ | |
| AME | 7 | <LOQ–0.01 (a) 1 | 0.25–0.46 (ab) 1 | 0.01–0.06 (a) 1 |
| 10 | 9.94–15.56 (bc) 1 | 0.16–0.22 (ab) 1 | 0.08–0.20 (ab) 1 | |
| DPI | 8 °C | 25°C | Depth (cm) | Section |
|---|---|---|---|---|
| 3 | ![]() | ![]() | 0–0.5 | S1 |
| 0.5–1 | S2 | |||
| 1–1.5 | S3 | |||
| 1.5–2 | S4 | |||
| 2–2.5 | S5 | |||
| 7 | ![]() | 0–0.5 | S1 | |
| 0.5–1 | S2 | |||
| 1–1.5 | S3 | |||
| 1.5–2 | S4 | |||
| 2–2.5 | S5 | |||
| 10 | ![]() | 0–0.5 | S1 | |
| 0.5–1 | S2 | |||
| 1–1.5 | S3 | |||
| 1.5–2 | S4 | |||
| 2–2.5 | S5 | |||
| 14 | ![]() | ![]() | 0–0.5 | S1 |
| 0.5–1 | S2 | |||
| 1–1.5 | S3 | |||
| 1.5–2 | S4 | |||
| 2–2.5 | S5 |
| Contamination Level | External Morphology 1 | Internal Morphology 2 |
|---|---|---|
| 1 Early contamination | ![]() | ![]() |
| 2 Spreading | ![]() | ![]() |
| 3 Invasive | ![]() | ![]() |
| 4 Rotten | ![]() | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Trinh, H.M.T.; Dole, L.; Nazet, C.; Jourdan, C.; Martinez, V.; Poss, C.; Durand, N.; Strub, C.; Fontana-Tachon, A.; Schorr-Galindo, S. From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix. Toxins 2026, 18, 70. https://doi.org/10.3390/toxins18020070
Trinh HMT, Dole L, Nazet C, Jourdan C, Martinez V, Poss C, Durand N, Strub C, Fontana-Tachon A, Schorr-Galindo S. From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix. Toxins. 2026; 18(2):70. https://doi.org/10.3390/toxins18020070
Chicago/Turabian StyleTrinh, Huynh Minh Tan, Léna Dole, Coline Nazet, Christophe Jourdan, Véronique Martinez, Charlie Poss, Noël Durand, Caroline Strub, Angélique Fontana-Tachon, and Sabine Schorr-Galindo. 2026. "From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix" Toxins 18, no. 2: 70. https://doi.org/10.3390/toxins18020070
APA StyleTrinh, H. M. T., Dole, L., Nazet, C., Jourdan, C., Martinez, V., Poss, C., Durand, N., Strub, C., Fontana-Tachon, A., & Schorr-Galindo, S. (2026). From Surface Colonies to Internal Contamination: A Comprehensive Investigation of Alternaria alternata Growth, Toxinogenesis, and Mycotoxin Migration Dynamics in Cherry Tomato Fruit Matrix. Toxins, 18(2), 70. https://doi.org/10.3390/toxins18020070















