Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation
Abstract
1. Introduction
2. Results
2.1. Isolation and Identification of Microorganisms
2.1.1. Culture-Based Methods to Enumerate Microbial Contamination
2.1.2. Identification of Microbial Communities by NGS
2.2. Detection of Mycotoxin-Related Genes Using Conventional PCR and Quantification Using qPCR
2.3. Detection of Mycotoxins by Enzyme-Linked Immunosorbent Assay (ELISA)
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Collection and Preparation
5.2. Culture Media and Chemicals
5.3. Molecular Biology Reagents and Sequencing
5.4. Enzyme-Linked Immunosorbent Assay (ELISA) Reagents
5.5. Isolation and Identification of Microorganisms
5.5.1. Culture-Based Methods
Direct Plating Method
Dilution Plating Method
5.5.2. Identification of Isolates by ITS and 16S Sequencing
5.5.3. Identification of Microbial Communities by NGS
5.6. Detection and Quantification of Mycotoxigenic Fungal Genes
5.6.1. Detection of Mycotoxins Related Genes Using Conventional PCR
5.6.2. Quantification of Mycotoxins Related Genes Using qPCR
Primer and Probe Design
Absolute Quantification of Mycotoxin Genes
Singleplex and Multiplex qPCR Assays
5.6.3. Detection of Mycotoxins by Enzyme-Linked Immunosorbent Assay (ELISA)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bemvenuti, R.; Mendes, G.; Scaglioni, P.; Badiale-Furlong, E.; Souza-Soares, L. Biochemistry and metabolism of mycotoxins: A review. Afr. J. Food Sci. 2010, 5, 861–869. [Google Scholar]
- Moss, M. The environmental factors controlling mycotoxin formation. Mycotoxins Anim. Foods 1991, 23, 37–56. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef]
- Goda, A.A.; Shi, J.; Xu, J.; Liu, X.; Zhou, Y.; Xiao, L.; Abdel-Galil, M.; Salem, S.H.; Ayad, E.G.; Deabes, M.; et al. Global health and economic impacts of mycotoxins: A comprehensive review. Environ. Sci. Eur. 2025, 37, 122. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Mafe, A.N.; Büsselberg, D. Mycotoxins in food: Cancer risks and strategies for control. Foods 2024, 13, 3502. [Google Scholar] [CrossRef]
- Nazareth, T.d.M.; Soriano Pérez, E.; Luz, C.; Meca, G.; Quiles, J.M. Comprehensive review of aflatoxin and ochratoxin A dynamics: Emergence, toxicological impact, and advanced control strategies. Foods 2024, 13, 1920. [Google Scholar] [CrossRef]
- Punja, Z.K.; Collyer, D.; Scott, C.; Lung, S.; Holmes, J.; Sutton, D. Pathogens and molds affecting production and quality of Cannabis sativa L. Front. Plant Sci. 2019, 10, 1120. [Google Scholar]
- Punja, Z.K.; Tittlemier, S.A.; Walkowiak, S. Fusarium Species Infecting Greenhouse-Grown Cannabis (Cannabis sativa) Plants Show Potential for Mycotoxin Production in Inoculated Inflorescences and from Natural Inoculum Sources. J. Fungi 2025, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K.; Sutton, D.B.; Kim, T. Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing cannabis (Cannabis sativa L.) inflorescences. J. Cannabis Res. 2023, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, K.D.; Leung, M.C.K.; Stephens, A.B.; Punja, Z.K. Fungal and mycotoxin contaminants in cannabis and hemp flowers: Implications for consumer health and directions for further research. Front. Microbiol. 2023, 14, 1278189. [Google Scholar] [CrossRef] [PubMed]
- Vujanovic, V.; Korber, D.R.; Vujanovic, S.; Vujanovic, J.; Jabaji, S. Scientific Prospects for Cannabis-Microbiome Research to Ensure Quality and Safety of Products. Microorganisms 2020, 8, 290. [Google Scholar] [CrossRef]
- Stephens, A.B.; Rivera, A.B.; Cahill, T.M.; Leung, M.C. Evaluation of Fusarium Mycotoxins and Fungal Metabolites in Seized Cannabis in Arizona and California, 2023–2024. Environ. Health Perspect. 2025, 133, 047701. [Google Scholar] [CrossRef]
- Spampinato, G.; Candeliere, F.; Amaretti, A.; Paris, R.; Montanari, M.; Virzì, N.; Strani, L.; Citti, C.; Cannazza, G.; Rossi, M. A three-years survey of microbial contaminants in industrial hemp inflorescences from two Italian cultivation sites. J. Cannabis Res. 2024, 6, 31. [Google Scholar] [CrossRef]
- Remington, T.L.; Fuller, J.; Chiu, I. Chronic necrotizing pulmonary aspergillosis in a patient with diabetes and marijuana use. CMAJ 2015, 187, 1305–1308. [Google Scholar] [CrossRef]
- Cescon, D.W.; Page, A.V.; Richardson, S.; Moore, M.J.; Boerner, S.; Gold, W.L. Invasive pulmonary aspergillosis associated with marijuana use in a man with colorectal cancer. J. Clin. Oncol. 2008, 26, 2214–2215. [Google Scholar] [CrossRef]
- Faccioli, E.; Pezzuto, F.; Dell’Amore, A.; Lunardi, F.; Giraudo, C.; Mammana, M.; Schiavon, M.; Cirnelli, A.; Loy, M.; Calabrese, F. Fatal early-onset aspergillosis in a recipient receiving lungs from a marijuana-smoking donor: A word of caution. Transpl. Int. 2022, 35, 10070. [Google Scholar] [CrossRef]
- Benedict, K.; Thompson III, G.R.; Jackson, B.R. Cannabis use and fungal infections in a commercially insured population, United States, 2016. Emerg. Infect. Dis. 2020, 26, 1308. [Google Scholar] [CrossRef]
- Kearney-Ramos, T.; Herrmann, E.S.; Belluomo, I.; Matias, I.; Vallée, M.; Monlezun, S.; Piazza, P.V.; Haney, M. The relationship between circulating endogenous cannabinoids and the effects of smoked cannabis. Cannabis Cannabinoid Res. 2023, 8, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- McKernan, K.; Spangler, J.; Zhang, L.; Tadigotla, V.; Helbert, Y.; Foss, T.; Smith, D. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Research 2016, 4, 1422. [Google Scholar] [CrossRef] [PubMed]
- McKernan, K.; Spangler, J.; Helbert, Y.; Lynch, R.C.; Devitt-Lee, A.; Zhang, L.; Orphe, W.; Warner, J.; Foss, T.; Hudalla, C. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research 2016, 5, 2471. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag. Sci. 2021, 77, 3857–3870. [Google Scholar] [CrossRef]
- Tarasconi, L.; Dazuk, V.; Molosse, V.L.; Cécere, B.G.O.; Deolindo, G.L.; Mendes, R.E.; Gloria, E.M.; Ternus, E.M.; Galli, G.M.; Paiano, D.; et al. Nursery pigs fed with feed contaminated by aflatoxin B1 (Aspergillus flavus) and anti-mycotoxin blend: Pathogenesis and negative impact on animal health and weight gain. Microb. Pathog. 2024, 186, 106474. [Google Scholar] [CrossRef]
- Giomo, P.P.; Neuenfeldt, N.H.; Braga, P.A.D.C.; Bragotto, A.P.A.; Rocha, L.D.O. Assessment of mycotoxin contamination in cereal-based baby foods destined for infant consumption in Brazil. Food Control 2024, 164, 110561. [Google Scholar] [CrossRef]
- Muhmood, A.; Liu, J.; Liu, D.; Liu, S.; Azzam, M.M.; Junaid, M.B.; Hou, L.; Le, G.; Huang, K. Mitigation of Deoxynivalenol (DON)- and Aflatoxin B1 (AFB1)-Induced Immune Dysfunction and Apoptosis in Mouse Spleen by Curcumin. Toxins 2024, 16, 356. [Google Scholar] [CrossRef]
- Oliveira, A.G.L.d.; Fernandes, R.B.; Santos, F.d.S.; Silva, I.d.S.d.; Gatti, M.J.d.A.; Moraes, A.M.L.d.; Mello-Silva, C.C.; Santos, C.P. Filamentous fungi associated with the brown mussel, Perna perna (Bivalvia: Mytilidae), off the coast of Rio de Janeiro, Brazil. Mar. Biol. Res. 2024, 20, 123–137. [Google Scholar] [CrossRef]
- San Phyo, S.T.; Maneeboon, T.; Mahakarnchanakul, W.; Chuaysrinule, C. Prevalence and risk assessment of aflatoxins and ochratoxin A in dried chili and pepper products in Myanmar. J. Agric. Food Res. 2024, 18, 101541. [Google Scholar] [CrossRef]
- Corallo, A.B.; del Palacio, A.; Oliver, M.; Stewart, S.; Pareja, L.; Pan, D. Ecophysiology of Fusarium graminearum and Fusarium proliferatum on sorghum grains. Int. J. Food Microbiol. 2025, 442, 111380. [Google Scholar] [CrossRef]
- Mahmoud, A.L.E.; Kilany, A.H.M.; Hassan, E.A. Antifungal activity of Lysinibacillus macroides against toxigenic Aspergillus flavus and Fusarium proliferatum and analysis of its mycotoxin minimization potential. BMC Microbiol. 2023, 23, 269. [Google Scholar] [CrossRef] [PubMed]
- Rämö, S.; Ghimire, S.; Haapalainen, M.; Latvala, S. Fumonisin production and symptom development in onion (Allium cepa) inoculated with Fusarium proliferatum. Mycotoxin Res. 2025, 41, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Sun, X.; Huang, C.; Ji, J.; Sun, J.; Zhang, Y.; Wang, J.-S.; Zhao, H.; Sun, X. Metabolic transformation of cyclopiazonic acid in liver microsomes from different species based on UPLC-Q/TOF-MS. J. Hazard. Mater. 2024, 476, 134902. [Google Scholar] [CrossRef] [PubMed]
- Fliszár-Nyúl, E.; Faisal, Z.; Skaper, R.; Lemli, B.; Bayartsetseg, B.; Hetényi, C.; Gömbös, P.; Szabó, A.; Poór, M. Interaction of the Emerging Mycotoxins Beauvericin, Cyclopiazonic Acid, and Sterigmatocystin with Human Serum Albumin. Biomolecules 2022, 12, 1106. [Google Scholar] [CrossRef]
- Muhammad, M.; Ahmad, J.; Basit, A.; Mohamed, H.I.; Khan, A.; Kamel, E.A.R. Chapter 18—Antimicrobial activity of Penicillium species metabolites. In Fungal Secondary Metabolites; Abd-Elsalam, K.A., Mohamed, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 369–383. [Google Scholar]
- Spadaro, D.; Lorè, A.; Amatulli, M.T.; Garibaldi, A.; Gullino, M.L. First report of Penicillium griseofulvum causing blue mold on stored apples in Italy (Piedmont). Plant Dis. 2011, 95, 76. [Google Scholar] [CrossRef]
- Zhao, W.; Hong, S.-Y.; Om, A.-S. Comparative genome analysis of patulin-producing Penicillium paneum OM1 isolated from pears. PeerJ 2025, 13, e19848. [Google Scholar] [CrossRef]
- Nicoletti, R.; Andolfi, A.; Becchimanzi, A.; Salvatore, M.M. Anti-Insect Properties of Penicillium Secondary Metabolites. Microorganisms 2023, 11, 1302. [Google Scholar] [CrossRef]
- Day, J.B.; Mantle, P.G. Biosynthesis of radiolabeled verruculogen by Penicillium simplicissimum. Appl. Environ. Microbiol. 1982, 43, 514–516. [Google Scholar] [CrossRef]
- Canada, H. Guidance Document: Good Production Practices Guide for Cannabis: Testing for Contaminants: 5.3.1.2. Available online: https://www.canada.ca/en/health-canada/services/cannabis-regulations-licensedproducers/good-production-practices-guide/guidance-document.html#a5.1 (accessed on 10 September 2025).
- Commission, E. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 10 September 2025).
- World Health Organization. Mycotoxins. Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/mycotoxins (accessed on 10 September 2025).
- Fujikawa, H.; Itoh, T. Tailing of thermal inactivation curve of Aspergillus niger spores. Appl. Environ. Microbiol. 1996, 62, 3745–3749. [Google Scholar] [CrossRef]
- Gautam, A.K.; Kant, M.; Thakur, Y. Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch. Phytopathol. Plant Prot. 2013, 46, 627–635. [Google Scholar] [CrossRef]
- Beauvais, A.; Fontaine, T.; Aimanianda, V.; Latgé, J.-P. Aspergillus cell wall and biofilm. Mycopathologia 2014, 178, 371–377. [Google Scholar] [CrossRef]
- Cordero, R.J.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef]
- Cortesão, M.; De Haas, A.; Unterbusch, R.; Fujimori, A.; Schütze, T.; Meyer, V.; Moeller, R. Aspergillus niger spores are highly resistant to space radiation. Front. Microbiol. 2020, 11, 560. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Cavalera, S.; Baggiani, C.; Chiarello, M.; Pazzi, M.; Anfossi, L. Enzyme immunoassay for measuring aflatoxin B1 in legal cannabis. Toxins 2020, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Hughes Kramer, K.; Marino, C.C.; Driscoll, E.; Cheng, S.; Phillips, K.; Volpe, P.J.; Clancy, C.J.; Nguyen, M.H. Medical Cannabis as the Source of Cryptococcus neoformans Infection. Clin. Infect. Dis. 2025, ciaf431. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. Uchime improves sensitivity and speed of chimera detection. Bioinformatics. 2011, 27, 2194-200. [Google Scholar] [CrossRef]
- Vegi, A.; Wolf-Hall, C.E. Multiplex real-time PCR method for detection and quantification of mycotoxigenic fungi belonging to three different genera. J. Food Sci. 2013, 78, M70–M76. [Google Scholar] [CrossRef]
- Zheng, Z.; Humphrey, C.W.; King, R.S.; Richard, J.L. Validation of an ELISA test kit for the detection of total aflatoxins in grain and grain products by comparison with HPLC. Mycopathologia 2005, 159, 255–263. [Google Scholar] [CrossRef]
| Sample | Cultivation | Chemotype | THC% | CBD% | Terpenes | Lot No. |
|---|---|---|---|---|---|---|
| NR 1 | GH | N/A | N/A | N/A | N/A | 2030 |
| IR 2 | GH | N/A | N/A | N/A | N/A | 2030 |
| LP1 | H.GH | Sativa | 15–21 | 0–1 | Caryophyllene, Limonene, Myrcene | 1104020000 579 |
| LP2 | H.GH | Indica | 20–26 | 0–1 | Caryophyllene, Humulene, Myrcene, Nerolidol, Pinene | AAA-112829 |
| LP3 | IN | Indica | 12–16 | 0–1 | Limonene, Terpinolene, Pinene | 1001095 |
| LP4 | GH | Sativa | 15–23 | 0–1 | Alpha-Pinene, Alpha-Santalene, Beta-Caryophyllene, Myrcene, Selinadienes | HOU9232E0 |
| LP5 | IN | Sativa | 15–18 | 0–1 | Caryophyllene, Myrcene, Humulene | 82333 |
| LP6 | GH | Hybrid | 12–20 | 0–1 | Caryophyllene, Humulene, Limonene, Linalool, Myrcene, Nerolidol, Pinene | 3101719322 |
| LP7 | IN | Hybrid | 15–20 | 0–1 | Alpha-Pinene, Limonene, Myrcene, Terpinolene, Trans-Caryophyllene | JG01P-0031-A |
| LP8 | IN | Indica | 14–21 | 0–2 | Alpha-Pinene, Beta-Caryophyllene, Beta-Myrcene, Beta-Pinene, Limonene | 2002156 |
| LP9 | GH | Hybrid | 17–23 | 0–0.5 | Beta-Caryophyllene, Humulene, Limonene, Myrcene, Trans-Caryophyllene | 7B3L1 |
| LP10 | H.GH | Hybrid | 13–16 | 0–1 | N/A | 247 |
| Sample | CFU | Bacteria | CFU | Fungi |
|---|---|---|---|---|
| NR 1 | 7 × 103 | Enterobacter hormaechei Pseudomonas aeruginosa | 5 × 104 | A. flavus, A. japonicus, A. ochraceus, A. sclerotiorum, A. tamarii, F. proliferatum, C. oxysporum, P. copticola, P. citrinum, P. griseofulvum |
| IR 2 | 0 | 3 × 104 | A. flavus, C. tenuissimum, P. commune, P. copticola, P. citrinum, P. griseofulvum | |
| LP1 | 2 × 103 | Methylobacterium tardum Pseudomonas aeruginosa | 0 | N/A |
| LP2 | 0 | 0 | N/A | |
| LP3 | 0 | 0 | N/A | |
| LP4 | 0 | 0 | N/A | |
| LP5 | 2 × 103 | Pseudomonas sp. Pseudomonas aeruginosa | 1.2 × 104 | A. niger, A. tamarii, A. tubingensis, A. piperis, A. sydowii, A. awamori, A. chevalieri, C. globosum, P citrinum, P. commune |
| LP6 | 0 | 0 | ||
| LP7 | 0 | 2 × 103 | A. niger, P. citrinum, | |
| LP8 | 0 | 0 | N/A | |
| LP9 | 0 | 0 | N/A | |
| LP10 | 0 | 0 | N/A |
| Major Mycotoxins 1 | Fungal Species | Health Hazards | References |
|---|---|---|---|
| AFB1/B2, AFG1/G2 | A. flavus | Hepatotoxic, carcinogenic | [25,26,27] |
| OTA | A. japonicus, A. ochraceus, A. sclerotiorum | Genotoxic, immunosuppressive, teratogenic, mutagenic | [28,29] |
| FB1, FB2 | F. proliferatum | Teratogenic, carcinogenic, neurotoxic | [30,31,32] |
| CPA | A. tamarii, P. commune | Nephrotoxic, hepatotoxic, neurotoxic | [33,34] |
| Roquefortine C | P. commune | Neurotoxic | [33,34] |
| Patulin | P. copticola, P. griseofulvum | Carcinogenic | [35,36,37] |
| Citrinin | P. copticola, P. citrinum | Nephrotoxic | [35] |
| Verruculogen | P. simplicissimum | Neurotoxic | [38,39] |
| Sample | Nor1 | T5 | Pks | DON | ||||
|---|---|---|---|---|---|---|---|---|
| Cq 1 | Copies 2 | Cq 1 | Copies 2 | Cq 1 | Copies 2 | Cq 1 | Copies 2 | |
| NR | 22.4 ± 0.2 | 8.0 × 107 | 28.6 ± 0.1 | 4.83 × 108 | 24.5 ± 0.4 | 2.11 × 109 | 28.3 ± 0.4 | 2.07 × 1011 |
| IR | 22.6 ± 0.1 | 7.1 × 107 | 28.7 ± 0.1 | 4.65 × 108 | 24.9 ± 0.3 | 1.69 × 109 | 29.6 ± 0.2 | 6.57 × 1010 |
| LP1 | 0 + 00 | 0.0 | 36.7 ± 0.1 | 1.8 × 106 | 31.3 ± 0.3 | 1.58 × 107 | 35.7 ± 0.1 | 3.3 × 106 |
| LP2 | 35 ± 1 | 1.6 × 105 | 36.5 ± 0.2 | 2.0 × 106 | 27.9 ± 0.2 | 1.62 × 108 | 35.2 ± 0.3 | 4.5 × 106 |
| LP3 | 35.8 ± 0.8 | 8.7 × 104 | 34.8 ± 0.7 | 5.8 × 106 | 26.4 ± 0.1 | 4.78 × 108 | 34.7 ± 0.6 | 6.3 × 106 |
| LP4 | 35.0 ± 0.1 | 1.6 × 105 | 0 + 00 | 0.0 | 26.5 ± 0.2 | 4.35 × 108 | 34.7 ± 0.2 | 6.0 × 106 |
| LP5 | 35.3 ± 0.3 | 1.3 × 105 | 35.2 ± 0.1 | 4.4 × 106 | 32.2 ± 0.4 | 8.30 × 106 | 34.4 ± 0.4 | 7.7 × 106 |
| LP6 | 34.8 ± 0.2 | 1.7 × 105 | 34.5 ± 0.5 | 7.0 × 106 | 27.0 ± 1 | 3.08 × 108 | 32.8 ± 0.1 | 2.0 × 107 |
| LP7 | 35.3 ± 0.2 | 1.1 × 105 | 35.2 ± 0.2 | 4.5 × 106 | 25.9 ± 0.3 | 6.73 × 108 | 33.3 ± 0.4 | 1.5 × 107 |
| LP8 | 35.0 ± 0.8 | 1.6 × 105 | 37.8 ± 0.1 | 8.6 × 105 | 26.9 ± 0.2 | 3.30 × 108 | 32.0 ± 0.3 | 3.3 × 107 |
| LP9 | 0 + 00 | 0.0 | 0 + 00 | 0.0 | 0 + 00 | 0.0 | 33.8 ± 0.1 | 1.1 × 107 |
| LP10 | 35.3 ± 0.3 | 1.2 × 105 | 0 + 00 | 0.0 | 31.4 ± 0.1 | 1.50 × 107 | 32.1 ± 0.4 | 3.1 × 107 |
| Sample | Ochratoxins | Aflatoxins | Deoxynivalenol | T2 Toxin |
|---|---|---|---|---|
| NR | 8.1 ± 0.08 | 5.7 ± 1.09 | 2.08 ± 0.07 | <LOD |
| IR | 6.3 ± 0.7 | 4.9 ± 0.4 | 2.05 ± 0.5 | <LOD |
| LP1 | 2.5 ± 0.12 | <LOD | <LOD | <LOD |
| LP2 | 2.2 ± 0.2 | <LOD | 0.81 ± 0.2 | <LOD |
| LP3 | <LOD | <LOD | 0.45 ± 0.0 | <LOD |
| LP4 | <LOD | <LOD | <LOD | <LOD |
| LP5 | 3.8 ± 0.9 | <LOD | <LOD | <LOD |
| LP6 | 2.3 ± 0.4 | <LOD | <LOD | <LOD |
| LP7 | 2.2 ± 0.2 | <LOD | <LOD | <LOD |
| LP8 | 3.6 ± 0.4 | <LOD | <LOD | <LOD |
| LP9 | 2.8 ± 0.3 | <LOD | <LOD | 21 ± 0.5 |
| LP10 | 2.5 ± 0.1 | <LOD | <LOD | 23.8 ± 0.2 |
| Toxin 1 | Primer | Sequence | Amplicon | References |
|---|---|---|---|---|
| Aflatoxin | Nor1-F | 5′-ATGTATGCTCCCGTCCTACT-3′ | 396 | This study |
| (AY371490.1) | Nor1-R | 5′-ATGTTGGTGATGGTGCTGAT-3′ | ||
| Probe | 5′ FAM-ACAAACTTGGCCTGTTGCTTGGAC-IB 3′ | |||
| Trichodiene | Tri5-F | 5′-TCTTAACACTAGCGTGCGCCTTCT-3′ | 193 | [53] |
| (AF336366) | Tri5-R | 5′-CATGCCAACGATTGTTTGGAGGGA-3′ | ||
| Probe | 5′ HEX-AACAAGGCTGCCCACCACTTTGCTCAGCCT-IB 3′ | |||
| Deoxynivalenol | Tri13-F | 5′-CTTGTGCGAGTTTGGGTATTG-3′ | 282 | This study |
| (AY064209) | Tri13-R | 5′-AGTGTACTCAGCATCCGATATG-3′ | ||
| Probe | 5′ Cy3-CCTGGGTTGGAAGGAATGGAGACC-IB 3′ | |||
| Ochratoxin | Pks-F | 5′-AGTGATGACTGGAGGGAGGTGAAT-3′ | 199 | [53] |
| (AY320069) | Pks-R | 5′-ACGAGCATGCGGTATCAATGGTCA-3′ | ||
| Probe | 5′ TR-TTGTCCGGCAGGATCAGGTGCCCACCATT-IB 3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, M.; Kaddoura, M.J.; Samsatly, J.; Chamberland, G.; Jabaji, S.; George, S. Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation. Toxins 2025, 17, 528. https://doi.org/10.3390/toxins17110528
Rani M, Kaddoura MJ, Samsatly J, Chamberland G, Jabaji S, George S. Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation. Toxins. 2025; 17(11):528. https://doi.org/10.3390/toxins17110528
Chicago/Turabian StyleRani, Mamta, Mohammad Jamil Kaddoura, Jamil Samsatly, Guy Chamberland, Suha Jabaji, and Saji George. 2025. "Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation" Toxins 17, no. 11: 528. https://doi.org/10.3390/toxins17110528
APA StyleRani, M., Kaddoura, M. J., Samsatly, J., Chamberland, G., Jabaji, S., & George, S. (2025). Detection of Mycotoxigenic Fungi and Residual Mycotoxins in Cannabis Buds Following Gamma Irradiation. Toxins, 17(11), 528. https://doi.org/10.3390/toxins17110528

