Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Pichia fermentans Isolated from Kefir
2.2. Study of the Ability of Pichia fermentans KCB21_L2 to Remove Aflatoxin B1, Fumonisin B1, and Ochratoxin A
2.2.1. Removal Assays Using Viable and Heat-Inactivated Cells
2.2.2. Removal Assays at High Mycotoxin Concentrations
2.3. Transcriptome Sequencing of Pichia fermentans KCB21_L2
2.3.1. RNA Extraction
2.3.2. Bioinformatic Analysis of Transcriptome Data
2.4. Quantification of Mycotoxins and Their Degradation Products
2.4.1. Enzyme-Linked Immunosorbent Assay (ELISA)
2.4.2. Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-Q-TOF-MS)
2.5. Statistical Analysis
3. Results
3.1. Yeast Identification
3.2. Ability of Pichia fermentans KCB21_L2 to Removal Aflatoxin B1, Fumonisin B1, and Ochratoxin A
3.3. Effect of High Concentrations of Mycotoxins on Cell Viability and Removal Capacity of Pichia fermentans KCB21_L2
3.4. Effect of High Concentrations of AFB1, FB1, and OTA on the Transcriptome of Pichia fermentans KCB21_L2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Sulyok, M.; Suman, M.; Krska, R. Quantification of 700 mycotoxins and other secondary metabolites of fungi and plants in grain products. npj Sci. Food 2024, 8, 49. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Claeys, L.; Romano, C.; De Ruyck, K.; Wilson, H.; Fervers, B.; Korenjak, M.; Gunter, M.J.; Keski-Rahkonen, P.; Porras, S.P.; Scalbert, A.; et al. Mycotoxin exposure and human cancer risk: A systematic review of epidemiological studies. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- IARC. Agents Classified by the IARC Monographs. Volumes 1–137. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 10 August 2025).
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; He, J.; Wang, Y.; He, X.; Long, M. Research progress on fumonisin B1 contamination and toxicity: A review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018, 112, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; González, D.; Hobloss, Z.; Brackhagen, L.; Myllys, M.; Friebel, A.; Seddek, A.L.; Marchan, R.; Cramer, B.; Humpf, H.U.; et al. Inhibition of cytochrome P450 enhances the nephro- and hepatotoxicity of ochratoxin A. Arch. Toxicol. 2022, 96, 3349–3361. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Winter, G.; Pereg, L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. Eur. J. Soil Sci. 2019, 70, 882–897. [Google Scholar] [CrossRef]
- Li, P.; Su, R.; Yin, R.; Lai, D.; Wang, M.; Liu, Y.; Zhou, L. Detoxification of mycotoxins through biotransformation. Toxins 2020, 12, 121. [Google Scholar] [CrossRef]
- Nahle, S.; El Khoury, A.; Savvaidis, I.; Chokr, A.; Louka, N.; Atoui, A. Detoxification approaches of mycotoxins: By microorganisms, biofilms and enzymes. Int. J. Food Contam. 2022, 9, 3. [Google Scholar] [CrossRef]
- Hathout, A.S.; Aly, S.E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 2014, 64, 905–919. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological detoxification of mycotoxins: Current status and future advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019, 106, 106731. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.; Mokhtari, S.; Khomeiri, M.; Saris, P. Mycotoxin detoxification of food by lactic acid bacteria. Int. J. Food Contam. 2022, 9, 1. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Aquilanti, L.; De Filippis, F.; Stellato, G.; Clementi, F. Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol. 2015, 49, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Touranlou, F.A.; Noori, S.M.A.; Salari, A.; Afshari, A.; Hashemi, M. Application of kefir for reduction of contaminants in the food industry: A systematic review. Int. Dairy J. 2023, 146, 105748. [Google Scholar] [CrossRef]
- Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 2017, 251, 1–7. [Google Scholar] [CrossRef]
- Du, G.; Liu, L.; Guo, Q.; Cui, Y.; Chen, H.; Yuan, Y.; Yue, T. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiol. 2021, 99, 103803. [Google Scholar] [CrossRef]
- Du, G.; Chang, S.; Guo, Q.; Yan, X.; Chen, H.; Yuan, Y.; Yue, T. Adsorption removal of ochratoxin A from milk by Tibetan kefir grains and its mechanism. LWT 2022, 169, 114024. [Google Scholar] [CrossRef]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015, 6, 1177. [Google Scholar] [CrossRef]
- Kalamaki, M.S.; Angelidis, A.S. Isolation and molecular identification of yeasts in Greek kefir. Int. J. Dairy Technol. 2017, 70, 261–268. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Iraporda, C.; Garrote, G.L.; Abraham, A.G. Kefir micro-organisms: Their role in grain assembly and health properties of fermented milk. J. Appl. Microbiol. 2019, 126, 686–700. [Google Scholar] [CrossRef]
- Guangsen, T.; Xiang, L.; Jiahu, G. Microbial diversity and volatile metabolites of kefir prepared by different milk types. CyTA-J. Food 2021, 19, 399–407. [Google Scholar] [CrossRef]
- Rahmani, B.; Alimadadi, N.; Attaran, B.; Nasr, S. Yeasts from Iranian traditional milk kefir samples: Isolation, molecular identification and their potential probiotic properties. Lett. Appl. Microbiol. 2022, 75, 1264–1274. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Sun, J.; Wang, L.; Guo, H.; Ye, Y.; Sun, X. Microbial detoxification of mycotoxins in food and feed. Crit. Rev. Food Sci. Nutr. 2022, 62, 4951–4969. [Google Scholar] [CrossRef]
- Eshelli, M.; Qader, M.M.; Jambi, E.J.; Hursthouse, A.S.; Rateb, M.E. Current status and future opportunities of omics tools in mycotoxin research. Toxins 2018, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Cimbalo, A.; Frangiamone, M.; Font, G.; Manyes, L. The importance of transcriptomics and proteomics for studying molecular mechanisms of mycotoxin exposure: A review. Food Chem. Toxicol. 2022, 169, 113396. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett., C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Albarrán, C.; Melguizo, C.; Patiño, B.; Vázquez, C.; Gil-Serna, J. Diversity of mycobiota in Spanish grape berries and selection of Hanseniaspora uvarum U1 to prevent mycotoxin contamination. Toxins 2021, 13, 649. [Google Scholar] [CrossRef]
- FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 August 2025).
- Krueger, F.; James, F.; Ewels, P.; Afyounian, E.; Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7. Zenodo 2021. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Stanke, M.; Steinkamp, R.; Waack, S.; Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004, 32, W309–W312. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Arimboor, R. Metabolites and degradation pathways of microbial detoxification of aflatoxins: A review. Mycotoxin Res. 2024, 40, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Anumudu, C.K.; Ekwueme, C.T.; Uhegwu, C.C.; Ejileugha, C.; Augustine, J.; Okolo, C.A.; Onyeaka, H. A review of the mycotoxin family of fumonisins, their biosynthesis, metabolism, methods of detection and effects on humans and animals. Int. J. Mol. Sci. 2024, 26, 184. [Google Scholar] [CrossRef]
- Ding, L.; Han, M.; Wang, X.; Guo, Y. Ochratoxin A: Overview of prevention, removal, and detoxification methods. Toxins 2023, 15, 565. [Google Scholar] [CrossRef]
- Schick, I.; Haltrich, D.; Kulbe, K.D. Trehalose phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl. Microbiol. Biotechnol. 1995, 43, 1088–1095. [Google Scholar] [CrossRef]
- Sun, T.; Yan, P.; Zhan, N.; Zhang, L.; Chen, Z.; Zhang, A.; Shan, A. The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase. Eng. Life Sci. 2020, 20, 216–228. [Google Scholar] [CrossRef]
- Piotrowska, M.; Masek, A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins 2015, 7, 1151–1162. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Yuan, L.; Li, J. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci. Technol. 2020, 96, 127–134. [Google Scholar] [CrossRef]
- Faucet-Marquis, V.; Joannis-Cassan, C.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: Case of aflatoxin B1, zearalenone and ochratoxin A. Appl. Microbiol. Biotechnol. 2014, 98, 7583–7596. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, X.; Zhang, J.; Zhang, J.; Zhang, B. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2. Food Chem. Toxicol. 2016, 97, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.X.; Amaro, F.X.; Romero, J.J.; Pereira, O.G.; Jeong, K.C.; Adesogan, A.T. The capacity of silage inoculant bacteria to bind aflatoxin B1 in vitro and in artificially contaminated corn silage. J. Dairy Sci. 2017, 100, 7198–7210. [Google Scholar] [CrossRef]
- Pfliegler, W.P.; Pusztahelyi, T.; Pócsi, I. Mycotoxins—Prevention and decontamination by yeasts. J. Basic Microbiol. 2015, 55, 805–818. [Google Scholar] [CrossRef]
- European Commission. Regulation 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L 119, 103–157. [Google Scholar]
- Pizzolitto, R.P.; Armando, M.R.; Combina, M.; Cavaglieri, L.R.; Dalcero, A.M.; Salvano, M.A. Evaluation of Saccharomyces cerevisiae strains as probiotic agent with aflatoxin B1 adsorption ability for use in poultry feedstuffs. J. Environ. Sci. Health B 2012, 47, 933–941. [Google Scholar] [CrossRef]
- Pizzolitto, R.P.; Salvano, M.A.; Dalcero, A.M. Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. Int. J. Food Microbiol. 2012, 156, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef]
- Yehia, R.S. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 2014, 45, 127–134. [Google Scholar] [CrossRef]
- Zeinvand-Lorestani, H.; Sabzevari, O.; Setayesh, N.; Amini, M.; Nili-Ahmadabadi, A.; Faramarzi, M.A. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products. Chemosphere 2015, 135, 1–6. [Google Scholar] [CrossRef]
- Lyagin, I.; Efremenko, E. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 2019, 24, 2362. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Jin, Y.; Wu, C.; Shen, D.; Zhang, S.; Zhou, R. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. J. Hazard. Mater. 2018, 359, 382–387. [Google Scholar] [CrossRef]
- Heinl, S.; Hartinger, D.; Thamhesl, M.; Vekiru, E.; Krska, R.; Schatzmayr, G.; Moll, W.-D.; Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 2010, 145, 120–129. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liu, Z.; Jin, S.; Pan, K.; Liu, H.; Liu, T.; Li, X.; Zhang, C.; Luo, X.; et al. Biological detoxification of fumonisin by a novel carboxylesterase from Sphingomonadales bacterium and its biochemical characterization. Int. J. Biol. Macromol. 2021, 169, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Keawmanee, P.; Rattanakreetakul, C.; Pongpisutta, R. Microbial reduction of fumonisin B1 by the new isolate Serratia marcescens 329-2. Toxins 2021, 13, 638. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.K.; Huang, X.L.; Peng, L. Transcriptome analysis reveals gene expression changes of the basidiomycetous yeast Apiotrichum mycotoxinivorans in response to ochratoxin A exposure. Ecotoxicol. Environ. Saf. 2022, 246, 114146. [Google Scholar] [CrossRef]
- Shi, H.; Chang, G.; Zhang, Y.; Zhao, Y.; Wang, H.; Zhang, J.; Zhu, J. Biodegradation characteristics and mechanism of aflatoxin B1 by Bacillus amyloliquefaciens from enzymatic and multiomics perspectives. J. Agric. Food Chem. 2024, 72, 15841–15853. [Google Scholar] [CrossRef]
- Wei, M.; Dhanasekaran, S.; Yang, Q.; Ngea, G.L.N.; Godana, E.A.; Zhang, H. Degradation and stress response mechanism of Cryptococcus podzolicus Y3 on ochratoxin A at the transcriptional level. LWT 2022, 157, 113061. [Google Scholar] [CrossRef]
- Frangiamone, M.; Lozano, M.; Cimbalo, A.; Font, G.; Manyes, L. AFB1 and OTA promote immune toxicity in human lymphoblastic T cells at transcriptomic level. Foods 2023, 12, 259. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, J.; Liu, J.; Han, B. Transcriptome analysis reveals the oxidative stress response in Saccharomyces cerevisiae. RSC Adv. 2015, 5, 22923–22934. [Google Scholar] [CrossRef]
- Hiltunen, J.K.; Mursula, A.M.; Rottensteiner, H.; Wierenga, R.K.; Kastaniotis, A.J.; Gurvitz, A. The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2003, 27, 35–64. [Google Scholar] [CrossRef] [PubMed]
- Mat Nanyan, N.S.B.; Takagi, H. Proline homeostasis in Saccharomyces cerevisiae: How does the stress-responsive transcription factor Msn2 play a role? Front. Genet. 2020, 11, 438. [Google Scholar] [CrossRef]
- Yu, Z.H.; Shi, M.Z.; Dong, W.X.; Liu, X.Z.; Tang, W.Y.; Huang, M.Z. Transcriptional and Physiological Responses of Saccharomyces cerevisiae CZ to Octanoic Acid Stress. Fermentation 2025, 11, 180. [Google Scholar] [CrossRef]
- Gutkowska, M.; Swiezewska, E. Structure, Regulation and Cellular Functions of Rab Geranylgeranyl Transferase and Its Cellular Partner Rab Escort Protein. Mol. Membr. Biol. 2012, 29, 243–256. [Google Scholar] [CrossRef]
- Nanda, P.; Patra, P.; Das, M.; Ghosh, A. Reconstruction and Analysis of Genome-Scale Metabolic Model of Weak Crabtree Positive Yeast Lachancea kluyveri. Sci. Rep. 2020, 10, 16314. [Google Scholar] [CrossRef]
- Broeskamp, F.; Edrich, E.S.; Knittelfelder, O.; Neuhaus, L.; Meyer, T.; Heyden, J.; Habernig, L.; Kreppel, F.; Gourlay, C.W.; Rockenfeller, P. Porin 1 modulates autophagy in yeast. Cells 2021, 10, 2416. [Google Scholar] [CrossRef] [PubMed]
- Soares-Silva, I.; Sá-Pessoa, J.; Myrianthopoulos, V.; Mikros, E.; Casal, M.; Diallinas, G. A Substrate Translocation Trajectory in a Cytoplasm-Facing Topological Model of the Monocarboxylate/H+ Symporter Jen1p. Mol. Microbiol. 2011, 81, 805–817. [Google Scholar] [CrossRef]
- Dos Santos, S.C.; Teixeira, M.C.; Dias, P.J.; Sá-Correia, I. MFS Transporters Required for Multidrug/Multixenobiotic (MD/MX) Resistance in the Model Yeast: Understanding Their Physiological Function through Post-Genomic Approaches. Front. Physiol. 2014, 5, 180. [Google Scholar] [CrossRef]
- Vanacloig-Pedros, E.; Proft, M.; Pascual-Ahuir, A. Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins 2016, 8, 273. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Zheng, X.; Zhao, L.; Gu, X.; Wang, K.; Apaliya, M.T.; Ahima, J.; Zhang, H. Protein and Transcript Profiling Analysis of the Response of Yarrowia lipolytica Y-2 in the Degradation of Ochratoxin A. Ann. Appl. Biol. 2019, 175, 98–110. [Google Scholar] [CrossRef]
- Pacheco, A.; Talaia, G.; Sá-Pessoa, J.; Bessa, D.; Gonçalves, M.J.; Moreira, R.; Queirós, O. Lactic Acid Production in Saccharomyces cerevisiae Is Modulated by Expression of the Monocarboxylate Transporters Jen1 and Ady2. FEMS Yeast Res. 2012, 12, 375–381. [Google Scholar] [CrossRef]
- Peetermans, A.; Foulquié-Moreno, M.R.; Thevelein, J.M. Mechanisms Underlying Lactic Acid Tolerance and Its Influence on Lactic Acid Production in Saccharomyces cerevisiae. Microb. Cell 2021, 8, 111. [Google Scholar] [CrossRef]
- Da Silva Vale, A.; De Melo Pereira, G.V.; De Carvalho Neto, D.P.; Rodrigues, C.; Pagnoncelli, M.G.B.; Soccol, C.R. Effect of Co-Inoculation with Pichia fermentans and Pediococcus acidilactici on Metabolite Produced during Fermentation and Volatile Composition of Coffee Beans. Fermentation 2019, 5, 67. [Google Scholar] [CrossRef]
- Aiko, V.; Edamana, P.; Mehta, A. Decomposition and Detoxification of Aflatoxin B1 by Lactic Acid. J. Sci. Food Agric. 2016, 96, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef]
- Bueno, D.J.; Casale, C.H.; Pizzolitto, R.P.; Salvano, M.A.; Oliver, G. Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. J. Food Prot. 2007, 70, 2148–2154. [Google Scholar] [CrossRef]
- Samuel, M.S.; Sivaramakrishna, A.; Mehta, A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeterior. Biodegrad. 2014, 86, 202–209. [Google Scholar] [CrossRef]
- Stadler, D.; Berthiller, F.; Suman, M.; Schuhmacher, R.; Krska, R. Novel analytical methods to study the fate of mycotoxins during thermal food processing. Anal. Bioanal. Chem. 2020, 412, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, X.; Tang, L.; Dong, J. Investigating the mechanism of Bacillus amyloliquefaciens YUAD7 degrading aflatoxin B1 in alfalfa silage using isotope tracing and nuclear magnetic resonance methods. Chem. Biol. Technol. Agric. 2024, 11, 102. [Google Scholar] [CrossRef]
- Oporto, C.I.; Villarroel, C.A.; Tapia, S.M.; García, V.; Cubillos, F.A. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces cerevisiae. Toxins 2019, 11, 400. [Google Scholar] [CrossRef]
- Halon, E.; Eakteiman, G.; Moshitzky, P.; Elbaz, M.; Alon, M.; Pavlidi, N.; Kliot, A.; Morin, S. Only a Minority of Broad-Range Detoxification Genes Respond to a Variety of Phytotoxins in Generalist Bemisia tabaci Species. Sci. Rep. 2015, 5, 17975. [Google Scholar] [CrossRef]
- Alberts, J.F.; Engelbrecht, Y.; Steyn, P.S.; Holzapfel, W.H.; Van Zyl, W.H. Biological Degradation of Aflatoxin B1 by Rhodococcus erythropolis Cultures. Int. J. Food Microbiol. 2006, 109, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Péteri, Z.; Téren, J.; Vágvölgyi, C.; Varga, J. Ochratoxin Degradation and Adsorption Caused by Astaxanthin-Producing Yeasts. Food Microbiol. 2007, 24, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Niu, Z.; Liang, Z. Ochratoxin A Degradation and Stress Response Mechanism of Brevundimonas naejangsanensis ML17 Determined by Transcriptomic Analysis. Foods 2024, 13, 3732. [Google Scholar] [CrossRef] [PubMed]



| Mycotoxin Reduction (%) | ||||
|---|---|---|---|---|
| pH | Treatment | AFB1 | FB1 | OTA |
| 3.0 | Control | 0 a | 0 a | 0 a |
| VC | 92.44 ± 0.49 bY | 75.72 ± 6.52 c | 97.15 ± 0.16 b | |
| HIC | 87.90 ± 4.26 bY | 53.24 ± 3.56 b | 96.81 ± 0.35 b | |
| 5.5 | Control | 0 a | 0 a | 0 a |
| VC | 86.25 ± 0.63 cZY | 88.06 ± 1.30 c | 96.44 ± 1.61 b | |
| HIC | 75.18 ± 5.78 bZY | 63.94 ± 6.46 b | 94.19 ± 3.34 b | |
| 7.0 | Control | 0 a | 0 a | 0 a |
| VC | 76.39 ± 4.31 cZ | 72.11 ± 4.14 c | 89.48 ± 6.52 b | |
| HIC | 59.01 ± 5.12 bZ | 49.22 ± 0.76 b | 84.22 ± 12.48 b | |
| Mycotoxin Reduction (%) | ||||
|---|---|---|---|---|
| pH 3.0 | pH 5.5 | pH 7.0 | ||
| Control | 0 | 0 | 0 | |
| AFB1 | 200 µg/L | 64.10 ± 2.70 ** | 26.91 ± 1.17 ** | 37.37 ± 7.01 * |
| 100 µg/L | 87.87 ± 0.54 *** | 53.81 ± 10.44 * | 2.96 ± 0.38 | |
| 20 µg/L | > 95 ± 0.43 ** | 93.98 ± 6.02 *** | 93.43 ± 0.92 ** | |
| FB1 | 2000 µg/L | 0 | 12.62 ± 9.87 | 55.20 ± 4.03 * |
| 1000 µg/L | 0 | 41.43 ± 5.47 * | 41.66 ± 2.16 ** | |
| 200 µg/L | 26.08 ± 8.94 | 26.90 ± 4.22 * | 39.82 ± 1.18 * | |
| OTA | 100 µg/L | 92.35 ± 0.24 *** | 83.14 ± 4.54 * | 85.62 ± 4.74 * |
| 10 µg/L | 91.06 ± 0.08 ** | 60.23 ± 0.49 *** | 69.36 ± 7.23 * | |
| 1 µg/L | 70.69 ± 6.64 * | 60.60 ± 7.5 * | 85.65 ± 1.17 ** | |
| Upregulated Genes | |||||||
|---|---|---|---|---|---|---|---|
| Gene ID | log2FC | Pfam Domain | Gene Name | COG | KEGG Pathway/Possible Function | ||
| AFB1 | FB1 | OTA | |||||
| g1490 | 2.312 | 2.068 | 2.220 | Amino acid permease | put4 | Amino acid metabolism and transport | Uncharacterized/Proline transport |
| g1812 | 2.346 | 2.281 | 2.480 | Carboxylic acid transporter | jen1 | Amino acids, carbohydrates and inorganic ions metabolism and transport | Uncharacterized/Lactate transport |
| g2113 | 2.239 | 2.594 | 2.400 | GTP cyclohydrolase | urc1 | Coenzyme metabolism and transport | Uncharacterized/Uracil catabolism |
| g3629 | 2.538 | 2.243 | 2.484 | Peroxisomal 2,4-dienoyl-CoA reductase | sps19 | Biosynthesis, degradation and transport processes in secondary metabolism | Peroxisome (ko04146)/β-oxidation of fatty acids |
| g5372 | 2.608 | 2.132 | 2.825 | Carboxylic acid transporter | jen1 | Amino acids, carbohydrates, and inorganic ions metabolism and transport | Uncharacterized/Lactate transport |
| g4171 | 2.304 | 2.378 | Ammonium transporter | ady2 | Function unknown | Uncharacterized/Ammonium transport | |
| g5373 | 2.167 | 2.132 | Carboxylic acid transporter | jen1 | Amino acids, carbohydrates and inorganic ions metabolism and transport | Uncharacterized/Lactate transport | |
| g5556 | 2.087 | 2.058 | Acetyl-CoA acyltransferase | pot1 | Lipids metabolism and transport | Peroxisome (ko04146); Biosynthesis of unsaturated fatty acids (ko01040) and secondary metabolites (ko01110); Fatty acid metabolism (ko01212)/ | |
| g5835 | 2.331 | 2.386 | Ammonium transporter | ady2 | Function unknown | Uncharacterized/Ammonium transport | |
| g3716 | 3.416 | DNA-binding domain of transposase | - | Function unknown | Uncharacterized | ||
| g5755 | 2.050 | Geranylgeranyl transferase type-2 alpha subunit | bet4 | Post-translational modification, replacement of proteins and chaperones | Uncharacterized/Post-translational modification of proteins | ||
| g1403 | 2.001 | Sugar transporter | - | Inorganic ions metabolism and transport | Uncharacterized | ||
| g1640 | 2.790 | Uncharacterized protein | - | - | - | ||
| g2207 | 2.028 | Belonging to the acyl-CoA oxidase family | pox1 | Lipids metabolism and transport | Peroxisome (ko04146); Biosynthesis of unsaturated fatty acids (ko01040) and secondary metabolites (ko01110); Fatty acid metabolism (ko01212); cAMP signaling pathway (ko04024); Propanoate metabolism (ko00640). ß-alanine (ko00410) and carbon (k001200) | ||
| g3754 | 2.340 | Uncharacterized protein | - | - | - | ||
| g5627 | 2.083 | Uncharacterized protein | - | - | - | ||
| Downregulated Genes | |||||||
|---|---|---|---|---|---|---|---|
| Gene ID | log2FC | Pfam Domain | Gene Name | COG | KEGG Pathway/Possible Function | ||
| AFB1 | FB1 | OTA | |||||
| g5397 | −2.839 | −2.571 | −2.372 | Porin | por1 | Inorganic ions metabolism and transport | Cellular senescence (ko04218); Necroptosis (ko04217); cGMP-PKG signaling pathway (ko04022); Calcium signaling pathway (ko04020) |
| g879 | −2.046 | Calcineurin-like phosphoesterase | - | Lipids metabolism and transport | Uncharacterized | ||
| g1851 | −2.327 | Phenylpyruvate decarboxylase | aro10 | Amino acids and coenzymes metabolism and transport | Phenylalanine metabolism (ko00360) | ||
| g2603 | −2.774 | N-lysine methyltransferase SET7 | rms1 | Inorganic ions metabolism and transport | Uncharacterized/Monomethylation of 60S ribosomal protein L42 | ||
| g5391 | −5.115 | Uncharacterized protein | - | - | - | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Albarrán, C.; Rodríguez-Pires, S.; Sáez-Matía, A.; Luz, C.; Patiño, B.; Gil-Serna, J. Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2. Foods 2025, 14, 4181. https://doi.org/10.3390/foods14244181
Gómez-Albarrán C, Rodríguez-Pires S, Sáez-Matía A, Luz C, Patiño B, Gil-Serna J. Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2. Foods. 2025; 14(24):4181. https://doi.org/10.3390/foods14244181
Chicago/Turabian StyleGómez-Albarrán, Carolina, Silvia Rodríguez-Pires, Alba Sáez-Matía, Carlos Luz, Belén Patiño, and Jéssica Gil-Serna. 2025. "Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2" Foods 14, no. 24: 4181. https://doi.org/10.3390/foods14244181
APA StyleGómez-Albarrán, C., Rodríguez-Pires, S., Sáez-Matía, A., Luz, C., Patiño, B., & Gil-Serna, J. (2025). Mycotoxin Removal and Transcriptional Response of Pichia fermentans KCB21_L2. Foods, 14(24), 4181. https://doi.org/10.3390/foods14244181

