Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = multifunctional enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3037 KiB  
Article
Bioactive Potential of Nepenthes miranda Flower Extracts: Antidiabetic, Anti-Skin Aging, Cytotoxic, and Dihydroorotase-Inhibitory Activities
by Kuan-Ming Lai, Yen-Hua Huang, Yi Lien and Cheng-Yang Huang
Plants 2025, 14(16), 2579; https://doi.org/10.3390/plants14162579 - 19 Aug 2025
Viewed by 284
Abstract
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract [...] Read more.
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract exhibited the highest total phenolic content (18.2 mg GAE/g), flavonoid content (68.9 mg QUE/g), and antioxidant activity (DPPH IC50 = 66.9 μg/mL), along with strong antibacterial effects against Escherichia coli and Staphylococcus aureus. Cosmetically relevant enzyme inhibition assays revealed significant activity against tyrosinase (IC50 = 48.58 μg/mL), elastase (IC50 = 1.77 μg/mL), and hyaluronidase (IC50 = 7.33 μg/mL), supporting its potential as an anti-skin aging agent. For antidiabetic evaluation, the ethanol extract demonstrated potent α-glucosidase inhibition (IC50 = 24.53 μg/mL), outperforming standard inhibitors such as acarbose and quercetin. The extract also displayed marked cytotoxicity against A431 epidermoid carcinoma cells (IC50 = 90.61 μg/mL), inducing dose-dependent apoptosis, inhibiting cell migration and colony formation, and causing significant DNA damage as shown by comet assay. Furthermore, the ethanol extract strongly inhibited the activity of purified human dihydroorotase (IC50 = 25.11 μg/mL), indicating that disruption of pyrimidine biosynthesis may underlie its anticancer activity. Overall, this study provides the first characterization of N. miranda flower extracts, particularly the ethanol fraction, as a promising source of multifunctional bioactive compounds with possible applications in cosmetics, antidiabetic therapy, and cancer treatment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

26 pages, 1161 KiB  
Review
The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation
by Jung Won Kim, Ji Seok Lee, Yu Jung Choi and Chaekyun Kim
Biomolecules 2025, 15(8), 1174; https://doi.org/10.3390/biom15081174 - 16 Aug 2025
Viewed by 522
Abstract
Lactoferrin (Lf) is a multifunctional iron-binding glycoprotein of the transferrin family that plays a central role in host defense, particularly in protection against infection and tissue injury. Abundantly present in colostrum, secretory fluids, and neutrophil granules, Lf exerts broad-spectrum antimicrobial activity against bacteria, [...] Read more.
Lactoferrin (Lf) is a multifunctional iron-binding glycoprotein of the transferrin family that plays a central role in host defense, particularly in protection against infection and tissue injury. Abundantly present in colostrum, secretory fluids, and neutrophil granules, Lf exerts broad-spectrum antimicrobial activity against bacteria, viruses, fungi, and parasites. These effects are mediated by iron sequestration, disruption of microbial membranes, inhibition of microbial adhesion, and interference with host–pathogen interactions. Beyond its antimicrobial functions, Lf regulates pro- and anti-inflammatory mediators and mitigates excessive inflammation. Additionally, Lf alleviates oxidative stress by scavenging reactive oxygen species and enhancing antioxidant enzyme activity. This review summarizes the current understanding of Lf’s biological functions, with a particular focus on its roles in microbial infections, immune modulation, oxidative stress regulation, and inflammation. These insights underscore the therapeutic promise of Lf as a natural, multifunctional agent for managing infectious and inflammatory diseases and lay the groundwork for its clinical application in immune-related disorders. Full article
(This article belongs to the Special Issue Feature Papers in Cellular Biochemistry)
Show Figures

Figure 1

16 pages, 4089 KiB  
Article
Tree Functional Identity Drives Soil Enzyme Stoichiometric Ratios and Microbial Nutrient Limitation Responses to Artificial Forest Conversion
by Yixuan Fan, Feng Wu, Yujing Yang, Yanan Wang, Tian Liu, Tao Yang, Cong Mao, Wubiao Huang and Shuangshi Zhou
Forests 2025, 16(8), 1327; https://doi.org/10.3390/f16081327 - 14 Aug 2025
Viewed by 196
Abstract
Converting monoculture forests into mixed forests is a widely adopted strategy to enhance forest ecosystem quality. Soil enzyme activities and their stoichiometric ratios are acknowledged as critical indicators of nutrient cycling and ecosystem multifunctionality, with microbial nutrient limitation (particularly C, N, and P) [...] Read more.
Converting monoculture forests into mixed forests is a widely adopted strategy to enhance forest ecosystem quality. Soil enzyme activities and their stoichiometric ratios are acknowledged as critical indicators of nutrient cycling and ecosystem multifunctionality, with microbial nutrient limitation (particularly C, N, and P) being strongly influenced by forest management practices. However, the effects of this conversion on soil enzyme activities and stoichiometric ratios remain inconclusive, and the impacts of forest conversion on soil C, N, and P dynamics require further clarification. To address these uncertainties, a meta-analysis of 2113 paired observations was conducted to assess the impacts of forest conversion on soil enzyme activities, stoichiometric ratios, and microbial nutrient limitations. The activities of four key enzymes, including β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and phosphatase (ACP) were examined. It was found that mixed forests exhibited significantly higher C-, N-, and P- enzyme activities than monocultures (increases of 36.23%, 9.85%, and 11.07%, respectively). Additionally, soil C, N, and P contents were generally enhanced following the conversion from monocultures to mixed forests. Elevated enzyme C:P and N:P ratios were observed in mixed forests, while C:N ratios were reduced. Microbial C limitation was alleviated, though C&P co-limitation remained prevalent. Notably, greater effects on enzyme activities were observed when conifer monocultures (particularly those introduced with broadleaf species) were converted, compared with conversions of broadleaf monocultures. In contrast, the introduction of additional conifer species into existing conifer stands exacerbated C limitation. These results suggest that conversion of monocultures to mixed-species forests can mitigate microbial C limitation in soils while improving soil nutrient availability. Furthermore, for conifer plantation conversion, selecting functionally complementary broadleaf species yields greater benefits than introducing additional conifer species. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 1078 KiB  
Article
Antioxidant Activity and Phytochemical Profiling of Steam-Distilled Oil of Flaxseed (Linum usitatissimum): Therapeutic Targeting Against Glaucoma, Oxidative Stress, Cholinergic Imbalance, and Diabetes
by İlhami Gulcin, Muzaffer Mutlu, Zeynebe Bingol, Eda Mehtap Ozden, Ziba Mirzaee, Ahmet C. Goren and Ekrem Köksal
Molecules 2025, 30(16), 3384; https://doi.org/10.3390/molecules30163384 - 14 Aug 2025
Viewed by 382
Abstract
This investigation explored the chemical constituents and biological activities of the steam-distilled oil of L. usitatissimum (SDOLU), employing sophisticated techniques including LC-HRMS, GC-MS, and GC-FID. The analysis identified a diverse array of 17 phenolic compounds, with linoleoyl chloride (64.05%) and linoleic acid (10.39%) [...] Read more.
This investigation explored the chemical constituents and biological activities of the steam-distilled oil of L. usitatissimum (SDOLU), employing sophisticated techniques including LC-HRMS, GC-MS, and GC-FID. The analysis identified a diverse array of 17 phenolic compounds, with linoleoyl chloride (64.05%) and linoleic acid (10.39%) as the major fatty acid components. The SDOLU demonstrated remarkable antioxidant capacity, effectively neutralizing free radicals in both DPPH (IC50: 19.80 μg/mL) and ABTS•+ (IC50: 57.75 μg/mL) scavenging assays, alongside robust electron-donating activity in reducing ability tests. Moreover, the SDOLU showed significant inhibition of key enzymes implicated in metabolic and neurodegenerative disorders, including α-amylase (IC50: 531.44 μg/mL), acetylcholinesterase (IC50: 13.23 μg/mL), and carbonic anhydrase II (IC50: 281.02 μg/mL). Collectively, these results highlight the SDOLU as a valuable natural source of multifunctional bioactivities with potential applications in combating oxidative stress and enzyme-related global diseases. Further studies are warranted to validate its therapeutic efficacy and expand its industrial utilization. Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis—2nd Edition)
Show Figures

Figure 1

20 pages, 3600 KiB  
Article
Functional Analyses of a Rhodobium marinum RH-AZ Genome and Its Application for Promoting the Growth of Rice Under Saline Stress
by Yang Gao, Cheng Xu, Tao Tang, Xiao Xie, Renyan Huang, Youlun Xiao, Xiaobin Shi, Huiying Hu, Yong Liu, Jing Peng and Deyong Zhang
Plants 2025, 14(16), 2516; https://doi.org/10.3390/plants14162516 - 13 Aug 2025
Viewed by 288
Abstract
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and [...] Read more.
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and analyzed. It exhibited exceptional survival at 9% (w/v) NaCl salinity. Whole-genome sequencing revealed a circular chromosome spanning 3,875,470 bp with 63.11% GC content, encoding 5534 protein-coding genes. AntiSMASH analysis predicted eight secondary metabolite biosynthetic gene clusters. Genomic annotation identified functional genes associated with nitrogen cycle coordination, phytohormone biosynthesis, micronutrient management and osmoprotection. Integrating genomic evidence with the existing literature suggests RH-AZ’s potential for enhancing rice salt tolerance and promoting the growth of rice plants. Subsequent physiological investigations revealed that the RH-AZ strain had significant growth-promoting effects on rice under high salinity stress. Compared with a non-inoculated control, RH-AZ-inoculated rice plants exhibited stem elongation and fresh biomass enhancement under salt stress conditions. The RH-AZ strain concurrently affected key stress mitigation biomarkers: it enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the contents of proline and chlorophyll in plants, and reduced the content of malondialdehyde. These findings demonstrate that R. marinum RH-AZ, as a multifunctional bioinoculant, enhances rice salt tolerance by enhancing the stress responses of the plants, presenting a promising solution for sustainable agriculture in saline-affected ecosystems. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 2511 KiB  
Article
Bridging Phytochemistry and Cosmetic Science: Molecular Insights into the Cosmeceutical Promise of Crotalaria juncea L.
by Tanatchaporn Aree, Siripat Chaichit, Jintana Junlatat, Kanokwan Kiattisin and Aekkhaluck Intharuksa
Int. J. Mol. Sci. 2025, 26(16), 7716; https://doi.org/10.3390/ijms26167716 - 9 Aug 2025
Viewed by 212
Abstract
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of [...] Read more.
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of ethanolic extracts from the root, flower, and leaf of C. juncea, focusing on their potential use in cosmetic formulations. Soxhlet extraction with 95% ethanol was employed. Among the extracts, the leaf showed the highest total flavonoid content, while the root contained the highest total phenolic content. The root extract demonstrated the strongest antioxidant activity, as assessed by DPPH, FRAP, and lipid peroxidation assays, along with significant anti-tyrosinase and anti-aging effects via collagenase and elastase inhibition. LC-MS/QTOF analysis identified genistein and kaempferol as the major bioactive constituents in the root extract. Molecular docking confirmed their strong interactions with enzymes associated with skin aging. Additionally, the root extract exhibited notable anti-inflammatory activity. These results suggest that C. juncea root extract is a promising multifunctional natural ingredient for cosmetic applications due to its antioxidant, anti-tyrosinase, anti-aging, and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Viewed by 441
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 538
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

26 pages, 1943 KiB  
Review
Alternative Solvents for Pectin Extraction: Effects of Extraction Agents on Pectin Structural Characteristics and Functional Properties
by Alisa Pattarapisitporn and Seiji Noma
Foods 2025, 14(15), 2644; https://doi.org/10.3390/foods14152644 - 28 Jul 2025
Cited by 1 | Viewed by 474
Abstract
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, [...] Read more.
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, and alter its physicochemical and functional properties. Although novel methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE) are recognized as environmentally friendly alternatives, they frequently use acids or alkalis as solvents. This review focuses on pectin extraction methods that do not involve acidic or alkaline solvents such as chelating agents, super/subcritical water, and deep eutectic solvents (DESs) composed of neutral components. This review also discusses how these alternative extraction methods can preserve or modify the key structural features of pectin, thereby influencing its monosaccharide composition, molecular conformation, and interactions with other biopolymers. Furthermore, the influence of these structural variations on the rheological properties, gelling behaviors, and potential applications of pectin in the food, pharmaceutical, and biomedical fields are discussed. This review provides insights into alternative strategies for obtaining structurally intact and functionally diverse pectin by examining the relationship between the extraction conditions and pectin functionality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

23 pages, 4767 KiB  
Review
Self-Reporting H2S Donors: Integrating H2S Release with Real-Time Fluorescence Detection
by Changlei Zhu and John C. Lukesh
Chemistry 2025, 7(4), 116; https://doi.org/10.3390/chemistry7040116 - 21 Jul 2025
Viewed by 477
Abstract
Hydrogen sulfide (H2S), once regarded solely as a highly toxic gas, is now recognized as a crucial signaling molecule in plants, bacteria, and mammals. In humans, H2S signaling plays a role in numerous physiological and pathological processes, including vasodilation, [...] Read more.
Hydrogen sulfide (H2S), once regarded solely as a highly toxic gas, is now recognized as a crucial signaling molecule in plants, bacteria, and mammals. In humans, H2S signaling plays a role in numerous physiological and pathological processes, including vasodilation, neuromodulation, and cytoprotection. To exploit its biological functions and therapeutic potential, a wide range of H2S-releasing compounds, known as H2S donors, have been developed. These donors are designed to release H2S under physiological conditions in a controlled manner. Among them, self-reporting H2S donors are seen as a particularly innovative class, combining therapeutic delivery with real-time fluorescence-based detection. This dual functionality enables spatiotemporal monitoring of H2S release in biological environments, eliminating the need for additional sensors or probes that could disrupt cellular homeostasis. This review summarizes recent advancements in self-reporting H2S donor systems, organizing them based on their activation triggers, such as specific bioanalytes, enzymes, or external stimuli like light. The discussion covers their design strategies, performance in biological applications, and therapeutic potential. Key challenges are also highlighted, including the need for precise control of H2S release kinetics, accurate signal quantification, and improved biocompatibility. With continued refinement, self-reporting H2S donors offer great promise for creating multifunctional platforms that seamlessly integrate diagnostic imaging with therapeutic H2S delivery. Full article
(This article belongs to the Special Issue Organic Chalcogen Chemistry: Recent Advances)
Show Figures

Graphical abstract

46 pages, 3177 KiB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 1112
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 927
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

38 pages, 3752 KiB  
Review
Recent Advances in Metal–Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications
by Alemayehu Kidanemariam and Sungbo Cho
Biosensors 2025, 15(7), 437; https://doi.org/10.3390/bios15070437 - 7 Jul 2025
Cited by 1 | Viewed by 821
Abstract
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic [...] Read more.
Metal–organic framework (MOF)-based nanozymes represent a groundbreaking frontier in advanced microbial biosensing, offering unparalleled catalytic precision and structural tunability to mimic natural enzymes with superior stability and specificity. By engineering the structural features and forming composites, MOFs are precisely tailored to amplify nanozymatic activity, enabling the highly sensitive, rapid, and cost-effective detection of a broad spectrum of microbial pathogens critical to biomedical diagnostics and environmental monitoring. These advanced biosensors surpass traditional enzyme systems in robustness and reusability, integrating seamlessly with smart diagnostic platforms for real-time, on-site microbial identification. This review highlights cutting-edge developments in MOF nanozyme design, composite engineering, and signal transduction integration while addressing pivotal challenges such as biocompatibility, complex matrix interference, and scalable manufacturing. Looking ahead, the convergence of multifunctional MOF nanozymes with portable technologies and optimized in vivo performance will drive transformative breakthroughs in early disease detection, antimicrobial resistance surveillance, and environmental pathogen control, establishing a new paradigm in next-generation smart biosensing. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Graphical abstract

21 pages, 4136 KiB  
Article
Microwave Irradiation Pre-Treatment as a Sustainable Method to Obtain Bioactive Hydrolysates from Chicken Feathers
by Álvaro Torices-Hernández, Marta Gallego, Leticia Mora and Fidel Toldrá
Int. J. Mol. Sci. 2025, 26(13), 6344; https://doi.org/10.3390/ijms26136344 - 30 Jun 2025
Viewed by 601
Abstract
Chicken feathers constitute a major by-product from the poultry industry, with a potential environmental impact and significant difficulties in their management. This study aimed to develop a sustainable method to hydrolyse chicken feathers and evaluate the effects of microwave (MW) irradiation pre-treatment in [...] Read more.
Chicken feathers constitute a major by-product from the poultry industry, with a potential environmental impact and significant difficulties in their management. This study aimed to develop a sustainable method to hydrolyse chicken feathers and evaluate the effects of microwave (MW) irradiation pre-treatment in the generation of bioactive hydrolysates by simple or sequential hydrolysis with Alcalase. The hydrolysate with MW irradiation pre-treatment and Alcalase (2%, 2 h) (MWA) showed the highest overall antioxidant activity and neprilysin-inhibitory activity (55%), whereas samples without MW irradiation pre-treatment exerted the highest inhibitory activity of dipeptidyl peptidase IV (DPP IV) and angiotensin-converting enzyme (ACE-I), with values close to 50 and 70%, respectively. Mass spectrometry in tandem of bioactive hydrolysates was performed, and an in silico approach was used to characterise the obtained sequences. These results confirmed that MW irradiation pre-treatment improved Alcalase hydrolysis, leading to the generation of bioactive peptides with potential multifunctional properties, including antioxidant, antidiabetic, and antihypertensive activities. Moreover, this study highlights the potential of combining MW irradiation and enzymatic hydrolysis as a sustainable strategy for the revalorisation of chicken feathers. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

26 pages, 2898 KiB  
Article
Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties
by Pimporn Anantaworasakul, Weeraya Preedalikit, Phunsuk Anantaworasakul, Sudarshan Singh, Aekkhaluck Intharuksa, Warunya Arunotayanun, Mingkwan Na Takuathung, Songwut Yotsawimonwat and Chuda Chittasupho
Gels 2025, 11(7), 494; https://doi.org/10.3390/gels11070494 - 26 Jun 2025
Viewed by 668
Abstract
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), [...] Read more.
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), Tai Bai-yao (KY), and Kan Keaw (KG). Kratom NPs were prepared using a solvent displacement method. The resulting nanoparticles (NPs) exhibited sizes of 201.9–256.2 nm, polydispersity indices (PDI) below 0.3, and a zeta potential between −22.6 and −29.6 mV. The phytochemical analysis revealed that KG and KY extracts contained the highest total phenolic content (TPC) and total flavonoid content (TFC), which were mostly retained after NP formulation. The HPLC analysis confirmed HK as the richest source of mitragynine (9.97 ± 0.10% w/w), while NP formulations displayed slightly reduced levels. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays revealed enhanced radical scavenging in nanoparticle formulations, with IC50 values ranging from 151.23 to 199.87 µg/mL (DPPH) and 207.37 to 272.83 µg/mL (ABTS). All formulations exhibited a significant inhibition of collagenase (80.56 ± 1.60 to 97.23 ± 0.29%), elastase (45.46 ± 6.53 to 52.19 ± 1.20%), and hyaluronidase (83.23 ± 2.34 to 91.67 ± 3.56%), with nanoparticle forms showing superior enzyme inhibition. Notably, nanoparticle formulations exhibited superior inhibitory effects compared to crude extracts. HaCaT cytotoxicity tests confirmed high biocompatibility (IC50 > 700 µg/mL), especially for KD and KG NPs. The NP-loaded gels demonstrated acceptable physicochemical stability after heating/cooling cycle testing, with pH (7.27 to 7.88), viscosity (10.719 to 12.602 Pa·s), and favorable visual and textural properties. In summary, KG and KY cultivars emerged as the most promising cosmeceutical candidates due to their superior phytochemical content, antioxidant capacity, enzyme-inhibitory activities, and formulation performance. These findings support the potential use of KG NP and KY NP-loaded gels as multifunctional cosmeceutical agents for antioxidant protection, anti-aging, and skin rejuvenation. Full article
Show Figures

Figure 1

Back to TopTop