Next Article in Journal
Novel Neuroactive Steroid Analogs and Voltage-Dependent Blockers of CaV3.2 Currents, B372 and YX23, Are Effective Anti-Nociceptives with Diminished Sedative Properties in Intact Female Mice
Previous Article in Journal
Hepatic Expression of ACBP Is a Prognostic Marker for Weight Loss After Bariatric Surgery
Previous Article in Special Issue
A Novel Synthetic Tag Induces Palmitoylation and Directs the Subcellular Localization of Target Proteins
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation

1
Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
2
BK21 Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Biomolecules 2025, 15(8), 1174; https://doi.org/10.3390/biom15081174 (registering DOI)
Submission received: 30 June 2025 / Revised: 10 August 2025 / Accepted: 12 August 2025 / Published: 16 August 2025
(This article belongs to the Special Issue Feature Papers in Cellular Biochemistry)

Abstract

Lactoferrin (Lf) is a multifunctional iron-binding glycoprotein of the transferrin family that plays a central role in host defense, particularly in protection against infection and tissue injury. Abundantly present in colostrum, secretory fluids, and neutrophil granules, Lf exerts broad-spectrum antimicrobial activity against bacteria, viruses, fungi, and parasites. These effects are mediated by iron sequestration, disruption of microbial membranes, inhibition of microbial adhesion, and interference with host–pathogen interactions. Beyond its antimicrobial functions, Lf regulates pro- and anti-inflammatory mediators and mitigates excessive inflammation. Additionally, Lf alleviates oxidative stress by scavenging reactive oxygen species and enhancing antioxidant enzyme activity. This review summarizes the current understanding of Lf’s biological functions, with a particular focus on its roles in microbial infections, immune modulation, oxidative stress regulation, and inflammation. These insights underscore the therapeutic promise of Lf as a natural, multifunctional agent for managing infectious and inflammatory diseases and lay the groundwork for its clinical application in immune-related disorders.

1. Introduction

Lactoferrin (Lf) is an iron-binding glycoprotein that shows a high degree of sequence homology across species, with approximately 78% of the human Lf sequence being identical to that of bovine Lf [1]. It is present in various secretory fluids, including milk, saliva, and tears, as well as secondary granules of neutrophils [2]. In humans, Lf is most abundant in colostrum (~7 g/L), while mature milk (≥28 days lactation) contains around 2 g/L [3,4].
Human Lf consists of approximately 700 amino acids, has a molecular weight of ~80 kDa, and is folded into two globular lobes designated the N- and C-lobes [5,6,7,8]. The N-lobe spans amino acids 1–332, and the C-lobe includes amino acids 344–703, which are connected by a flexible α-helix linker between amino acids 333 and 343. There are three isoforms of Lf: Lf-α is the iron-binding isoform, whereas Lf-β and -γ have ribonuclease activity, although they do not bind iron [7,9]. Each lobe of Lf can bind one ferric iron (Fe3+), allowing the molecule to carry up to two iron atoms. Based on iron saturation, Lf exists as hololactoferrin (Holo-Lf, >85% iron saturation) or apolactoferrin (Apo-Lf, <5% iron saturation). The natural (native) Lf typically shows 10−20% iron saturation [10,11,12]. In addition to Fe3+ and Fe2+, Lf can also bind other metal ions, including Cu2+, Mn2+, and Zn2+ [13]. Apo-Lf adopts an open conformation, while Holo-Lf has a closed structure that confers greater resistance to proteolysis [5]. These structural differences contribute to distinct functional properties (Figure 1) (Table 1). Although Holo-Lf is more stable, Apo-Lf exhibits stronger antimicrobial and immunomodulatory activities, largely due to its ability to sequester iron from the environment, thereby depriving microbes of essential nutrients. Apo-Lf also demonstrates superior antioxidant activity compared to Holo-Lf [14].
Lf plays diverse and essential biological roles, including facilitating iron absorption and exerting antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory effects [34,35,36]. These functions are mediated through interactions with a variety of receptors, such as low-density lipoprotein-related protein-1 (LRP-1/CD91/apoE receptor), chylomicron remnant receptor, intelectin-1 (omentin-1), nucleolin, toll-like receptor (TLR)2, TLR4, CXCR4, CD14, SD206, heparan sulfate proteoglycans (HSPGs), and interleukin (IL)-1 [37]. The expression of Lf receptors varies by tissue and cell type [38]. LRP-1 is expressed on monocytes, macrophages, hepatocytes, and endothelial cells, where it mediates the endocytosis of Lf, clears Lf-bound complexes, and modulates inflammatory responses [39]. Nucleolin is expressed on the surface of certain cancer cells and immune cells, where it facilitates Lf internalization. IL-1 receptors, found on intestinal epithelial cells, adipose tissue, and immune cells, promote Lf uptake, iron absorption, and contribute to the immune defense mechanism.
There is extensive evidence supporting Lf’s multifunctional roles in antimicrobial function, immune regulation, and oxidative stress mitigation. Moreover, Lf demonstrates therapeutic potential across a range of infectious and inflammatory conditions. However, a comprehensive understanding of how these diverse biological functions are linked and can be effectively leveraged for clinical application remains limited. This review aims to provide an integrated overview of Lf’s biological functions and to explore its potential as a therapeutic agent. To this end, we outline key microbial species inhibited by Lf and cytokines modulated by its activity, offering a valuable reference to inform future research and the development of Lf-based therapeutic strategies.

2. Lf Release from Neutrophils

Lf is synthesized by granular epithelial cells in exocrine fluids and by neutrophils. In neutrophils, Lf is stored in specialized secondary (specific) granules, which are formed during neutrophil maturation in the bone marrow [38]. Upon activation by bacterial products (e.g., lipopolysaccharide; LPS), immune complexes, chemokines, or cytokines, neutrophils initiate degranulation. The granules migrate to and fuse with either the plasma membrane or phagosomes, releasing their contents, including Lf, into the extracellular space or phagosome. Once released, Lf performs key antimicrobial functions. It sequesters iron to inhibit microbial growth, disrupts microbial membranes, and modulates immune responses by reducing excessive inflammation. Therefore, neutrophil dysfunction or impaired degranulation may lead to reduced Lf release and compromised host defense. Under normal conditions, blood levels of Lf are low (200–500 µg/L), but they can rise significantly, to as much as 200 mg/L, during infections and inflammatory responses, reflecting increased neutrophil numbers and degranulation [2,38,40,41,42,43,44]. Notably, a single million human neutrophils can release approximately 15 µg of Lf [38]. Accordingly, elevated Lf levels in body fluids can serve as biomarkers of inflammation, particularly in diseases such as inflammatory bowel disease.

3. Antimicrobial Activity

The antimicrobial activity of Lf has been extensively documented against a broad spectrum of pathogens, including bacteria, viruses, fungi, yeasts, and parasites [42,45]. Lf exerts its antimicrobial effects through multiple mechanisms: it binds iron with high affinity, depriving microbes of this essential nutrient; disrupts microbial membranes; and inhibits bacterial adhesion and biofilm formation. Additionally, Lf interferes with microbe–host cell interactions by binding to microbial components or host cell receptors, thereby blocking pathogen entry and colonization. Beyond its direct antimicrobial actions, Lf enhances the host immune response by stimulating immune cells and promoting cytokine production. Due to its broad-spectrum activity, low toxicity, and immunomodulatory properties, Lf is considered as a promising therapeutic candidate, particularly in the context of antibiotic resistance, adverse drug reactions, and the need for immune-supportive interventions.

3.1. Antibacterial Activity

The antibacterial activity of Lf is primarily attributed to its ability to sequester free iron, depriving bacteria of this essential element for growth and metabolism. In Gram-negative bacteria, Lf interacts with bacterial LPS on the outer membrane, disrupting membrane integrity and competing with CD14 for LPS binding, thereby preventing downstream activation of TLRs on immune cells [46]. In Gram-positive bacteria, Lf’s cationic nature enables it to bind to anionic surface molecules such as lipoteichoic acid, reducing surface charge and destabilizing the membrane. This disruption facilitates lysozyme access to the underlying peptidoglycan, enhancing its enzymatic effect [7,47]. Additionally, Lf may exert antibacterial effects through the generation of peroxides catalyzed by Lf-bound iron ions, leading to altered membrane permeability and bacterial cell lysis [46,48,49,50,51,52].
Lf demonstrated antibacterial activity against a wide range of Gram-negative bacteria, including [53,54], Enterobacter spp., Escherichia coli, Haemophilus influenzae, Helicobacter felis, Helicobacter pylori, Klebsiella pneumoniae, Porphyromonas gingivalis, Pseudomonas aeruginosa, Salmonella, and Yersinia spp. [55,56,57,58,59,60,61,62,63,64,65] (Table 2), as well as Gram-positive bacteria such as Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus [66,67] (Table 3). Lf inhibits bacterial growth by sequestering iron, a critical element for microbial metabolism, and by interacting with key bacterial components such as protein A, lysozyme, and DNA [68]. These interactions disrupt essential cellular functions and inhibit biofilm formation, particularly in P. aeruginosa and S. aureus infections, which are known for their antibiotic resistance and chronicity [21]. Moreover, Lf has been shown to enhance the efficacy of various antibiotics, including gentamicin, levofloxacin, rifampicin, clarithromycin, and clindamycin, demonstrating effects that could lower required drug doses and reduce adverse effects [61,69]. These properties position Lf as a promising adjunctive agent in the management of multidrug-resistant bacterial infections.

3.2. Antiviral Activity

Lf demonstrated broad-spectrum antiviral activity, as comprehensively reviewed by Eker et al. [86]. It exerts inhibitory effects against a wide array of DNA and RNA viruses, including adenoviruses, cytomegalovirus, enteroviruses, echovirus, Japanese encephalitis virus, hepatitis C virus (HCV), herpes simplex virus, influenza virus, human cytomegalovirus, human immunodeficiency virus (HIV), human norovirus, human respiratory syncytial virus, papillomavirus, poliovirus, rotavirus, Zika virus, and most notably SARS-CoV-2 [87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] (Table 4).
Mechanistically, Lf binds directly to viral particles or to host cell surface receptors, including viral hemagglutinin, HSPGs, and angiotensin-converting enzyme 2, thereby preventing viral attachment, fusion, and entry [131,132,133]. This receptor-binding inhibition is a critical first step in disrupting the infection cycle, as Lf blocks the initial interaction between virus and host cells [134]. In addition, Lf interferes with later stages of viral infection, such as viral internalization (e.g., poliovirus type 1) and replication (e.g., rotavirus, HCV) [60,114,135]. Interestingly, while most studies report antiviral effects, some findings suggest that Lf may enhance adenovirus infection by promoting viral attachment to epithelial cells, highlighting the virus-specific nature of Lf activity [104]. The authors proposed that Lf facilitates adenovirus infection by binding to the coxsackievirus and adenovirus receptor (CAR), which allows entry into target cells. However, CAR is rarely expressed on the apical side of polarized cells, which initiates infection. Therefore, it seems that adenovirus uses Lf as a bridge to attach to host cells. Moreover, Lf has been shown to act synergistically with established antiviral agents, including acyclovir, ribavirin, and zidovudine, enhancing their therapeutic efficacy [69,112].
Since the emergence of COVID-19, Lf has been extensively investigated for its role in SARS-CoV-2 inhibition. Animal studies and clinical studies reported shorter symptom duration, improved recovery rates, and reduced viral loads in SARS-CoV-2 infection supplemented with Lf [99,100,101]. Notably, reduced Lf levels have been observed in the milk from mothers infected with SARS-CoV-2 [136], suggesting a potential correlation with host defense.

3.3. Antifungal Activity and Antiparasitic Activity

Lf exhibits notable antifungal activity through multiple mechanisms, including iron sequestration, disruption of fungal membrane integrity and increased membrane permeability, and the induction of apoptosis [137,138]. Lf has been shown to inhibit the growth of several pathogenic fungi, such as Aspergillus fumigatus, Candida spp., Cryptococcus neoformans, and Trichophyton mentagrophytes (Table 5). Moreover, Lf acts synergistically with conventional antifungal agents, including amphotericin B, fluconazole, and caspofungin [139,140]. The bioactive peptide derived from Lf, lactoferricin (positively charged N-terminal 49 residues of Lf) exhibits even greater antifungal potency than the parent protein by inserting into the fungal membrane, resulting in membrane destabilization and cell death, even at low concentrations, and is particularly effective against drug-resistant strains [141].
Lf also possesses broad antiparasitic activity, as reviewed by Anand [159] and Zarzosa-Moreno et al. [160], and targets a range of intestinal and blood-borne protozoan parasites. Its antiparasitic mechanisms parallel those observed in antibacterial and antifungal actions, involving iron deprivation, membrane disruption, and interference with host–parasite interactions. For example, Lf binds to the membrane lipids of Entamoeba histolytica trophozoites, causing membrane disruption and parasite death [161,162]. It also inhibits the proliferation or viability of Babesia caballi, Cryptosporidium sporozoites, Entamoeba histolytica, Giardia lamblia (by blocking adherence to host epithelial cells), Leishmania spp., Plasmodium berghei, and Plasmodium falciparum, where it not only suppresses parasite growth, but also acts synergistically with antimalarial drugs [36,163,164,165,166,167,168,169,170,171,172]. In addition, Lf inhibits Toxoplasma gondii (by suppressing intracellular growth) and Trichomonas vaginalis (by blocking epithelial binding), and enhances the killing of Trypanosoma spp. [173,174,175,176,177]. Moreover, lactoferricin shows superior antiparasitic effects compared to native Lf due to its enhanced ability to penetrate and disrupt parasite membranes. These findings again highlight the therapeutic potential of both Lf and its derivatives as adjunctive and alternative treatments for fungal and parasite infections, particularly in the face of increasing drug resistance.

4. Anti-Inflammatory Activity

Lf exhibits potent anti-inflammatory properties by modulating a wide range of inflammatory responses. During microbial infection, Lf neutralizes microbial components such as LPS, thereby preventing the activation of pro-inflammatory signaling pathways. It interferes with key regulators of inflammation, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB), contributing to the resolution of inflammation and the restoration of immune homeostasis [178]. Lf also regulates the activity of various immune cells, such as neutrophils, macrophages, and dendritic cells. Its anti-inflammatory effects are further supported by its ability to suppress the production of pro-inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). Owing to its ability to modulate inflammation, Lf holds therapeutic potential for treating inflammatory conditions such as sepsis, inflammatory bowel disease, neuroinflammation, and respiratory infections, as well as reducing hyperoxia-induced kidney and lung injuries [69].

4.1. Regulation of Cytokines

Lf plays a critical role in modulating the balance between pro- and anti-inflammatory cytokines, thereby promoting immune homeostasis [179,180]. Lf has been shown to downregulate the production of pro-inflammatory cytokines, such as interferon (IFN)-γ, IL-1β, IL-2, IL-6, IL-8, and TNF-α, in various cell types, including human mononuclear cells, endometrial stromal cells, THP-1, RAW 264.7, and A549 cells. In contrast, Lf upregulates anti-inflammatory cytokines, including IL-4 and IL-10. Some studies report that Lf can induce the production of IL-6, IL-8, and TNF-α [181,182,183], suggesting that Lf may act as a mild inflammatory stimulus. Nevertheless, Lf is also capable of suppressing stimulus-induced overproduction of pro-inflammatory cytokines, indicating its broader regulatory function in preventing excessive inflammation. However, the effects of Lf on certain cytokines, including IL-6, IL-10, IL-18, and TNF-α, have been inconsistent (Table 6).
Lf activates macrophages and enhances TNF-α production [182,183], whereas it suppresses TNF-α production under conditions of chronic endometritis, pregnancy, and lung cancer [198,202,211]. Moreover, Lf differentially regulates the production of cytokines, such as IL-6, IL-10, and TNF-α, depending on the timing of treatment in LPS-induced inflammatory mice [212]. These results suggest that Lf differentially regulates inflammatory cytokines in a context-dependent manner: it promotes pro-inflammatory cytokine production under physiological conditions but suppresses them in pathological or disease states.
Oral administration of Lf has been associated with significant alterations in cytokine profiles in both humans and animal models. In these studies, Lf reduced levels of pro-inflammatory cytokines, such as INF-γ, IL-6, IL-8, macrophage migration inhibitory factor (MIF), and TNF-α [185,198,208]. Concurrently, it enhanced levels of anti-inflammatory cytokines, including IL-4 and IL-10, in mice and rats [190]. Notably, in pregnant women, Lf supplementation led to a reduction in IFN-γ, IL-1α, IL-4, IL-9, IL-15, IP-10, MCP-3, and TNF-α, while increasing levels of IL-17, fibroblast growth factor-basic (FGF-basic), granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) [202].

4.2. Mitigation of Oxidative Stress

Lf demonstrates significant potential in mitigating oxidative stress across various biological systems, primarily through its ability to sequester free iron [69,213]. By binding iron, Lf limits its availability for participation in the Haber–Weiss reaction, thereby reducing the generation of free radicals. In addition to iron sequestration, Lf directly scavenges hydroxyl radicals and can undergo oxidative self-degradation to neutralize reactive species [214]. It significantly reduces the production of reactive oxygen species (ROS) induced by a variety of oxidative stimuli, including hydrogen peroxide (H2O2), LPS, prion proteins, dexamethasone, and alcohol [215,216,217,218], in different cell types, such as human neutrophils and human mesenchymal stem cells, as well as MC3T3-E1, SH-SY5Y, A549, and AML-12 [25,213,218,219,220,221]. These findings suggest that Lf may ameliorate inflammation, at least in part, by limiting ROS production. Lf can also promote ROS production under certain conditions. For example, Holo-Lf has been shown to increase ROS levels in erythrocytes by enhancing the Fenton reaction, leading to hemolysis [222]. In addition, In C. albicans, Lf induced substantial ROS accumulation, triggering an apoptosis-like response that could be alleviated by antioxidants such as menadione and N-acetylcysteine [223]. These findings suggest that the antimicrobial activity of Lf may, in some cases, be mediated through ROS generation in microbial cells.
In addition to reducing ROS directly, Lf mitigates oxidative stress by enhancing the expression and activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPX) [215,224,225,226] (Table 7). Lf has been shown to dose-dependently increase GSH levels in erythrocytes and restore antioxidant enzyme activity diminished by various toxic substances. For instance, it reverses acrylamide-induced reductions in CAT, GSH, and SOD activity [224], as well as hexavalent chromium-induced suppression of CAT, GSH, and SOD in rat testicular tissues [227]. Similarly, it restores dietary deoxynivalenol-induced suppression of GPX activity in mouse testes [226], and increases GSH and DPPH levels in mouse liver and SOD activity in aged mice. Furthermore, Lf overexpression in astrocytes is associated with upregulation of antioxidant enzymes such as SOD1 and GPX4 [4,225]. Therefore, Lf mitigates oxidative stress through a dual mechanism: by directly inhibiting and scavenging ROS and by enhancing the body’s oxidant defenses.

5. Concluding Remarks

LF exhibits broad-spectrum antimicrobial activity and plays a critical role in modulating immune responses, thereby contributing to host defense and maintaining immune homeostasis (Figure 2). Its abundance in milk, particularly in colostrum, underscores its importance in neonatal and infant immunity, while neutrophil-derived Lf continues to contribute to immune defense throughout life. In addition to its antimicrobial properties, Lf actively facilitates the resolution of inflammation by modulating the balance between pro- and anti-inflammatory cytokines and alleviating oxidative stress (Table 8). These diverse functions make Lf a promising therapeutic candidate for the prevention and treatment of infectious and inflammatory diseases, as well as for protection against hyperoxia-induced tissue injury.
Clinical applications of Lf primarily focused on conditions including anemia, hepatitis C infection, type 2 diabetes, and colorectal polyps. In pregnant women, supplementation with iron-saturated bovine Lf led to increased hemoglobin and total serum iron levels while reducing IL-6 production, indicating both hematologic and anti-inflammatory benefits [203,243,244,245,246]. Moreover, the safety and effectiveness of Lf compared to ferrous sulfate treatment have been reported [247]. In patients with chronic hepatitis C, Lf administration resulted in a decrease in HCV viral load and a reduction in serum alanine transaminase levels [117,248]. Furthermore, Lf has been shown to inhibit the growth of adenomatous colorectal polyps, suggesting its potential role in colorectal cancer prevention and as an adjunctive therapy following polyp extraction [249].
Regarding safety and toxicity, Vishwanath-Deutsch et al. reviewed evidence indicating that Lf is well-tolerated and safe in both animal and human studies [250]. Animal studies showed no significant toxicity across safety or tolerability endpoints, with no observed adverse effects even at the highest tested doses. Additionally, no studies specifically identified increased immunogenicity or allergenicity associated with Lf. Furthermore, Lf is expected to enhance drug bioavailability by encapsulating therapeutic agents and protecting them from degradation. The improved bioavailability may be particularly beneficial for treating intestinal inflammatory disorders. Lf can cross biological barriers, including the blood–brain barrier and intestinal epithelium, making it a promising vehicle for drug delivery. This property is particularly advantageous for targeting neurodegenerative diseases such as Parkinson’s disease. Conjugation of therapeutic agents with Lf can improve their solubility, stability, and targeted delivery for antimicrobial, anti-inflammatory, and chemotherapeutic agents. Therefore, Lf holds promise as a carrier for drugs and bioactive molecules.

Author Contributions

J.W.K., J.S.L., Y.J.C. and C.K. searched the literature, designed and drew the Table, and wrote and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the INHA University Research Grant.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Acknowledgments

During the preparation of this manuscript, the authors used ChatGPT (GTP-4o) for text editing for language improvement. The authors have reviewed and edited the output and take full responsibility for the content of this publication.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Garcia-Montoya, I.A.; Cendon, T.S.; Arevalo-Gallegos, S.; Rascon-Cruz, Q. Lactoferrin a multiple bioactive protein: An overview. Biochim. Biophys. Acta 2012, 1820, 226–236. [Google Scholar] [CrossRef] [PubMed]
  2. Brock, J.H. The physiology of lactoferrin. Biochem. Cell Biol. 2002, 80, 1–6. [Google Scholar] [CrossRef]
  3. Lonnerdal, B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 2014, 99, 712S–717S. [Google Scholar] [CrossRef] [PubMed]
  4. Xu, S.F.; Zhang, Y.H.; Wang, S.; Pang, Z.Q.; Fan, Y.G.; Li, J.Y.; Wang, Z.Y.; Guo, C. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol. 2019, 21, 101090. [Google Scholar] [CrossRef] [PubMed]
  5. Anderson, B.F.; Baker, H.M.; Norris, G.E.; Rumball, S.V.; Baker, E.N. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature 1990, 344, 784–787. [Google Scholar] [CrossRef]
  6. Vogel, H.J. Lactoferrin, a bird’s eye view. Biochem. Cell Biol. 2012, 90, 233–244. [Google Scholar] [CrossRef]
  7. Karav, S.; German, J.B.; Rouquie, C.; Le Parc, A.; Barile, D. Studying lactoferrin N-glycosylation. Int. J. Mol. Sci. 2017, 18, 870. [Google Scholar] [CrossRef]
  8. Karav, S. Selective deglycosylation of lactoferrin to understand glycans’ contribution to antimicrobial activity of lactoferrin. Cell. Mol. Biol. 2018, 64, 52–57. [Google Scholar] [CrossRef]
  9. Furmanski, P.; Li, Z.P.; Fortuna, M.B.; Swamy, C.V.; Das, M.R. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J. Exp. Med. 1989, 170, 415–429. [Google Scholar] [CrossRef]
  10. Bokkhim, H.; Bansal, N.; Grondahl, L.; Bhandari, B. Physico-chemical properties of different forms of bovine lactoferrin. Food Chem. 2013, 141, 3007–3013. [Google Scholar] [CrossRef]
  11. Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2022, 9, 1018336. [Google Scholar] [CrossRef]
  12. Ostertag, F.; Grimm, V.J.; Hinrichs, J. Iron saturation and binding capacity of lactoferrin—Development and validation of a colorimetric protocol for quality control. Food Chem. 2025, 463, 141365. [Google Scholar] [CrossRef]
  13. Lonnerdal, B.; Iyer, S. Lactoferrin: Molecular structure and biological function. Annu. Rev. Nutr. 1995, 15, 93–110. [Google Scholar] [CrossRef]
  14. Shoji, H.; Oguchi, S.; Shinohara, K.; Shimizu, T.; Yamashiro, Y. Effects of iron-unsaturated human lactoferrin on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells. Pediatr. Res. 2007, 61, 89–92. [Google Scholar] [CrossRef]
  15. Mikulic, N.; Uyoga, M.A.; Mwasi, E.; Stoffel, N.U.; Zeder, C.; Karanja, S.; Zimmermann, M.B. Iron absorption is greater from apo-lactoferrin and is similar between holo-lactoferrin and ferrous sulfate: Stable iron isotope studies in Kenyan infants. J. Nutr. 2020, 150, 3200–3207. [Google Scholar] [CrossRef] [PubMed]
  16. Nonnecke, B.J.; Smith, K.L. Inhibition of mastitic bacteria by bovine milk apo-lactoferrin evaluated by in vitro microassay of bacterial growth. J. Dairy Sci. 1984, 67, 606–613. [Google Scholar] [CrossRef] [PubMed]
  17. Bishop, J.G.; Schanbacher, F.L.; Ferguson, L.C.; Smith, K.L. In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferin. Infect. Immun. 1976, 14, 911–918. [Google Scholar] [CrossRef] [PubMed]
  18. Avalos-Gómez, C.; Reyes-López, M.; Ramírez-Rico, G.; Díaz-Aparicio, E.; Zenteno, E.; González-Ruiz, C.; de la Garza, M. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet. Res. 2020, 51, 36. [Google Scholar] [CrossRef]
  19. Majka, G.; Śpiewak, K.; Kurpiewska, K.; Heczko, P.; Stochel, G.; Strus, M.; Brindell, M. A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Anal. Bioanal. Chem. 2013, 405, 5191–5200. [Google Scholar] [CrossRef]
  20. Gerstein, M.; Anderson, B.F.; Norris, G.E.; Baker, E.N.; Lesk, A.M.; Chothia, C. Domain closure in lactoferrin: Two hinges produce a see-saw motion between alternative close-packed interfaces. J. Mol. Biol. 1993, 234, 357–372. [Google Scholar] [CrossRef]
  21. Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef]
  22. Visca, P.; Berlutti, F.; Vittorioso, P.; Dalmastri, C.; Thaller, M.C.; Valenti, P. Growth and adsorption of Streptococcus mutans 6715-13 to hydroxyapatite in the presence of lactoferrin. Med. Microbiol. Immunol. 1989, 178, 69–79. [Google Scholar] [CrossRef] [PubMed]
  23. Baker, E.N.; Baker, H.M.; Kidd, R.D. Lactoferrin and transferrin: Functional variations on a common structural framework. Biochem. Cell Biol. 2002, 80, 27–34. [Google Scholar] [CrossRef] [PubMed]
  24. Khan, J.A.; Kumar, P.; Paramasivam, M.; Yadav, R.S.; Sahani, M.S.; Sharma, S.; Srinivasan, A.; Singh, T.P. Camel lactoferrin, a transferrin-cum-lactoferrin: Crystal structure of camel apolactoferrin at 2.6Å resolution and structural basis of its dual role. J. Mol. Biol. 2001, 309, 751–761. [Google Scholar] [CrossRef]
  25. Kruzel, M.L.; Bacsi, A.; Choudhury, B.; Sur, S.; Boldogh, I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology 2006, 119, 159–166. [Google Scholar] [CrossRef]
  26. Dionysius, D.A.; Grieve, P.A.; Milne, J.M. Forms of lactoferrin: Their antibacterial effect on enterotoxigenic Escherichia coli. J. Dairy Sci. 1993, 76, 2597–2606. [Google Scholar] [CrossRef]
  27. Longhi, C.; Conte, M.P.; Seganti, L.; Polidoro, M.; Alfsen, A.; Valenti, P. Influence of lactoferrin on the entry process of Escherichia coli HB101(pRI203) in HeLa cells. Med. Microbiol. Immunol. 1993, 182, 25–35. [Google Scholar] [CrossRef]
  28. Liang, Y.; Ikeda, S.-i.; Chen, J.; Zhang, Y.; Negishi, K.; Tsubota, K.; Kurihara, T. Myopia is suppressed by digested lactoferrin or holo-lactoferrin administration. Int. J. Mol. Sci. 2023, 24, 5815. [Google Scholar] [CrossRef]
  29. McAbee, D.D.; Esbensen, K. Binding and endocytosis of apo- and holo-lactoferrin by isolated rat hepatocytes. J. Biol. Chem. 1991, 266, 23624–23631. [Google Scholar] [CrossRef]
  30. Sreedhara, A.; Flengsrud, R.; Langsrud, T.; Kaul, P.; Prakash, V.; Vegarud, G.E. Structural characteristic, pH and thermal stabilities of apo and holo forms of caprine and bovine lactoferrins. BioMetals 2010, 23, 1159–1170. [Google Scholar] [CrossRef]
  31. Grossmann, J.G.; Neu, M.; Pantos, E.; Schwab, F.J.; Evans, R.W.; Townes-Andrews, E.; Lindley, P.F.; Appel, H.; Thies, W.-G.; Hasnain, S.S. X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin, serum and ovo-transferrins. J. Mol. Biol. 1992, 225, 811–819. [Google Scholar] [CrossRef]
  32. Sharma, A.; Rajashankar, K.; Yadav, M.; Singh, T. Structure of mare apolactoferrin: The N and C lobes are in the closed form. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1152–1157. [Google Scholar] [CrossRef]
  33. Kurokawa, H.; Dewan, J.C.; Mikami, B.; Sacchettini, J.C.; Hirose, M. Crystal structure of hen apo-ovotransferrin: Both lobes adopt an open conformation upon loss of iron*. J. Biol. Chem. 1999, 274, 28445–28452. [Google Scholar] [CrossRef]
  34. Teraguchi, S.; Wakabayashi, H.; Kuwata, H.; Yamauchi, K.; Tamura, Y. Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals 2004, 17, 231–234. [Google Scholar] [CrossRef] [PubMed]
  35. Cutone, A.; Rosa, L.; Lepanto, M.S.; Scotti, M.J.; Berlutti, F.; Bonaccorsi di Patti, M.C.; Musci, G.; Valenti, P. Lactoferrin efficiently counteracts the inflammation-induced changes of the iron homeostasis system in macrophages. Front. Immunol. 2017, 8, 705. [Google Scholar] [CrossRef] [PubMed]
  36. Cavalera, M.A.; Uva, A.; Gernone, F.; Gusatoaia, O.; Donghia, R.; Zatelli, A. Efficacy of a combination of nucleotides and lactoferrin in maintaining stable or improving the clinical picture and laboratory findings of leishmaniotic dogs: A randomized controlled study. Vet. Parasitol. 2024, 332, 110319. [Google Scholar] [CrossRef]
  37. Suzuki, Y.A.; Lopez, V.; Lonnerdal, B. Mammalian lactoferrin receptors: Structure and function. Cell. Mol. Life Sci. 2005, 62, 2560–2575. [Google Scholar] [CrossRef]
  38. Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in aseptic and septic inflammation. Molecules 2019, 24, 1323. [Google Scholar] [CrossRef] [PubMed]
  39. Actis Dato, V.; Chiabrando, G.A. The role of low-density lipoprotein receptor-related protein 1 in lipid metabolism, glucose homeostasis and inflammation. Int. J. Mol. Sci. 2018, 19, 1780. [Google Scholar] [CrossRef]
  40. Bezwoda, W.R.; Baynes, R.D.; Khan, Q.; Mansoor, N. Enzyme-linked immunosorbent assay for lactoferrin. Plasma and tissue measurements. Clin. Chim. Acta 1985, 151, 61–69. [Google Scholar] [CrossRef]
  41. Latorre, D.; Puddu, P.; Valenti, P.; Gessani, S. Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins 2010, 2, 54–68. [Google Scholar] [CrossRef] [PubMed]
  42. Embleton, N.D.; Berrington, J.E.; McGuire, W.; Stewart, C.J.; Cummings, S.P. Lactoferrin: Antimicrobial activity and therapeutic potential. Semin. Fetal Neonatal Med. 2013, 18, 143–149. [Google Scholar] [CrossRef] [PubMed]
  43. Birgens, H.S. Lactoferrin in plasma measured by an ELISA technique: Evidence that plasma lactoferrin is an indicator of neutrophil turnover and bone marrow activity in acute leukaemia. Scand. J. Haematol. 1985, 34, 326–331. [Google Scholar] [CrossRef] [PubMed]
  44. Rado, T.A.; Wei, X.P.; Benz, E.J., Jr. Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis. Blood 1987, 70, 989–993. [Google Scholar] [CrossRef]
  45. Rascon-Cruz, Q.; Espinoza-Sanchez, E.A.; Siqueiros-Cendon, T.S.; Nakamura-Bencomo, S.I.; Arevalo-Gallegos, S.; Iglesias-Figueroa, B.F. Lactoferrin: A glycoprotein involved in immunomodulation, anticancer, and antimicrobial processes. Molecules 2021, 26, 205. [Google Scholar] [CrossRef]
  46. Ellison, R.T., 3rd; Giehl, T.J.; LaForce, F.M. Damage of the outer membrane of enteric gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 1988, 56, 2774–2781. [Google Scholar] [CrossRef]
  47. Leitch, E.C.; Willcox, M.D. Lactoferrin increases the susceptibility of S. epidermidis biofilms to lysozyme and vancomycin. Curr. Eye Res. 1999, 19, 12–19. [Google Scholar] [CrossRef]
  48. Nibbering, P.H.; Ravensbergen, E.; Welling, M.M.; van Berkel, L.A.; van Berkel, P.H.; Pauwels, E.K.; Nuijens, J.H. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 2001, 69, 1469–1476. [Google Scholar] [CrossRef]
  49. Viejo-Diaz, M.; Andres, M.T.; Perez-Gil, J.; Sanchez, M.; Fierro, J.F. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochem. 2003, 68, 217–227. [Google Scholar] [CrossRef]
  50. Velliyagounder, K.; Kaplan, J.B.; Furgang, D.; Legarda, D.; Diamond, G.; Parkin, R.E.; Fine, D.H. One of two human lactoferrin variants exhibits increased antibacterial and transcriptional activation activities and is associated with localized juvenile periodontitis. Infect. Immun. 2003, 71, 6141–6147. [Google Scholar] [CrossRef]
  51. Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta 1992, 1121, 130–136. [Google Scholar] [CrossRef]
  52. Arnold, R.R.; Russell, J.E.; Champion, W.J.; Brewer, M.; Gauthier, J.J. Bactericidal activity of human lactoferrin: Differentiation from the stasis of iron deprivation. Infect. Immun. 1982, 35, 792–799. [Google Scholar] [CrossRef] [PubMed]
  53. Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Mastromarino, P.; Biasucci, A.V.; Rosa, L.; Cutone, A.; Berlutti, F.; Paesano, R.; et al. Lactobacilli-lactoferrin interplay in Chlamydia trachomatis infection. Pathog. Dis. 2017, 75, ftx054. [Google Scholar] [CrossRef] [PubMed]
  54. Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Rosa, L.; Cutone, A.; Frioni, A.; Berlutti, F.; Paesano, R.; Valenti, P. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem. Cell Biol. 2017, 95, 34–40. [Google Scholar] [CrossRef] [PubMed]
  55. Wakabayashi, H.; Yamauchi, K.; Takase, M. Inhibitory effects of bovine lactoferrin and lactoferricin B on Enterobacter sakazakii. Biocontrol Sci. 2008, 13, 29–32. [Google Scholar] [CrossRef]
  56. Ochoa, T.J.; Noguera-Obenza, M.; Ebel, F.; Guzman, C.A.; Gomez, H.F.; Cleary, T.G. Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect. Immun. 2003, 71, 5149–5155. [Google Scholar] [CrossRef]
  57. Nascimento de Araujo, A.; Giugliano, L.G. Human milk fractions inhibit the adherence of diffusely adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells. FEMS Microbiol. Lett. 2000, 184, 91–94. [Google Scholar] [CrossRef]
  58. Qiu, J.; Hendrixson, D.R.; Baker, E.N.; Murphy, T.F.; St Geme, J.W., 3rd; Plaut, A.G. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 1998, 95, 12641–12646. [Google Scholar] [CrossRef]
  59. Dial, E.J.; Romero, J.J.; Headon, D.R.; Lichtenberger, L.M. Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J. Pharm. Pharmacol. 2000, 52, 1541–1546. [Google Scholar] [CrossRef]
  60. Superti, F.; Ammendolia, M.G.; Valenti, P.; Seganti, L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol. 1997, 186, 83–91. [Google Scholar] [CrossRef]
  61. Morici, P.; Florio, W.; Rizzato, C.; Ghelardi, E.; Tavanti, A.; Rossolini, G.M.; Lupetti, A. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1739–1748. [Google Scholar] [CrossRef]
  62. Morita, Y.; Ishikawa, K.; Nakano, M.; Wakabayashi, H.; Yamauchi, K.; Abe, F.; Ooka, T.; Hironaka, S. Effects of lactoferrin and lactoperoxidase-containing food on the oral hygiene status of older individuals: A randomized, double-blinded, placebo-controlled clinical trial. Geriatr. Gerontol. Int. 2017, 17, 714–721. [Google Scholar] [CrossRef] [PubMed]
  63. Rogan, M.P.; Taggart, C.C.; Greene, C.M.; Murphy, P.G.; O’Neill, S.J.; McElvaney, N.G. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J. Infect. Dis. 2004, 190, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
  64. Wu, J.; Hu, Y.; Du, C.; Piao, J.; Yang, L.; Yang, X. The effect of recombinant human lactoferrin from the milk of transgenic cows on Salmonella enterica serovar typhimurium infection in mice. Food Funct. 2016, 7, 308–314. [Google Scholar] [CrossRef] [PubMed]
  65. Sijbrandij, T.; Ligtenberg, A.J.; Nazmi, K.; van den Keijbus, P.A.M.; Veerman, E.C.I.; Bolscher, J.G.M.; Bikker, F.J. Lfchimera protects HeLa cells from invasion by Yersinia spp. in vitro. Biometals 2018, 31, 941–950. [Google Scholar] [CrossRef]
  66. Garcia-Borjas, K.A.; Ceballos-Olvera, I.; Luna-Castro, S.; Pena-Avelino, Y. Bovine lactoferrin can decrease the in vitro biofilm production and show synergy with antibiotics against Listeria and Escherichia coli isolates. Protein Pept. Lett. 2021, 28, 101–107. [Google Scholar] [CrossRef]
  67. Iglesias-Figueroa, B.; Valdiviezo-Godina, N.; Siqueiros-Cendon, T.; Sinagawa-Garcia, S.; Arevalo-Gallegos, S.; Rascon-Cruz, Q. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial Activity. Int. J. Mol. Sci. 2016, 17, 902. [Google Scholar] [CrossRef]
  68. van Berkel, P.H.; Geerts, M.E.; van Veen, H.A.; Mericskay, M.; de Boer, H.A.; Nuijens, J.H. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem. J. 1997, 328, 145–151. [Google Scholar] [CrossRef]
  69. Gu, H.; Wang, Y.; Wang, Y.; Ding, L.; Huan, W.; Yang, Y.; Fang, F.; Cui, W. Global bibliometric and visualized analysis of research on lactoferrin from 1978 to 2024. Mol. Nutr. Food Res. 2024, 68, e2400379. [Google Scholar] [CrossRef]
  70. Beeckman, D.S.; Van Droogenbroeck, C.M.; De Cock, B.J.; Van Oostveldt, P.; Vanrompay, D.C. Effect of ovotransferrin and lactoferrins on Chlamydophila psittaci adhesion and invasion in HD11 chicken macrophages. Vet. Res. 2007, 38, 729–739. [Google Scholar] [CrossRef]
  71. Wang, X.; Hirmo, S.; Willen, R.; Wadstrom, T. Inhibition of Helicobacter pylori infection by bovine milk glycoconjugates in a BAlb/cA mouse model. J. Med. Microbiol. 2001, 50, 430–435. [Google Scholar] [CrossRef] [PubMed]
  72. Fulgione, A.; Nocerino, N.; Iannaccone, M.; Roperto, S.; Capuano, F.; Roveri, N.; Lelli, M.; Crasto, A.; Calogero, A.; Pilloni, A.P.; et al. Lactoferrin adsorbed onto biomimetic hydroxyapatite nanocrystals controlling—In vivo—The Helicobacter pylori infection. PLoS ONE 2016, 11, e0158646. [Google Scholar] [CrossRef] [PubMed]
  73. Ciccaglione, A.F.; Di Giulio, M.; Di Lodovico, S.; Di Campli, E.; Cellini, L.; Marzio, L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: An in vitro and in vivo study. J. Antimicrob. Chemother. 2019, 74, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
  74. Cutone, A.; Lepanto, M.S.; Rosa, L.; Scotti, M.J.; Rossi, A.; Ranucci, S.; De Fino, I.; Bragonzi, A.; Valenti, P.; Musci, G.; et al. Aerosolized bovine lactoferrin counteracts infection, inflammation and iron dysbalance in a cystic fibrosis mouse model of Pseudomonas aeruginosa chronic lung infection. Int. J. Mol. Sci. 2019, 20, 2128. [Google Scholar] [CrossRef] [PubMed]
  75. Mosquito, S.; Ochoa, T.J.; Cok, J.; Cleary, T.G. Effect of bovine lactoferrin in Salmonella ser. Typhimurium infection in mice. Biometals 2010, 23, 515–521. [Google Scholar] [CrossRef]
  76. Drago-Serrano, M.E.; Rivera-Aguilar, V.; Resendiz-Albor, A.A.; Campos-Rodriguez, R. Lactoferrin increases both resistance to Salmonella typhimurium infection and the production of antibodies in mice. Immunol. Lett. 2010, 134, 35–46. [Google Scholar] [CrossRef]
  77. Sato, N.; Kurotaki, H.; Ikeda, S.; Daio, R.; Nishinome, N.; Mikami, T.; Matsumoto, T. Lactoferrin inhibits Bacillus cereus growth, and heme analogs recover its growth. Biol. Pharm. Bull. 1999, 22, 197–199. [Google Scholar] [CrossRef]
  78. Jugert, C.S.; Didier, A.; Plotz, M.; Jessberger, N. Strain-specific antimicrobial activity of lactoferrin-based food supplements. J. Food Prot. 2023, 86, 100153. [Google Scholar] [CrossRef]
  79. Chilton, C.H.; Crowther, G.S.; Spiewak, K.; Brindell, M.; Singh, G.; Wilcox, M.H.; Monaghan, T.M. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection. J. Antimicrob. Chemother. 2016, 71, 975–985. [Google Scholar] [CrossRef]
  80. Hwang, S.A.; Kruzel, M.L.; Actor, J.K. Immunomodulatory effects of recombinant lactoferrin during MRSA infection. Int. Immunopharmacol. 2014, 20, 157–163. [Google Scholar] [CrossRef]
  81. Bhimani, R.S.; Vendrov, Y.; Furmanski, P. Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice. J. Appl. Microbiol. 1999, 86, 135–144. [Google Scholar] [CrossRef] [PubMed]
  82. Guillen, C.; McInnes, I.B.; Vaughan, D.M.; Kommajosyula, S.; Van Berkel, P.H.; Leung, B.P.; Aguila, A.; Brock, J.H. Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice. J. Immunol. 2002, 168, 3950–3957. [Google Scholar] [CrossRef] [PubMed]
  83. Chen, H.-A.; Chiu, C.-C.; Huang, C.-Y.; Chen, L.-J.; Tsai, C.-C.; Hsu, T.-C.; Tzang, B.-S. Lactoferrin increases antioxidant activities and ameliorates hepatic fibrosis in lupus-prone mice fed with a high-cholesterol diet. J. Med. Food 2016, 19, 670–677. [Google Scholar] [CrossRef] [PubMed]
  84. Berlutti, F.; Ajello, M.; Bosso, P.; Morea, C.; Petrucca, A.; Antonini, G.; Valenti, P. Both lactoferrin and iron influence aggregation and biofilm formation in Streptococcus mutans. Biometals 2004, 17, 271–278. [Google Scholar]
  85. Velusamy, S.K.; Markowitz, K.; Fine, D.H.; Velliyagounder, K. Human lactoferrin protects against Streptococcus mutans-induced caries in mice. Oral Dis. 2016, 22, 148–154. [Google Scholar] [CrossRef]
  86. Eker, F.; Duman, H.; Erturk, M.; Karav, S. The potential of lactoferrin as antiviral and immune-modulating agent in viral infectious diseases. Front. Immunol. 2024, 15, 1402135. [Google Scholar] [CrossRef]
  87. Cheneau, C.; Eichholz, K.; Tran, T.H.; Tran, T.T.P.; Paris, O.; Henriquet, C.; Bajramovic, J.J.; Pugniere, M.; Kremer, E.J. Lactoferrin retargets human adenoviruses to TLR4 to induce an abortive NLRP3-associated pyroptotic response in human phagocytes. Front. Immunol. 2021, 12, 685218. [Google Scholar] [CrossRef]
  88. Ammendolia, M.G.; Pietrantoni, A.; Tinari, A.; Valenti, P.; Superti, F. Bovine lactoferrin inhibits echovirus endocytic pathway by interacting with viral structural polypeptides. Antiviral Res. 2007, 73, 151–160. [Google Scholar] [CrossRef]
  89. Chien, Y.J.; Chen, W.J.; Hsu, W.L.; Chiou, S.S. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology 2008, 379, 143–151. [Google Scholar] [CrossRef]
  90. Kaito, M.; Iwasa, M.; Fujita, N.; Kobayashi, Y.; Kojima, Y.; Ikoma, J.; Imoto, I.; Adachi, Y.; Hamano, H.; Yamauchi, K. Effect of lactoferrin in patients with chronic Hepatitis C: Combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 2007, 22, 1894–1897. [Google Scholar] [CrossRef]
  91. Ammendolia, M.G.; Marchetti, M.; Superti, F. Bovine lactoferrin prevents the entry and intercellular spread of Herpes simplex virus type 1 in green monkey kidney cells. Antiviral Res. 2007, 76, 252–262. [Google Scholar] [CrossRef]
  92. Andersen, J.H.; Osbakk, S.A.; Vorland, L.H.; Traavik, T.; Gutteberg, T.J. Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res. 2001, 51, 141–149. [Google Scholar] [CrossRef] [PubMed]
  93. Beljaars, L.; van der Strate, B.W.; Bakker, H.I.; Reker-Smit, C.; van Loenen-Weemaes, A.M.; Wiegmans, F.C.; Harmsen, M.C.; Molema, G.; Meijer, D.K. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Res. 2004, 63, 197–208. [Google Scholar] [CrossRef] [PubMed]
  94. Kaplan, M.; Baktiroglu, M.; Kalkan, A.E.; Canbolat, A.A.; Lombardo, M.; Raposo, A.; de Brito Alves, J.L.; Witkowska, A.M.; Karav, S. Lactoferrin: A promising therapeutic molecule against human papillomavirus. Nutrients 2024, 16, 3073. [Google Scholar] [CrossRef]
  95. Carvalho, C.A.M.; Casseb, S.M.M.; Goncalves, R.B.; Silva, E.V.P.; Gomes, A.M.O.; Vasconcelos, P.F.C. Bovine lactoferrin activity against Chikungunya and Zika viruses. J. Gen. Virol. 2017, 98, 1749–1754. [Google Scholar] [CrossRef]
  96. Hu, Y.; Meng, X.; Zhang, F.; Xiang, Y.; Wang, J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg. Microbes Infect. 2021, 10, 317–330. [Google Scholar] [CrossRef] [PubMed]
  97. Duman, H.; Karav, S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front. Immunol. 2023, 14, 121451433. [Google Scholar] [CrossRef]
  98. Sokolov, A.V.; Isakova-Sivak, I.N.; Mezhenskaya, D.A.; Kostevich, V.A.; Gorbunov, N.P.; Elizarova, A.Y.; Matyushenko, V.A.; Berson, Y.M.; Grudinina, N.A.; Kolmakov, N.N.; et al. Molecular mimicry of the receptor-binding domain of the SARS-CoV-2 spike protein: From the interaction of spike-specific antibodies with transferrin and lactoferrin to the antiviral effects of human recombinant lactoferrin. Biometals 2023, 36, 437–462. [Google Scholar] [CrossRef]
  99. El-Fakharany, E.M.; El-Gendi, H.; El-Maradny, Y.A.; Abu-Serie, M.M.; Abdel-Wahhab, K.G.; Shabana, M.E.; Ashry, M. Inhibitory effect of lactoferrin-coated zinc nanoparticles on SARS-CoV-2 replication and entry along with improvement of lung fibrosis induced in adult male albino rats. Int. J. Biol. Macromol. 2023, 245, 125552. [Google Scholar] [CrossRef]
  100. He, S.T.; Qin, H.; Guan, L.; Liu, K.; Hong, B.; Zhang, X.; Lou, F.; Li, M.; Lin, W.; Chen, Y.; et al. Bovine lactoferrin inhibits SARS-CoV-2 and SARS-CoV-1 by targeting the RdRp complex and alleviates viral infection in the hamster model. J. Med. Virol. 2023, 95, e28281. [Google Scholar] [CrossRef]
  101. Alves, N.S.; Azevedo, A.S.; Dias, B.M.; Horbach, I.S.; Setatino, B.P.; Denani, C.B.; Schwarcz, W.D.; Lima, S.M.B.; Missailidis, S.; Ano Bom, A.P.D.; et al. Inhibition of SARS-CoV-2 infection in Vero cells by bovine lactoferrin under different iron-saturation states. Pharmaceuticals 2023, 16, 1352. [Google Scholar] [CrossRef] [PubMed]
  102. Arnold, D.; Di Biase, A.M.; Marchetti, M.; Pietrantoni, A.; Valenti, P.; Seganti, L.; Superti, F. Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antiviral Res. 2002, 53, 153–158. [Google Scholar] [CrossRef] [PubMed]
  103. Persson, B.D.; Lenman, A.; Frangsmyr, L.; Schmid, M.; Ahlm, C.; Pluckthun, A.; Jenssen, H.; Arnberg, N. Lactoferrin-hexon interactions mediate CAR-independent adenovirus infection of human respiratory cells. J. Virol. 2020, 94, e00542-20. [Google Scholar] [CrossRef] [PubMed]
  104. Johansson, C.; Jonsson, M.; Marttila, M.; Persson, D.; Fan, X.L.; Skog, J.; Frangsmyr, L.; Wadell, G.; Arnberg, N. Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells. J. Virol. 2007, 81, 954–963. [Google Scholar] [CrossRef]
  105. Huang, Y.; Zhang, P.; Han, S.; He, H. Lactoferrin alleviates inflammation and regulates gut microbiota composition in H5N1-infected mice. Nutrients 2023, 15, 3362. [Google Scholar] [CrossRef]
  106. Wrobel, M.; Malaczewska, J.; Kaczorek-Lukowska, E. Antiviral effect of bovine lactoferrin against Enterovirus E. Molecules 2022, 27, 5569. [Google Scholar] [CrossRef]
  107. Weng, T.Y.; Chen, L.C.; Shyu, H.W.; Chen, S.H.; Wang, J.R.; Yu, C.K.; Lei, H.Y.; Yeh, T.M. Lactoferrin inhibits Enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res. 2005, 67, 31–37. [Google Scholar] [CrossRef]
  108. Lin, T.Y.; Chu, C.; Chiu, C.H. Lactoferrin inhibits Enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. J. Infect. Dis. 2002, 186, 1161–1164. [Google Scholar] [CrossRef]
  109. Luo, Y.; Xiang, K.; Liu, J.; Song, J.; Feng, J.; Chen, J.; Dai, Y.; Hu, Y.; Zhuang, H.; Zhou, Y. Inhibition of in vitro infection of Hepatitis B virus by human breastmilk. Nutrients 2022, 14, 1561. [Google Scholar] [CrossRef]
  110. Florian, P.E.; Macovei, A.; Lazar, C.; Milac, A.L.; Sokolowska, I.; Darie, C.C.; Evans, R.W.; Roseanu, A.; Branza-Nichita, N. Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. J. Med. Virol. 2013, 85, 780–788. [Google Scholar] [CrossRef]
  111. Zhou, H.; Zhu, Y.; Liu, N.; Zhang, W.; Han, J. Effect of iron saturation of bovine lactoferrin on the inhibition of Hepatitis B virus in vitro. PeerJ 2024, 12, e17302. [Google Scholar] [CrossRef]
  112. Redwan, E.M.; El-Fakharany, E.M.; Uversky, V.N.; Linjawi, M.H. Screening the anti-infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against Hepatitis C virus. BMC Complement. Altern. Med. 2014, 14, 219. [Google Scholar] [CrossRef]
  113. Redwan, E.M.; Uversky, V.N.; El-Fakharany, E.M.; Al-Mehdar, H. Potential lactoferrin activity against pathogenic viruses. Comptes Rendus Biol. 2014, 337, 581–595. [Google Scholar] [CrossRef]
  114. Ikeda, M.; Nozaki, A.; Sugiyama, K.; Tanaka, T.; Naganuma, A.; Tanaka, K.; Sekihara, H.; Shimotohno, K.; Saito, M.; Kato, N. Characterization of antiviral activity of lactoferrin against Hepatitis C virus infection in human cultured cells. Virus Res. 2000, 66, 51–63. [Google Scholar] [CrossRef]
  115. Picard-Jean, F.; Bouchard, S.; Larivee, G.; Bisaillon, M. The intracellular inhibition of HCV replication represents a novel mechanism of action by the innate immune lactoferrin protein. Antiviral Res. 2014, 111, 13–22. [Google Scholar] [CrossRef] [PubMed]
  116. El-Fakharany, E.M.; Sanchez, L.; Al-Mehdar, H.A.; Redwan, E.M. Effectiveness of human, camel, bovine and sheep lactoferrin on the Hepatitis C virus cellular infectivity: Comparison study. Virol. J. 2013, 10, 199. [Google Scholar] [CrossRef] [PubMed]
  117. Tanaka, K.; Ikeda, M.; Nozaki, A.; Kato, N.; Tsuda, H.; Saito, S.; Sekihara, H. Lactoferrin inhibits Hepatitis C virus viremia in patients with chronic Hepatitis C: A pilot study. Jpn. J. Cancer Res. 1999, 90, 367–371. [Google Scholar] [CrossRef] [PubMed]
  118. Marchetti, M.; Trybala, E.; Superti, F.; Johansson, M.; Bergstrom, T. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans. Virology 2004, 318, 405–413. [Google Scholar] [CrossRef]
  119. Wang, X.; Yue, L.; Dang, L.; Yang, J.; Chen, Z.; Wang, X.; Shu, J.; Li, Z. Role of sialylated glycans on bovine lactoferrin against Influenza virus. Glycoconj. J. 2021, 38, 689–696. [Google Scholar] [CrossRef]
  120. Superti, F.; Agamennone, M.; Pietrantoni, A.; Ammendolia, M.G. Bovine lactoferrin prevents Influenza A virus infection by interfering with the fusogenic function of viral hemagglutinin. Viruses 2019, 11, 51. [Google Scholar] [CrossRef]
  121. Pietrantoni, A.; Dofrelli, E.; Tinari, A.; Ammendolia, M.G.; Puzelli, S.; Fabiani, C.; Donatelli, I.; Superti, F. Bovine lactoferrin inhibits Influenza A virus induced programmed cell death in vitro. Biometals 2010, 23, 465–475. [Google Scholar] [CrossRef]
  122. Ammendolia, M.G.; Agamennone, M.; Pietrantoni, A.; Lannutti, F.; Siciliano, R.A.; De Giulio, B.; Amici, C.; Superti, F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of Influenza virus. Pathog. Glob. Health 2012, 106, 12–19. [Google Scholar] [CrossRef] [PubMed]
  123. Pietrantoni, A.; Ammendolia, M.G.; Superti, F. Bovine lactoferrin: Involvement of metal saturation and carbohydrates in the inhibition of Influenza virus infection. Biochem. Cell Biol. 2012, 90, 442–448. [Google Scholar] [CrossRef] [PubMed]
  124. Carvalho, C.A.; Sousa, I.P., Jr.; Silva, J.L.; Oliveira, A.C.; Goncalves, R.B.; Gomes, A.M. Inhibition of mayaro virus infection by bovine lactoferrin. Virology 2014, 452–453, 297–302. [Google Scholar] [CrossRef] [PubMed]
  125. Denani, C.B.; Real-Hohn, A.; de Carvalho, C.A.M.; Gomes, A.M.O.; Goncalves, R.B. Lactoferrin affects rhinovirus B-14 entry into H1-HeLa cells. Arch. Virol. 2021, 166, 1203–1211. [Google Scholar] [CrossRef]
  126. Superti, F.; Siciliano, R.; Rega, B.; Giansanti, F.; Valenti, P.; Antonini, G. Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection. Biochim. Biophys. Acta 2001, 1528, 107–115. [Google Scholar] [CrossRef]
  127. Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef]
  128. Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; et al. Lactoferrin against SARS-CoV-2: In vitro and in silico evidences. Front. Pharmacol. 2021, 12, 666600. [Google Scholar] [CrossRef]
  129. da Silva, A.M.V.; Machado, T.L.; Nascimento, R.S.; Rodrigues, M.; Coelho, F.S.; Tubarao, L.N.; da Rosa, L.C.; Bayma, C.; Rocha, V.P.; Frederico, A.B.T.; et al. Immunomodulatory effect of bovine lactoferrin during SARS-CoV-2 infection. Front. Immunol. 2024, 15, 1456634. [Google Scholar] [CrossRef]
  130. Pietrantoni, A.; Fortuna, C.; Remoli, M.E.; Ciufolini, M.G.; Superti, F. Bovine lactoferrin inhibits Toscana virus infection by binding to heparan sulphate. Viruses 2015, 7, 480–495. [Google Scholar] [CrossRef]
  131. Dierick, M.; Van der Weken, H.; Rybarczyk, J.; Vanrompay, D.; Devriendt, B.; Cox, E. Porcine and bovine forms of lactoferrin inhibit growth of porcine enterotoxigenic Escherichia coli and degrade its virulence factors. Appl. Environ. Microbiol. 2020, 86, e00524-20. [Google Scholar] [CrossRef]
  132. Skalickova, S.; Heger, Z.; Krejcova, L.; Pekarik, V.; Bastl, K.; Janda, J.; Kostolansky, F.; Vareckova, E.; Zitka, O.; Adam, V.; et al. Perspective of use of antiviral peptides against Influenza virus. Viruses 2015, 7, 5428–5442. [Google Scholar] [CrossRef]
  133. Berlutti, F.; Pantanella, F.; Natalizi, T.; Frioni, A.; Paesano, R.; Polimeni, A.; Valenti, P. Antiviral properties of lactoferrin—A natural immunity molecule. Molecules 2011, 16, 6992–7018. [Google Scholar] [CrossRef]
  134. van der Strate, B.W.; Harmsen, M.C.; Schafer, P.; Swart, P.J.; The, T.H.; Jahn, G.; Speer, C.P.; Meijer, D.K.; Hamprecht, K. Viral load in breast milk correlates with transmission of human cytomegalovirus to preterm neonates, but lactoferrin concentrations do not. Clin. Diagn. Lab. Immunol. 2001, 8, 818–821. [Google Scholar] [CrossRef]
  135. Marchetti, M.; Superti, F.; Ammendolia, M.G.; Rossi, P.; Valenti, P.; Seganti, L. Inhibition of poliovirus type 1 infection by iron-, manganese- and zinc-saturated lactoferrin. Med. Microbiol. Immunol. 1999, 187, 199–204. [Google Scholar] [CrossRef] [PubMed]
  136. Briana, D.D.; Papadopoulou, A.; Syridou, G.; Marchisio, E.; Kapsabeli, E.; Daskalaki, A.; Papaevangelou, V. Early human milk lactoferrin during SARS-CoV-2 infection. J. Matern. Fetal Neonatal Med. 2022, 35, 6704–6707. [Google Scholar] [CrossRef] [PubMed]
  137. Kirkpatrick, C.H.; Green, I.; Rich, R.R.; Schade, A.L. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: Relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J. Infect. Dis. 1971, 124, 539–544. [Google Scholar] [CrossRef] [PubMed]
  138. Bellamy, W.; Wakabayashi, H.; Takase, M.; Kawase, K.; Shimamura, S.; Tomita, M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. 1993, 182, 97–105. [Google Scholar] [CrossRef]
  139. Kuipers, M.E.; de Vries, H.G.; Eikelboom, M.C.; Meijer, D.K.; Swart, P.J. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob. Agents Chemother. 1999, 43, 2635–2641. [Google Scholar] [CrossRef]
  140. Fernandes, K.E.; Weeks, K.; Carter, D.A. Lactoferrin is broadly active against yeasts and highly synergistic with Amphotericin B. Antimicrob. Agents Chemother. 2020, 64, 02284-19. [Google Scholar] [CrossRef]
  141. Gruden, S.; Poklar Ulrih, N. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
  142. Zarember, K.A.; Sugui, J.A.; Chang, Y.C.; Kwon-Chung, K.J.; Gallin, J.I. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J. Immunol. 2007, 178, 6367–6373. [Google Scholar] [CrossRef]
  143. Zarember, K.A.; Cruz, A.R.; Huang, C.Y.; Gallin, J.I. Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2009, 53, 2654–2656. [Google Scholar] [CrossRef]
  144. Pawar, S.; Markowitz, K.; Velliyagounder, K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Arch. Oral Biol. 2022, 137, 105399. [Google Scholar] [CrossRef]
  145. Lupetti, A.; Brouwer, C.P.; Bogaards, S.J.; Welling, M.M.; de Heer, E.; Campa, M.; van Dissel, J.T.; Friesen, R.H.; Nibbering, P.H. Human lactoferrin-derived peptide’s antifungal activities against disseminated Candida albicans infection. J. Infect. Dis. 2007, 196, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
  146. Valenti, P.; Visca, P.; Antonini, G.; Orsi, N. Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol. Lett. 1986, 33, 271–275. [Google Scholar] [CrossRef]
  147. Nikawa, H.; Samaranayake, L.; Tenovuo, J.; Pang, K.M.; Hamada, T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch. Oral Biol. 1993, 38, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
  148. Xu, Y.; Samaranayake, Y.; Samaranayake, L.; Nikawa, H. In vitro susceptibility of Candida species to lactoferrin. Sabouraudia 1999, 37, 35–41. [Google Scholar] [CrossRef]
  149. Nikawa, H.; Samaranayake, L.; Tenovuo, J.; Hamada, T. The effect of antifungal agents on the in vitro susceptibility of Candida albicans to apo-lactoferrin. Arch. Oral Biol. 1994, 39, 921–923. [Google Scholar] [CrossRef]
  150. Okutomi, T.; Abe, S.; Tansho, S.; Wakabayashi, H.; Kawase, K.; Yamaguchi, H. Augmented inhibition of growth of Candida albicans by neutrophils in the presence of lactoferrin. FEMS Immunol. Med. Microbiol. 1997, 18, 105–112. [Google Scholar] [CrossRef]
  151. Nikawa, H.; Samaranayake, L.; Hamada, T. Modulation of the anti-Candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro. Arch. Oral Biol. 1995, 40, 581–584. [Google Scholar] [CrossRef]
  152. Wakabayashi, H.; Uchida, K.; Yamauchi, K.; Teraguchi, S.; Hayasawa, H.; Yamaguchi, H. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J. Antimicrob. Chemother. 2000, 46, 595–602. [Google Scholar] [CrossRef] [PubMed]
  153. Lai, Y.W.; Campbell, L.T.; Wilkins, M.R.; Pang, C.N.; Chen, S.; Carter, D.A. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. Int. J. Antimicrob. Agents 2016, 48, 388–394. [Google Scholar] [CrossRef] [PubMed]
  154. Samaranayake, Y.H.; Samaranayake, L.P.; Wu, P.C.; So, M. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. APMIS 1997, 105, 875–883. [Google Scholar] [CrossRef]
  155. Lai, Y.W.; Pang, C.N.I.; Campbell, L.T.; Chen, S.C.A.; Wilkins, M.R.; Carter, D.A. Different pathways mediate amphotericin-lactoferrin drug synergy in Cryptococcus and Saccharomyces. Front. Microbiol. 2019, 10, 2195. [Google Scholar] [CrossRef]
  156. Kang, J.J.; Schaber, M.D.; Srinivasula, S.M.; Alnemri, E.S.; Litwack, G.; Hall, D.J.; Bjornsti, M.-A. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1999, 274, 3189–3198. [Google Scholar] [CrossRef]
  157. Wakabayashi, H.; Takakura, N.; Yamauchi, K.; Teraguchi, S.; Uchida, K.; Yamaguchi, H.; Tamura, Y. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J. Med. Microbiol. 2002, 51, 844–850. [Google Scholar] [CrossRef]
  158. Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Viruses: Structure, function, and uses. In Molecular Cell Biology, 4th ed.; WH Freeman: New York, NY, USA, 2000. [Google Scholar]
  159. Anand, N. Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites. Front. Parasitol. 2023, 2, 1330398. [Google Scholar] [CrossRef]
  160. Zarzosa-Moreno, D.; Avalos-Gomez, C.; Ramirez-Texcalco, L.S.; Torres-Lopez, E.; Ramirez-Mondragon, R.; Hernandez-Ramirez, J.O.; Serrano-Luna, J.; de la Garza, M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef]
  161. Leon-Sicairos, N.; Reyes-Lopez, M.; Ordaz-Pichardo, C.; de la Garza, M. Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochem. Cell Biol. 2006, 84, 327–336. [Google Scholar] [CrossRef]
  162. Leon-Sicairos, N.; Lopez-Soto, F.; Reyes-Lopez, M.; Godinez-Vargas, D.; Ordaz-Pichardo, C.; de la Garza, M. Amoebicidal activity of milk, apo-lactoferrin, sIgA and lysozyme. Clin. Med. Res. 2006, 4, 106–113. [Google Scholar] [CrossRef]
  163. Ikadai, H.; Tanaka, T.; Shibahara, N.; Tanaka, H.; Matsuu, A.; Kudo, N.; Shimazaki, K.; Igarashi, I.; Oyamada, T. Inhibitory effect of lactoferrin on in vitro growth of Babesia caballi. Am. J. Trop. Med. Hyg. 2005, 73, 710–712. [Google Scholar] [CrossRef] [PubMed]
  164. Paredes, J.L.; Sparks, H.; White, A.C., Jr.; Martinez-Traverso, G.; Ochoa, T.; Castellanos-Gonzalez, A. Killing of Cryptosporidium sporozoites by lactoferrin. Am. J. Trop. Med. Hyg. 2017, 97, 774–776. [Google Scholar] [CrossRef] [PubMed]
  165. Lopez-Soto, F.; Leon-Sicairos, N.; Nazmi, K.; Bolscher, J.G.; de la Garza, M. Microbicidal effect of the lactoferrin peptides lactoferricin17-30, lactoferrampin265-284, and lactoferrin chimera on the parasite Entamoeba histolytica. Biometals 2010, 23, 563–568. [Google Scholar] [CrossRef] [PubMed]
  166. Diaz-Godinez, C.; Gonzalez-Galindo, X.; Meza-Menchaca, T.; Bobes, R.J.; de la Garza, M.; Leon-Sicairos, N.; Laclette, J.P.; Carrero, J.C. Synthetic bovine lactoferrin peptide lfampin kills Entamoeba histolytica trophozoites by necrosis and resolves amoebic intracecal infection in mice. Biosci. Rep. 2019, 39, BSR20180850. [Google Scholar] [CrossRef]
  167. Turchany, J.M.; Aley, S.B.; Gillin, F.D. Giardicidal activity of lactoferrin and N-terminal peptides. Infect. Immun. 1995, 63, 4550–4552. [Google Scholar] [CrossRef]
  168. Asthana, S.; Gupta, P.K.; Jaiswal, A.K.; Dube, A.; Chourasia, M.K. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: In vitro and in vivo studies. Nanomedicine 2015, 10, 1093–1109. [Google Scholar] [CrossRef]
  169. Anand, N.; Kanwar, R.K.; Sehgal, R.; Kanwar, J.R. Antiparasitic and immunomodulatory potential of oral nanocapsules encapsulated lactoferrin protein against Plasmodium berghei. Nanomedicine 2016, 11, 47–62. [Google Scholar] [CrossRef]
  170. Obayashi, M.; Kimura, M.; Haraguchi, A.; Gotanda, M.; Kitagawa, T.; Matsuno, M.; Sakao, K.; Hamanaka, D.; Kusakisako, K.; Kameda, T.; et al. Bovine lactoferrin inhibits Plasmodium berghei growth by binding to heme. Sci. Rep. 2024, 14, 20344. [Google Scholar] [CrossRef]
  171. Fritsch, G.; Sawatzki, G.; Treumer, J.; Jung, A.; Spira, D.T. Plasmodium falciparum: Inhibition in vitro with lactoferrin, desferriferrithiocin, and desferricrocin. Exp. Parasitol. 1987, 63, 1–9. [Google Scholar] [CrossRef]
  172. Eda, S.; Eda, K.; Prudhomme, J.G.; Sherman, I.W. Inhibitory activity of human lactoferrin and its peptide on chondroitin sulfate A-, CD36-, and thrombospondin-mediated cytoadherence of Plasmodium falciparum-infected erythrocytes. Blood 1999, 94, 326–332. [Google Scholar] [CrossRef]
  173. Anand, N.; Sehgal, R.; Kanwar, R.K.; Dubey, M.L.; Vasishta, R.K.; Kanwar, J.R. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int. J. Nanomedicine 2015, 10, 6355–6369. [Google Scholar]
  174. Lu, J.M.; Jin, G.N.; Xin, Y.; Ma, J.W.; Shen, X.Y.; Quan, Y.Z.; Liu, Y.M.; Zhou, J.Y.; Wang, B.Z.; Li, Y.B.; et al. Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury. Int. J. Parasitol. Drugs Drug Resist. 2025, 27, 100575. [Google Scholar] [CrossRef] [PubMed]
  175. Lee, H.Y.; Hyung, S.; Lee, J.W.; Kim, J.; Shin, M.H.; Ryu, J.S.; Park, S.J. Identification of antigenic proteins in Trichomonas vaginalis. Korean J. Parasitol. 2011, 49, 79–83. [Google Scholar] [CrossRef] [PubMed]
  176. Cheng, W.H.; Chen, R.M.; Ong, S.C.; Yeh, Y.M.; Huang, P.J.; Lee, C.C. Interaction of human neutrophils with Trichomonas vaginalis protozoan highlights lactoferrin secretion. J. Microbiol. Immunol. Infect. 2025, 58, 138–147. [Google Scholar] [CrossRef] [PubMed]
  177. Lima, M.F.; Kierszenbaum, F. Lactoferrin effects on the interaction of blood forms of Trypanosoma cruzi with mononuclear phagocytes. Int. J. Parasitol. 1987, 17, 1205–1208. [Google Scholar] [CrossRef]
  178. Ando, K.; Hasegawa, K.; Shindo, K.; Furusawa, T.; Fujino, T.; Kikugawa, K.; Nakano, H.; Takeuchi, O.; Akira, S.; Akiyama, T.; et al. Human lactoferrin activates NF-kappaB through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J. 2010, 277, 2051–2066. [Google Scholar] [CrossRef]
  179. Crouch, S.P.; Slater, K.J.; Fletcher, J. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 1992, 80, 235–240. [Google Scholar] [CrossRef]
  180. Legrand, D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell Biol. 2012, 90, 252–268. [Google Scholar] [CrossRef]
  181. Machnicki, M.; Zimecki, M.; Zagulski, T. Lactoferrin regulates the release of tumour necrosis factor alpha and interleukin 6 in vivo. Int. J. Exp. Pathol. 1993, 74, 433–439. [Google Scholar]
  182. Sorimachi, K.; Akimoto, K.; Hattori, Y.; Ieiri, T.; Niwa, A. Activation of macrophages by lactoferrin: Secretion of TNF-alpha, IL-8, and NO. Biochem. Mol. Biol. Int. 1997, 43, 79–87. [Google Scholar] [CrossRef]
  183. Hwang, S.A.; Wilk, K.M.; Bangale, Y.A.; Kruzel, M.L.; Actor, J.K. Lactoferrin modulation of IL-12 and IL-10 response from activated murine leukocytes. Med. Microbiol. Immunol. 2007, 196, 171–180. [Google Scholar] [CrossRef]
  184. Wang, W.P.; Iigo, M.; Sato, J.; Sekine, K.; Adachi, I.; Tsuda, H. Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Jpn. J. Cancer Res. 2000, 91, 1022–1027. [Google Scholar] [CrossRef]
  185. Martínez-García, J.J.; Canizalez-Roman, A.; Angulo-Zamudio, U.A.; Velazquez-Roman, J.; Flores-Villaseñor, H.; Valdez-Flores, M.A.; Rios-Burgueño, E.; Moran-Portela, D.; León-Sicairos, N. Lactoferrin and metoprolol supplementation increase mouse survival in an experimental LPS-induced sepsis model. Int. J. Pept. Res. Ther. 2022, 28, 141. [Google Scholar] [CrossRef]
  186. Fischer, R.; Debbabi, H.; Dubarry, M.; Boyaka, P.; Tomé, D. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 2006, 84, 303–311. [Google Scholar] [CrossRef] [PubMed]
  187. Pattamatta, U.; Mark, W.; Fiona, S.; Garrett, Q. Bovine lactoferrin promotes corneal wound healing and suppresses IL-1 expression in alkali wounded mouse cornea. Curr. Eye Res. 2013, 38, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
  188. Mohamed, W.A.; Schaalan, M.F. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-gamma, SIRT-1, and TLR4 downstream signaling pathway. Diabetol. Metab. Syndr. 2018, 10, 89. [Google Scholar] [CrossRef] [PubMed]
  189. Li, L.; Ren, F.; Yun, Z.; An, Y.; Wang, C.; Yan, X. Determination of the effects of lactoferrin in a preclinical mouse model of experimental colitis. Mol. Med. Rep. 2013, 8, 1125–1129. [Google Scholar] [CrossRef]
  190. Togawa, J.; Nagase, H.; Tanaka, K.; Inamori, M.; Nakajima, A.; Ueno, N.; Saito, T.; Sekihara, H. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J. Gastroenterol. Hepatol. 2002, 17, 1291–1298. [Google Scholar] [CrossRef]
  191. Hu, P.; Zong, Q.; Zhao, Y.; Gu, H.; Liu, Y.; Gu, F.; Liu, H.Y.; Ahmed, A.A.; Bao, W.; Cai, D. Lactoferrin attenuates intestinal barrier dysfunction and inflammation by modulating the MAPK pathway and gut microbes in mice. J. Nutr. 2022, 152, 2451–2460. [Google Scholar] [CrossRef]
  192. Na, Y.J.; Han, S.B.; Kang, J.S.; Yoon, Y.D.; Park, S.K.; Kim, H.M.; Yang, K.H.; Joe, C.O. Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. Int. Immunopharmacol. 2004, 4, 1187–1199. [Google Scholar] [CrossRef]
  193. Li, H.Y.; Yang, H.G.; Wu, H.M.; Yao, Q.Q.; Zhang, Z.Y.; Meng, Q.S.; Fan, L.L.; Wang, J.Q.; Zheng, N. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J. Dairy Sci. 2021, 104, 7383–7392. [Google Scholar] [CrossRef] [PubMed]
  194. Håversen, L.; Ohlsson, B.G.; Hahn-Zoric, M.; Hanson, L.A.; Mattsby-Baltzer, I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002, 220, 83–95. [Google Scholar] [CrossRef] [PubMed]
  195. Pu, T.-Y.; Chuang, K.-C.; Tung, M.-C.; Yen, C.-C.; Chen, Y.-H.; Cidem, A.; Ko, C.-H.; Chen, W.; Chen, C.-M. Lactoferrin as a therapeutic agent for attenuating hepatic stellate cell activation in thioacetamide-induced liver fibrosis. Biomed. Pharmacother. 2024, 174, 116490. [Google Scholar] [CrossRef]
  196. Welsh, K.J.; Hwang, S.A.; Hunter, R.L.; Kruzel, M.L.; Actor, J.K. Lactoferrin modulation of mycobacterial cord factor trehalose 6-6′-dimycolate induced granulomatous response. Transl. Res. 2010, 156, 207–215. [Google Scholar] [CrossRef]
  197. Actor, J.K. Lactoferrin: A modulator for immunity against tuberculosis related granulomatous pathology. Mediators Inflamm. 2015, 2015, 409596. [Google Scholar] [CrossRef]
  198. Nakamura, A.; Kimura, F.; Tsuji, S.; Hanada, T.; Takebayashi, A.; Takahashi, A.; Kitazawa, J.; Morimune, A.; Amano, T.; Kushima, R.; et al. Bovine lactoferrin suppresses inflammatory cytokine expression in endometrial stromal cells in chronic endometritis. J. Reprod. Immunol. 2022, 154, 103761. [Google Scholar] [CrossRef]
  199. Togawa, J.; Nagase, H.; Tanaka, K.; Inamori, M.; Umezawa, T.; Nakajima, A.; Naito, M.; Sato, S.; Saito, T.; Sekihara, H. Lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G187–G195. [Google Scholar] [CrossRef]
  200. Valenti, P.; Catizone, A.; Pantanella, F.; Frioni, A.; Natalizi, T.; Tendini, M.; Berlutti, F. Lactoferrin decreases inflammatory response by cystic fibrosis bronchial cells invaded with Burkholderia cenocepacia iron-modulated biofilm. Int. J. Immunopathol. Pharmacol. 2011, 24, 1057–1068. [Google Scholar] [CrossRef]
  201. Berlutti, F.; Pilloni, A.; Pietropaoli, M.; Polimeni, A.; Valenti, P. Lactoferrin and oral diseases: Current status and perspective in periodontitis. Ann. Stomatol. 2011, 2, 10–18. [Google Scholar]
  202. Maritati, M.; Comar, M.; Zanotta, N.; Seraceni, S.; Trentini, A.; Corazza, F.; Vesce, F.; Contini, C. Influence of vaginal lactoferrin administration on amniotic fluid cytokines and its role against inflammatory complications of pregnancy. J. Inflamm. 2017, 14, 5. [Google Scholar] [CrossRef]
  203. Lepanto, M.S.; Rosa, L.; Cutone, A.; Conte, M.P.; Paesano, R.; Valenti, P. Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: An interventional study. Front. Immunol. 2018, 9, 2123. [Google Scholar] [CrossRef]
  204. Curran, C.S.; Demick, K.P.; Mansfield, J.M. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways. Cell Immunol. 2006, 242, 23–30. [Google Scholar] [CrossRef]
  205. Liu, J.; Li, B.; Lee, C.; Zhu, H.; Zheng, S.; Pierro, A. Protective effects of lactoferrin on injured intestinal epithelial cells. J. Pediatr. Surg. 2019, 54, 2509–2513. [Google Scholar] [CrossRef]
  206. Mattsby-Baltzer, I.; Roseanu, A.; Motas, C.; Elverfors, J.; Engberg, I.; Hanson, L.Å. Lactoferrin or a fragment thereof inhibits the endotoxin-induced Interleukin-6 response in human monocytic cells. Pediatr. Res. 1996, 40, 257–262. [Google Scholar] [CrossRef] [PubMed]
  207. Berlutti, F.; Schippa, S.; Morea, C.; Sarli, S.; Perfetto, B.; Donnarumma, G.; Valenti, P. Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem. Cell Biol. 2006, 84, 351–357. [Google Scholar] [CrossRef] [PubMed]
  208. Han, N.; Li, H.; Li, G.; Shen, Y.; Fei, M.; Nan, Y. Effect of bovine lactoferrin as a novel therapeutic agent in a rat model of sepsis-induced acute lung injury. AMB Express 2019, 9, 177. [Google Scholar] [CrossRef]
  209. Actor, J.K.; Hwang, S.-A.; Olsen, M.; Zimecki, M.; Hunter, R.L.; Kruzel, M.L. Lactoferrin immunomodulation of DTH response in mice. Int. Immunopharmacol. 2002, 2, 475–486. [Google Scholar] [CrossRef] [PubMed]
  210. Kuhara, T.; Tanaka, A.; Yamauchi, K.; Iwatsuki, K. Bovine lactoferrin ingestion protects against inflammation via IL-11 induction in the small intestine of mice with hepatitis. Br. J. Nutr. 2014, 111, 1801–1810. [Google Scholar] [CrossRef]
  211. Tung, Y.T.; Chen, H.L.; Yen, C.C.; Lee, P.Y.; Tsai, H.C.; Lin, M.F.; Chen, C.M. Bovine lactoferrin inhibits lung cancer growth through suppression of both inflammation and expression of vascular endothelial growth factor. J. Dairy Sci. 2013, 96, 2095–2106. [Google Scholar] [CrossRef]
  212. Kruzel, M.L.; Harari, Y.; Mailman, D.; Actor, J.K.; Zimecki, M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 2002, 130, 25–31. [Google Scholar] [CrossRef] [PubMed]
  213. Park, S.Y.; Jeong, A.J.; Kim, G.Y.; Jo, A.; Lee, J.E.; Leem, S.H.; Yoon, J.H.; Ye, S.K.; Chung, J.W. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J. Microbiol. Biotechnol. 2017, 27, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
  214. Ogasawara, Y.; Imase, M.; Oda, H.; Wakabayashi, H.; Ishii, K. Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: A possible role in protection against oxidative DNA damage. Int. J. Mol. Sci. 2014, 15, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
  215. Al Zharani, M.M.; Almuqri, E.A.; Ahmed, M.M.; Aljarba, N.H.; Rudayni, H.A.; Yaseen, K.N.; Alkahtani, S.H.; Nasr, F.A.; Al Doaiss, A.A. Use of lactoferrin supplement as an efficient antioxidant to ameliorate the effects of mercury-induced oxidative stress in male Wistar rats. Biomed. Biotechnol. Res. J. 2024, 8, 45–52. [Google Scholar] [CrossRef]
  216. Park, Y.G.; Jeong, J.K.; Lee, J.H.; Lee, Y.J.; Seol, J.W.; Kim, S.J.; Hur, T.Y.; Jung, Y.H.; Kang, S.J.; Park, S.Y. Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int. J. Mol. Med. 2013, 31, 325–330. [Google Scholar] [CrossRef]
  217. Safaeian, L.; Zabolian, H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol. 2014, 2014, 943523. [Google Scholar] [CrossRef]
  218. Guan, S.; Zhang, S.; Liu, M.; Guo, J.; Chen, Y.; Shen, X.; Deng, X.; Lu, J. Preventive effects of lactoferrin on acute alcohol-induced liver injury via iron chelation and regulation of iron metabolism. J. Dairy Sci. 2024, 107, 5316–5329. [Google Scholar] [CrossRef]
  219. Baveye, S.; Elass, E.; Mazurier, J.; Legrand, D. Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils. FEBS Lett. 2000, 469, 5–8. [Google Scholar] [CrossRef]
  220. Kim, S.E.; Choi, S.; Hong, J.Y.; Shim, K.S.; Kim, T.H.; Park, K.; Lee, S.H. Accelerated osteogenic differentiation of MC3T3-E1 cells by lactoferrin-conjugated nanodiamonds through enhanced anti-oxidant and anti-inflammatory effects. Nanomaterials 2019, 10, 50. [Google Scholar] [CrossRef]
  221. Actor, J.K.; Hwang, S.A.; Kruzel, M.L. Lactoferrin as a natural immune modulator. Curr. Pharm. Des. 2009, 15, 1956–1973. [Google Scholar] [CrossRef]
  222. Anand, N.; Kanwar, R.K.; Dubey, M.L.; Vahishta, R.K.; Sehgal, R.; Verma, A.K.; Kanwar, J.R. Effect of lactoferrin protein on red blood cells and macrophages: Mechanism of parasite-host interaction. Drug Des. Devel. Ther. 2015, 9, 3821–3835. [Google Scholar] [CrossRef] [PubMed]
  223. Andres, M.T.; Viejo-Diaz, M.; Fierro, J.F. Human lactoferrin induces apoptosis-like cell death in Candida albicans: Critical role of K+-channel-mediated K+ efflux. Antimicrob. Agents Chemother. 2008, 52, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
  224. Bodur, M.; Aydogdu, G.; Ozcelik, A.O.; Yilmaz, E. An in vitro approach to protective effect of lactoferrin on Acrylamide-induced oxidative damage. An. Acad. Bras. Cienc. 2022, 94, e20201882. [Google Scholar] [CrossRef]
  225. Fan, Y.G.; Ge, R.L.; Ren, H.; Jia, R.J.; Wu, T.Y.; Lei, X.F.; Wu, Z.; Zhou, X.B.; Wang, Z.Y. Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice. Pharmacol. Res. 2024, 209, 107404. [Google Scholar] [CrossRef]
  226. Li, Z.; Zhao, Y.; Zong, Q.; Hu, P.; Bao, W.; Liu, H.Y.; Cai, D. Lactoferrin restores the deoxynivalenol-impaired spermatogenesis and blood-testis barrier integrity via improving the antioxidant capacity and modifying the cell adhesion and inflammatory response. Antioxidants 2023, 12, 152. [Google Scholar] [CrossRef]
  227. Abd El-Rahman, S.S.; Ashwish, N.M.; Ali, M.E. Appraisal of the pre-emptive effect of lactoferrin against chromium-induced testicular toxicity in male rats. Biol. Trace Elem. Res. 2023, 201, 5321–5334. [Google Scholar] [CrossRef]
  228. Kruzel, M.L.; Actor, J.K.; Zimecki, M.; Wise, J.; Płoszaj, P.; Mirza, S.; Kruzel, M.; Hwang, S.-A.; Ba, X.; Boldogh, I. Novel recombinant human lactoferrin: Differential activation of oxidative stress-related gene expression. J. Biotechnol. 2013, 168, 666–675. [Google Scholar] [CrossRef]
  229. Zheng, J.; Xie, Y.; Li, F.; Zhou, Y.; Qi, L.; Liu, L.; Chen, Z. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice. J. Funct. Foods 2020, 65, 103736. [Google Scholar] [CrossRef]
  230. Pan, Y.; Liu, Z.; Wang, Y.; Zhang, L.; Chua, N.; Dai, L.; Chen, J.; Ho, C.L. Evaluation of the anti-inflammatory and anti-oxidative effects of therapeutic human lactoferrin fragments. Front. Bioeng. Biotechnol. 2021, 9, 779018. [Google Scholar] [CrossRef]
  231. Kruzel, M.L.; Actor, J.K.; Radak, Z.; Bacsi, A.; Saavedra-Molina, A.; Boldogh, I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 2010, 16, 67–79. [Google Scholar] [CrossRef]
  232. Safaeian, L.; Javanmard, S.H.; Mollanoori, Y.; Dana, N. Cytoprotective and antioxidant effects of human lactoferrin against H2O2-induced oxidative stress in human umbilical vein endothelial cells. Adv. Biomed. Res. 2015, 4, 188. [Google Scholar] [CrossRef] [PubMed]
  233. Abdel-Wahhab, K.G.; Ashry, M.; Hassan, L.K.; El-Azma, M.H.; Elqattan, G.M.; Gadelmawla, M.H.; Mannaa, F.A. Hepatic and immune modulatory effectiveness of lactoferrin loaded selenium nanoparticles on bleomycin induced hepatic injury. Sci. Rep. 2024, 14, 21066. [Google Scholar] [CrossRef] [PubMed]
  234. Gulmez, C.; Dalginli, K.Y.; Atakisi, E.; Atakisi, O. The protective effect of lactoferrin on adenosine deaminase, nitric oxide and liver enzymes in lipopolysaccharide-induced experimental endotoxemia model in rats. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 801–806. [Google Scholar]
  235. Mohamed, W.A.; Salama, R.M.; Schaalan, M.F. A pilot study on the effect of lactoferrin on Alzheimer’s disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed. Pharmacother. 2019, 111, 714–723. [Google Scholar] [CrossRef]
  236. Maneva, A.; Taleva, B.; Maneva, L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z. Naturforsch. C J. Biosci. 2003, 58, 256–262. [Google Scholar] [CrossRef]
  237. Trentini, A.; Maritati, M.; Rosta, V.; Cervellati, C.; Manfrinato, M.C.; Hanau, S.; Greco, P.; Bonaccorsi, G.; Bellini, T.; Contini, C. Vaginal lactoferrin administration decreases oxidative stress in the amniotic fluid of pregnant women: An open-label randomized pilot study. Front. Med. 2020, 7, 555. [Google Scholar] [CrossRef]
  238. El-Hameed, S.A.; Ibrahim, I.; Awadin, W.; El-Shaieb, A. Assessment of single and combined administration of ubiquinone and lactoferrin on histopathology, ultrastructure, oxidative stress, and WNT4 expression gene induced by thioacetamide on hepatorenal system of adult male rats. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 41. [Google Scholar] [CrossRef]
  239. Farid, A.S.; El Shemy, M.A.; Nafie, E.; Hegazy, A.M.; Abdelhiee, E.Y. Anti-inflammatory, anti-oxidant and hepatoprotective effects of lactoferrin in rats. Drug Chem. Toxicol. 2021, 44, 286–293. [Google Scholar] [CrossRef]
  240. Wang, Y.; Xu, C.; An, Z.; Liu, J.; Feng, J. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Technol. 2008, 140, 326–336. [Google Scholar] [CrossRef]
  241. Fan, L.; Wang, F.; Yao, Q.; Wu, H.; Wen, F.; Wang, J.; Li, H.; Zheng, N. Lactoferrin could alleviate liver injury caused by Maillard reaction products with furan ring through regulating necroptosis pathway. Food Sci. Nutr. 2021, 9, 3449–3459. [Google Scholar] [CrossRef]
  242. Li, Y.-C.; Hsieh, C.-C. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model. PLoS ONE 2014, 9, e97341. [Google Scholar] [CrossRef]
  243. Paesano, R.; Torcia, F.; Berlutti, F.; Pacifici, E.; Ebano, V.; Moscarini, M.; Valenti, P. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem. Cell Biol. 2006, 84, 377–380. [Google Scholar] [CrossRef]
  244. Paesano, R.; Berlutti, F.; Pietropaoli, M.; Goolsbee, W.; Pacifici, E.; Valenti, P. Lactoferrin efficacy versus ferrous sulfate in curing iron disorders in pregnant and non-pregnant women. Int. J. Immunopathol. Pharmacol. 2010, 23, 577–587. [Google Scholar] [CrossRef] [PubMed]
  245. Nappi, C.; Tommaselli, G.A.; Morra, I.; Massaro, M.; Formisano, C.; Di Carlo, C. Efficacy and tolerability of oral bovine lactoferrin compared to ferrous sulfate in pregnant women with iron deficiency anemia: A prospective controlled randomized study. Acta Obstet. Gynecol. Scand. 2009, 88, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
  246. Rosa, L.; Lepanto, M.S.; Cutone, A.; Siciliano, R.A.; Paesano, R.; Costi, R.; Musci, G.; Valenti, P. Influence of oral administration mode on the efficacy of commercial bovine Lactoferrin against iron and inflammatory homeostasis disorders. Biometals 2020, 33, 159–168. [Google Scholar] [CrossRef] [PubMed]
  247. Paesano, R.; Pacifici, E.; Benedetti, S.; Berlutti, F.; Frioni, A.; Polimeni, A.; Valenti, P. Safety and efficacy of lactoferrin versus ferrous sulphate in curing iron deficiency and iron deficiency anaemia in hereditary thrombophilia pregnant women: An interventional study. Biometals 2014, 27, 999–1006. [Google Scholar] [CrossRef]
  248. Tsuda, H.; Sekine, K.; Fujita, K.-i.; Iigo, M. Cancer prevention by bovine lactoferrin and underlying mechanisms a review of experimental and clinical studies. Biochem. Cell Biol. 2002, 80, 131–136. [Google Scholar] [CrossRef]
  249. Kozu, T.; Iinuma, G.; Ohashi, Y.; Saito, Y.; Akasu, T.; Saito, D.; Alexander, D.B.; Iigo, M.; Kakizoe, T.; Tsuda, H. Effect of orally administered bovine lactoferrin on the growth of adenomatous colorectal polyps in a randomized, placebo-controlled clinical trial. Cancer Prev. Res. 2009, 2, 975–983. [Google Scholar] [CrossRef]
  250. Vishwanath-Deutsch, R.; Dallas, D.C.; Besada-Lombana, P.; Katz, L.; Conze, D.; Kruger, C.; Clark, A.J.; Peterson, R.; Malinczak, C.A. A review of the safety evidence on recombinant human lactoferrin for use as a food ingredient. Food Chem. Toxicol. 2024, 189, 114727. [Google Scholar] [CrossRef]
Figure 1. The structure and related functions of human lactoferrin. Structure visualization of lactoferrin (PDB: 1B0L) generated using Mol * (RCSB PDB, https://www.rcsb.org).
Figure 1. The structure and related functions of human lactoferrin. Structure visualization of lactoferrin (PDB: 1B0L) generated using Mol * (RCSB PDB, https://www.rcsb.org).
Biomolecules 15 01174 g001
Figure 2. Overview of lactoferrin’s main action in host defense and inflammation. Activation is shown by blue lines and inhibition by red lines.
Figure 2. Overview of lactoferrin’s main action in host defense and inflammation. Activation is shown by blue lines and inhibition by red lines.
Biomolecules 15 01174 g002
Table 1. Function of Apo- and Holo-lactoferrin.
Table 1. Function of Apo- and Holo-lactoferrin.
FunctionApo-Lf (Iron-Free)Holo-Lf (Iron-Bound)Ref.
Iron scavengingHigh capacity to bind iron (good at chelating iron from the environment)Cannot bind more iron (saturated)[15,16,17,18,19,20,21,22,23,24,25]
Interaction with bacteriaDisrupt bacterial membranes and inhibit growthLess effective[18,26,27]
Antimicrobial activityStronger: depriving pathogens of the iron they need to growWeaker: no longer chelates iron[16,17,18,21,22,26]
ImmunomodulationMore potent in anti-inflammatory effectsModerate to weak[25,28]
StabilityLess stable (more prone to degrade in acidic environments)More stable due to an iron-induced conformational change[20,29,30,31,32,33]
Table 2. Effect of lactoferrin on Gram-negative bacteria.
Table 2. Effect of lactoferrin on Gram-negative bacteria.
BacteriaHostFunction and MechanismRef.
Chlamydophila psittaciin vitroInhibit attachment and entry[70]
Chlamydia trachomatisin vitroInhibit entry
Reduce IL-6 and IL-8
[53,54]
Enterobacter sakazakiiin vitroInhibit growth[55]
Escherichia coliin vitroInhibit adherence[57]
in vitroImpair type III secretory system[56]
in vitroInhibit growth[67]
in vitroInhibit biofilm formation[66]
Haemophilus influenzaein vitroInactivate colonization factors[58]
Helicobacter felisMouseReverse gastritis, infection rate, and gastric surface hydrophobicity changes[59]
Helicobacter pyloriMouseInhibit gastric colonization and inflammation[71]
MouseReduce bacterial load
Inhibit TNF-α, IFN-γ, IL-17, COX-2
Increase IL-4, IL-10, IL-12
Regulate blood parameters
Alleviate histopathological changes
[72]
in vitroInhibit growth[73]
Klebsiella pneumoniaein vitroEnhance sensitivity to antibiotics[61]
Porphyromonas gingivalisHumanInhibit growth[62]
Pseudomonas aeruginosain vitroInhibit biofilm formation[63]
MouseDecrease weight loss
Inhibit growth
Decrease cell infiltration
Decrease MCP-1 and MIP-1
[74]
Salmonella enterica s erovar TyphimuriumMouseDecrease bacterial load in the liver and spleen
Reduce hepatomegaly and splenomegaly
[64]
MouseIncrease survival
Decrease weight loss
Inhibit infection
[75]
MouseIncrease survival
Inhibit infection
Increase IgA and IgG
[76]
Yersiniain vitroInhibit entry[65]
Table 3. Effect of lactoferrin on Gram-positive bacteria.
Table 3. Effect of lactoferrin on Gram-positive bacteria.
BacteriaHostFunction and MechanismRef.
Bacillus cereusin vitroInhibit growth[77,78]
Clostridium difficilein vitroDelay growth
Prevent toxin production
[79]
Listeria monocytogenesin vitroInhibit biofilm formation[66]
Staphylococcus aureusMouseDecrease IL-17 and IL-1β[80]
in vitroIncrease IL-1β, IFN-γ, IL-2,
Reduce IL-6, IL-1β, IL-12p40
[80]
MouseInhibit kidney infection[81]
MouseIncrease the spleen cell number
Increase IFN-γ and TNF-α
Reduce IL-5 and IL-10
[82]
in vitroDecrease cell viability[83]
in vitroInhibit growth[67]
Streptococcus mutansin vitroInhibit aggregation and biofilm[84]
MouseReduce cavity development[85]
in vitroInhibit infection[85]
Table 4. Effect of lactoferrin on viruses.
Table 4. Effect of lactoferrin on viruses.
VirusesHostFunction and MechanismRef.
Adenovirus in vitroInhibit viral antigen synthesis[102]
in vitroPromote binding and infection[103,104]
Avian influenzaMouseDecrease weight loss
Decrease IL-17, IL-22, TNF-α
[105]
CytomegalovirusMouseReduce infection[93]
Enterovirus Ein vitroInhibit virus replication[106]
Enterovirus 71MouseIncrease survival[107]
in vitroInhibit infection
Decrease IL-6
Increase IFN-α
[107]
in vitroInhibit infection[108]
Hepatitis B virus
(HBV)
in vitroInhibit virus binding
Inhibit infection
[109,110]
in vitroInhibit growth[111]
Hepatitis C virus
(HCV)
in vitroInhibit entry[112,113,114]
Inhibit virus replication[114]
in vitroInhibit virus replication
Inhibit viral ATPase/helicase
[115]
in vitroInhibit entry
Inhibit virus replication
[112,116]
HumanDecrease serum ALT
Decrease HCV RNA level
[117]
Herpes simplex virusin vitroInhibit infection[118]
Influenzain vitroReduce infection[119]
in vitroSuppress viral antigen synthesis
Reduce infection
[120]
in vitroInhibit cell apoptosis
Inhibit DNA fragmentation
Reduce caspase-3 activity
[121]
in vitroInhibit virus replication[122]
in vitroInhibit infection[123]
Mayaro virusin vitroInhibit infection
Inhibit entry
[124]
Rhinovirus B-14in vitroReduce virus binding[125]
Rotavirusin vitroInhibit viral cytopathic effect[60,126]
SARS-CoV-2in vitroInhibit infection and replication
Reduce thymic stromal lymphopoietin
Upregulate TGF-β1
[127]
in vitroReduce virus binding
Obscure host cell receptors
[128]
in vitroReduce virus binding[98]
RatDecrease TNF-α, IL-4, IL-1β, IL-6, IL-10
Increase CD4 cells
Alleviate pulmonary fibrosis
[99]
in vitroIncrease virus neutralization
Inhibit virus propagation
[99]
in vitroDecrease virus infection[100]
HamsterDecrease virus infection
Alleviate pulmonary histopathological changes
[100]
in vitroDecrease virus infection
Inhibit entry
[101]
MouseDecrease IFN-γ
Increase IL-1β, IL-2, IL-6, GM-CSF
Increase TLR-4 and TLR-9
[129]
in vitroDecrease NK and NKT cells
Activate CD4 cells
Decrease programmed death of CD4 and CD8 cells
Increase CCL5
[129]
Toscana virusin vitroInhibit viral cytopathic effect[130]
Table 5. Effect of lactoferrin on fungi.
Table 5. Effect of lactoferrin on fungi.
FungiHostFunction and MechanismRef.
Aspergillus fumigatusHumanInhibit growth
Iron deprivation
[142]
in vitroIron deprivation[142,143]
in vitroPrevent biofilm[140]
Candida albicansMouseInhibit growth
Downregulate EGF1
[144]
MouseInhibit growth
Increase IL-10, TNF-α, IFN-γ, MCP-1
[145]
Galleria mellonellaDecrease fungal burden[140]
in vitroIron deprivation
Interact with cell surface
Alter cell membrane
Alter cell membrane H+ ATPase
[137,139,146,147,148,149,150]
Candida glabratain vitroInteract with cell surface
Alter cell membrane
[139,148]
Candida guilliermondiiin vitro[148]
Candida kruseiin vitro[147,151,152]
Candida parapsilosisin vitro[148]
Candida tropicalisin vitro[148]
Cryptococcus gattiiin vitroIron deprivation[153]
Cryptococcus neoformansin vitroIron deprivation
Alter responses to stress
[153,154]
in vitroDisrupt iron transport
Inhibit growth
[155]
Galleria mellonellaInhibit growth
Interact with cell surface
Reduce cell and capsule size
[140]
Saccharomyces cerevisiaein vitroRegulate cell death[156]
in vitroIron deprivation[153]
Trichophyton mentagrophytesin vitroInhibit growth[152]
Guinea pigInhibit growth[152]
Guinea pigModulate mononuclear cell function[157]
Trichophyton spp.in vitroInteract with cell surface
Alter cell membrane
[158]
Table 6. Effect of lactoferrin on cytokine levels.
Table 6. Effect of lactoferrin on cytokine levels.
CytokinesStimuliLf EffectsRef.
IFN-γ Co26Lu tumorI[184]
LPSD[185]
Toxoplasma gondii cystsD[186]
IL-1αNaOHD[187]
IL-1βNo stimulusD[188]
Dextran sulfate sodium (DSS)D[189,190]
DeoxynivalenolD[191]
LPSI[192]
LPSD[35,179,193,194]
LPS + IFN-γD[35]
NaOHD[187]
Thioacetamide (TAA)D[195]
Trehalose 6,6′-dimycolate (TDM)D[196,197]
TNF-αD[198]
2, 4, 6-trinitrobenzenesulfonic acid (TNBS)D[199]
Burkholderia cenocepaciaD[200]
Prevotella intermediaD[201]
IL-2LPSD[179]
IL-4No stimulusD[202]
DSSI[190]
TNBSI[199]
IL-6No stimulusI[203,204]
No stimulusD[188]
CCl4D[187]
DSSD[190]
H2O2D[205]
LPSI[181,192]
LPSD[35,185,206]
LPS + IFN-γD[35]
TAAD[195]
TDMD[197]
TNF-αD[198]
Chlamydia trachomatisD[54]
Escherichia coli HB101(pRI203)D[207]
Mycobacterium tuberculosisD[196]
P. intermediaD[201]
IL-8
(CXCL8)
No stimulusI[182]
DeoxynivalenolD[191]
H2O2D[205]
LPSD[35]
Sepsis-induced acute lung injuryD[208]
C. trachomatisD[54]
E. coli HB101(pRI203)D[207]
P. intermediaD[201]
IL-10No stimulusD[209]
DeoxynivalenolI[191]
DSSI[190]
LPSD[35,183,185]
LPS + IFN-γI[35]
TAAI[195]
TDMI[196]
TNBSI[199]
T. gondii cystsI[186]
IL-11ZymosanI[210]
B. cenocepaciaI[200]
IL-12LPSI[183]
IL-18No stimulusD[188]
Co26Lu tumorI[184]
T. gondii cystsD[186]
MIFSepsis-induced acute lung injuryD[208]
Pseudomonas aeruginosaD[74]
TNF-αNo stimulusI[182,183]
No stimulusD[198,202,211]
DeoxynivalenolD[191]
DSSD[189,190]
LPSD[35,179,181,192,194,212]
Sepsis-induced acute lung injuryD[208]
TDMD[197]
TNBSD[199]
E. coli HB101(pRI203)D[207]
M. tuberculosisI[196]
P. intermediaD[201]
D: decrease, I: increase.
Table 7. Effect of lactoferrin on oxidative stress.
Table 7. Effect of lactoferrin on oxidative stress.
Oxidative-Stress
Oxidative StressStudy ModelStimuliLF EffectsRef.
Intracellular ROS in vitro (A549)Ragweed pollen extract
(RWE),
Glucose oxidase (Gox)
D[25]
in vitro (NHBE)RWE
in vitro (U937)GoxD[228]
in vitro (SH-SY5Y)PrP (106–126)D[216]
in vitro (RBC) D[222]
in vitro (hMSC)H2O2D[213]
in vitro (MC3T3-E1)H2O2D[220]
in vivo (hippocampus)AgeD[229]
in vitro (N2a)Ferric ammonium citrate
(FAC)
D[225]
in vitro (AML-12)EthanolD[218]
in vitro (FL83B)ThioacetamideD[195]
in vitro
(CCD-841-CON,
CCD-18co, HT29)
Lipopolysaccharide
(LPS)
D[230]
in vitro
(U937, AML-12)
LPS, H2O2, GoxD[231]
H2O2in vitro (neutrophil)LPSD[219]
in vitro (A549)RWED[25]
in vivo (BAL fluid)
in vivo (plasma)DexamethasoneD[217]
in vitro (HUVEC)H2O2D[232]
in vivo (serum, liver, kidney)HgCl2D[215]
in vitro
(U937, AML-12)
LPS, H2O2D[231]
in vivo (liver, heart, muscle, brain)LPS, H2O2D[231]
Nitric oxide (NO)in vivo (liver)BleomycinD[233]
in vivo (liver)LPSD[234]
in vitro (peripheral blood, lymphocytes)Alzheimer’s diseaseD[235]
Malondialdehyde
(MDA)
in vitro (erythrocytes) D[236]
in vivo (BAL fluid)RWED[25]
in vivo
(serum, liver)
CholesterolD[83]
in vivo (lung)Acute lung injury (ALI)D[208]
in vitro (U937)H2O2D[237]
in vivo
(amniotic fluid)
 
in vivo (hippocampus)AgeD[229]
in vitro (HepG2)AcrylamideD[224]
in vivo (testis)DeoxynivalenolD[226]
in vivo (serum, liver, kidney)HgCl2D[215]
in vitro (N2a)FACD[225]
in vitro (AML-12),
in vivo (liver)
EthanolD[218]
in vivo
(liver, kidney)
ThioacetamideD[238]
in vivo (liver)BleomycinD[233]
in vitro (peripheral blood, lymphocytes)Alzheimer’s diseaseD[235]
in vivo (liver)CCl4D[239]
in vivo (serum, longissimus muscle) D[240]
Aspartate Aminotransferase
(AST)
in vivo (blood)D-galactosamine,
CCl4, LPS
D[210]
in vivo (serum)CholesterolD[83]
in vivo
(serum, liver)
Furosine, Pyralline,
5-Hydroxymethylfurfural
D[241]
in vivo (serum, liver, kidney)HgCl2D[215]
in vivo
(serum, liver)
EthanolD[218]
in vivo (serum)ThioacetamideD[238]
in vivo (blood)ThioacetamideD[195]
in vivo (serum)HgCl2D[215]
in vivo (serum)BleomycinD[233]
in vivo (serum)LPSD[234]
Alanine Aminotransferase (ALT)in vivo (serum)HgCl2D[215]
in vivo (blood)ThioacetamideD[195]
in vivo (serum)BleomycinD[233]
in vivo (liver)High-fructose corn syrupD[242]
NADPH oxidase
(NOX2)
in vivo (hippocampus)AgeD[229]
Antioxidants
AntioxidantsStudy modelInhibitorLF effectsRef.
Superoxide dismutase
(SOD)
in vitro (WBC) I[228]
in vivo (lung)ALII[208]
in vivo (hippocampus)AgeI[229]
in vitro (HepG2)AcrylamideI[224]
in vivo (testis)Potassium dichromate
(PDC)
I[227]
in vivo (cortex, hippocampus)FACI[225]
in vivo
(liver, kidney)
ThioacetamideI[238]
in vivo (liver)CCl4I[239]
Catalase
(CAT)
in vivo (lung)ALII[208]
in vitro (HepG2)AcrylamideI[224]
in vivo (testis)PDCI[227]
in vivo (serum, liver, kidney)HgCl2I[215]
in vivo
(liver, kidney)
ThioacetamideI[238]
in vivo (liver)ThioacetamideI[195]
in vivo (serum, longissimus muscle) I[240]
Glutathione reductase
(GSH)
in vitro (erythrocytes) I[236]
in vivo
(serum, liver)
CholesterolI[83]
in vivo (lung)ALII[208]
in vitro (HepG2)AcrylamideI[224]
in vivo (testis)PDCI[227]
in vivo (serum, liver, kidney)HgCl2I[215]
in vitro (N2a)FACI[225]
in vitro (AML-12)
in vivo (liver)
EthanolI[218]
in vivo (liver)BleomycinI[233]
in vitro (peripheral blood, lymphocytes)Alzheimer’s diseaseI[235]
Glutathione peroxidase
(GPX)
in vitro (WBC) I[228]
in vivo (lung)ALII[208]
in vivo (testis)DeoxynivalenolI[226]
in vitro
(N2a, SH-SY5Y)
in vivo (cortex, hippocampus)
FACI[225]
in vitro (AML-12)
in vivo (liver)
EthanolI[218]
in vivo (liver)BleomycinI[233]
in vivo (liver)CCl4I[239]
in vivo (serum, longissimus muscle) I[240]
Total antioxidant status (TAS)in vivo
(amniotic fluid)
 I[237]
Total antioxidant capacity (TAC)in vivo (serum, liver, kidney)HgCl2I[215]
in vitro (peripheral blood, lymphocytes)Alzheimer’s diseaseI[235]
D: decrease, I: increase.
Table 8. Action mechanisms of lactoferrin in host defense.
Table 8. Action mechanisms of lactoferrin in host defense.
ActionsMode of ActionTarget Pathogens/MolzeculesLF EffectsRef.
Antimicrobial action Iron chelationBacteria (G+/C), Viruses, Fungi, ParasitesInhibit growth,
Prevent infection by blocking binding to host cells
[55,56,57,58,59,63,70,71,73,75,76,77,79,80,81,82,84,85,93,102,104,105,106,107,108,110,114,115,116,118,121,126,129,130,137,139,142,143,145,146,147,148,149,150,151,152,153,154,155,156,157,158]
Membrane disruption
Interaction impairment
Immune system reactionSignaling moleculesMAPK, NF-κBD

I
Reduce the expression of pro-inflammatory genes[178]
CytokinesIL-4, IL-10,
IL-11, IL-12,
[35,183,185,186,190,191,195,196,199,200,202,209,210]
IFN-γ, IL-1α,
IL-1β, IL-2, IL-6, IL-8, TNF-α, MIF
D[35,54,74,179,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,211,212]
Redox regulationOxidative stressROS, H2O2, NO, MDA, AST, ALT, NOX2D





I
Protect host cells from damage caused by excessive oxidative stress[24,25,83,195,197,208,210,213,215,217,218,219,220,222,224,226,228,229,231,232,233,234,235,236,237,238,239,240,241,242]
Antioxidant activitySOD, CAT, GSH,
GPX, TAS, TAC
[83,195,208,215,218,224,225,227,228,229,233,235,236,237,238,239,240]
D: decrease, I: increase.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kim, J.W.; Lee, J.S.; Choi, Y.J.; Kim, C. The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules 2025, 15, 1174. https://doi.org/10.3390/biom15081174

AMA Style

Kim JW, Lee JS, Choi YJ, Kim C. The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules. 2025; 15(8):1174. https://doi.org/10.3390/biom15081174

Chicago/Turabian Style

Kim, Jung Won, Ji Seok Lee, Yu Jung Choi, and Chaekyun Kim. 2025. "The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation" Biomolecules 15, no. 8: 1174. https://doi.org/10.3390/biom15081174

APA Style

Kim, J. W., Lee, J. S., Choi, Y. J., & Kim, C. (2025). The Multifaceted Functions of Lactoferrin in Antimicrobial Defense and Inflammation. Biomolecules, 15(8), 1174. https://doi.org/10.3390/biom15081174

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop