Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,075)

Search Parameters:
Keywords = mixed solvents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6941 KiB  
Article
Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
by Hubert Justin Nnanga Guissele, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar and Antonio Pizzi
Polymers 2025, 17(15), 2156; https://doi.org/10.3390/polym17152156 - 6 Aug 2025
Abstract
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) [...] Read more.
Lignin used in this work was isolated from sapele (Entandrophragma cylindricum) wood through a hybrid pulping process using soda/ethanol as pulping liquor and denoted soda-oxyethylated lignin (SOL). SOL was mixed with a polyethylene glycol (PEG)–glycerol mixture (80/20 v/v) as liquefying solvent with 98% wt. sulfur acid as catalyst, and the mixture was taken to boil at 140 °C for 2, 2.5, and 3 h. Three bio-polyols LBP1, LBP2, and LBP3 were obtained, and each of them exhibited a high proportion of -OH groups. Lignin-based polyurethane foams (LBPUFs) were prepared using the bio-polyols obtained with a toluene diisocyanate (TDI) prepolymer by the one-shot method. Gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) were used characterize lignin in order to determine viscosity, yield, and composition and to characterize their structure. The PEG-400–glycerol mixture was found to react with the lignin bio-polyols’ phenolic -OHs. The bio-polyols’ viscosity was found to increase as the liquefaction temperature increased, while simultaneously their molecular weights decreased. All the NCO groups were eliminated from the samples, which had high thermal stability as the liquefaction temperature increased, leading to a decrease in cell size, density, and crystallinity and an improvement in mechanical performance. Based on these properties, especially the presence of some aromatic rings in the bio-polyols, the foams produced can be useful in automotive applications and for floor carpets. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

21 pages, 4264 KiB  
Article
Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
by Heng Yan, Xinxin Cao, Wei Wei, Yongjie Ding and Jukun Guo
Coatings 2025, 15(8), 917; https://doi.org/10.3390/coatings15080917 - 6 Aug 2025
Abstract
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into [...] Read more.
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into aged asphalt binder via direct mixing at controlled dosages. Their effects were assessed using microscopy, droplet diffusion analysis, rheological testing (DSR and BBR), and molecular dynamics simulations. The aim is to compare the compatibility, solubility behavior, and rejuvenation potential of plant-based and mineral-based oils. The results indicate that N-oil and F-oil promote asphaltene aggregation, which supports structural rebuilding. In contrast, A-oil and W-oil act as solvents that disperse asphaltenes. Among the tested oils, N-oil exhibited the best overall performance in enhancing flowability, low-temperature flexibility, and chemical compatibility. This study presents a novel method to evaluate rejuvenator effectiveness by quantifying colloidal stability through grayscale analysis of droplet diffusion patterns. This integrated approach offers both mechanistic insights and practical guidance for selecting bio-based rejuvenators in asphalt recycling. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 267
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 253
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 215
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

15 pages, 2004 KiB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 269
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 1147 KiB  
Hypothesis
Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases
by Roman Bielski and Michal Tencer
Life 2025, 15(8), 1160; https://doi.org/10.3390/life15081160 - 23 Jul 2025
Viewed by 258
Abstract
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) [...] Read more.
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) on a mineral or metal. Purine bases (adenine and guanine) are more likely candidates for this process than pyrimidine bases because they have more H-bond donors and acceptors. Another possible candidate surface for the enantioseparation of ribose would be formed by the adsorption of nucleobase pairs, e.g., guanine–cytosine (GC). Interactions of ribose molecules with hydrogen bond donors and acceptors of NBs or NB pairs (located on the surface) enforced the orientation of ribose molecules in two directions perpendicular to each other and parallel to the surface. Consequently, the energy of interactions of enantiomers of the sugar with the surface was not the same. Thus, a solvent moving along the surface caused the enantiomers of ribose to move with different rates, resulting in the enantioseparation of ribose in a chromatography-like process. The same process would also separate ribose from other monosaccharides in the mix. Hydrogen bonding between nucleobases was also pivotal in the formation of large homochiral domains on the surfaces. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
Show Figures

Figure 1

16 pages, 3373 KiB  
Article
Automated Workflow for High-Throughput LC–MS/MS Therapeutic Monitoring of Cannabidiol and 7-Hydroxy-cannabidiol in Patients with Epilepsy
by Michela Palmisani, Francesca Dattrino, Paola Rota, Federica Tacchella, Guido Fedele, Ludovica Pasca, Carlo Alberto Quaranta, Valentina De Giorgis, Thomas Matulli Cavedagna, Chiara Cancellerini, Anna Butti, Gloria Castellazzi, Emilio Russo, Cristina Tassorelli, Pierluigi Nicotera and Valentina Franco
Int. J. Mol. Sci. 2025, 26(14), 6999; https://doi.org/10.3390/ijms26146999 - 21 Jul 2025
Viewed by 301
Abstract
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, [...] Read more.
This study describes the development and validation of a fully automated workflow for serum sample preparation, enabling the quantitative determination of cannabidiol (CBD) and its active metabolite, 7-hydroxy-CBD, via liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analysis. Implemented on an automated platform, the workflow performs key steps such as solvent dispensing, mixing, centrifugation, filtration, and supernatant transfer, producing 96-well plates ready for analysis. Human serum samples were obtained from patients with epilepsy treated with CBD. All samples were processed using both manual and automated methods to evaluate method agreement. Quantification was performed by LC–MS/MS with CBD-d3 as the internal standard (IS). Method validation was conducted in accordance with European Medicine Agency (EMA) guidelines, confirming that the automated protocol meets the recommended acceptance criteria for both intraday and interday precision and accuracy. Calibration curves demonstrated excellent linearity across the concentration ranges. Comparative analysis using Passing–Bablok regression and Bland–Altman plots demonstrated strong agreement between the methods. These findings support the clinical applicability of the automated method for the therapeutic drug monitoring (TDM) of CBD and 7-hydroxy-CBD, and its robust performance and scalability provide a solid foundation for the development of an expanded analytical panel covering a broader range of antiseizure medications (ASMs), enabling more standardized TDM protocols in clinical practice. Full article
Show Figures

Figure 1

12 pages, 2590 KiB  
Article
Summer Cafe: In Vitro Case Study of Biological Repellents Against the Large Pine Weevil
by Ilze Matisone, Kristaps Ozoliņš, Roberts Matisons, Mārtiņš Spāde, Uldis Grīnfelds and Rinalds Trukšs
Forests 2025, 16(7), 1139; https://doi.org/10.3390/f16071139 - 10 Jul 2025
Viewed by 211
Abstract
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of [...] Read more.
Growing environmental concerns have led to the search for alternative biological repellents against the large pine weevil Hylobius abietis L., Europe’s most important coniferous forest regeneration pest. A laboratory study was carried out to assess the effectiveness (damage intensity) of six combinations of a novel biological repellent, consisting of plant-based oils, beeswax, calcium carbonate, vanillin, pine bark extractives, terpentine, abrasive particles, solvent, and a viscosity agent, in comparison with commercially available repellent Norfort LDW 115. The application complexity of the repellents, their persistence on seedlings, and the extent of H. abietis damage were evaluated. The five alternative repellents had higher protection compared to the control repellent, highlighting the potential for new alternative repellents. The base (without additives) repellent provided the highest protection, indicating a redundancy of admixtures. A mixed cumulative link model, employed to estimate differences between the repellents, estimated 85% undamaged and none significantly damaged saplings in the case of the base repellent. However, the consistency and hence persistence of certain repellents on plantlets would benefit from improvements; further field studies are needed to upscale the test of the stability and efficiency of high levels in real environments under different H. abietis population pressures. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

21 pages, 4090 KiB  
Article
Linear Actuation of Dielectrophoretic Formed Multi-Walled Carbon Nanotube Fiber with Carbide-Derived Carbon in Polar Aprotic and Polar Protic Solvents
by Chau B. Tran, Quoc Bao Le and Rudolf Kiefer
Materials 2025, 18(14), 3254; https://doi.org/10.3390/ma18143254 - 10 Jul 2025
Viewed by 334
Abstract
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of [...] Read more.
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of the CNT and the CNTCDC fibers is compared using identical electrolyte concentrations in both a polar aprotic solvent (propylene carbonate, PC) and a polar protic solvent (aqueous solution, aq). Electromechanical deformation (EMD) is studied through cyclic voltammetry and chronoamperometry. The CNTCDC fiber outperformed the pristine CNT fiber, exhibiting primary expansion during discharge in PC (stress: 1.64 kPa, strain: 0.1%) and during charge in water (stress: 1.32 kPa, strain: 0.047%). By contrast, the pristine CNT fibers showed mixed actuation responses in both solvents, resulting in diminished net stress and strain. Chronopotentiometric measurements indicated that the CNTCDC fibers achieved their highest specific capacitance in aqueous media, reaching 223 ± 17 F g−1 at ±0.8 A g−1, with a capacity retention of 94.2% at ±32 A g−1. Fundamental characterization techniques, including scanning electron microcopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy, are employed to analyze fiber morphology and composition. The dual functionality of CNTCDC fibers, as both actuators and energy storage elements, is demonstrated. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Graphical abstract

18 pages, 2445 KiB  
Article
Eutectic Mixtures Based on Oleic Acid and Pulsed Electric Fields: A Strategy for the Extraction of Astaxanthin from Dry Biomass of Xanthophyllomyces dendrorhous
by Javier Marañés, Alejandro Berzosa, Fernando Bergua, Javier Marín-Sánchez, Javier Raso and Manuela Artal
Foods 2025, 14(13), 2371; https://doi.org/10.3390/foods14132371 - 4 Jul 2025
Viewed by 397
Abstract
The use of astaxanthin (AST) is expanding from its origins as a food coloring to health-related applications. This paper evaluates the efficiency of its extraction from dried Xanthophyllomyces dendrorhous using two combined and consecutive techniques. First, cell membrane permeation is achieved with the [...] Read more.
The use of astaxanthin (AST) is expanding from its origins as a food coloring to health-related applications. This paper evaluates the efficiency of its extraction from dried Xanthophyllomyces dendrorhous using two combined and consecutive techniques. First, cell membrane permeation is achieved with the application of pulsed electric fields (PEFs). Solid–liquid extraction is then performed with hydrophobic eutectic solvents (hESs) prepared by mixing components of essential oils (linalool, l-menthol, eugenol, geraniol, cinnamyl alcohol, or thymol) and oleic acid. The hESs were characterized by measuring of several thermophysical properties at 25 °C and 0.1 MPa. An initial screening was performed to choose the best solvent and the extraction conditions (composition, extraction time, and temperature) were evaluated using the response surface methodology. The results showed the importance of the electroporation as a preliminary step to the extraction. The more hydrophobic and less compact the hES, the more effective the solvent. Thus, the equimolar mixture of l-menthol and oleic acid achieved an efficiency of 77% for untreated biomass, 83% for that treated with PEF, and 92% for that treated with PEF and later incubated. Molecular dynamics simulations demonstrated the importance of the hydrophobic interactions between AST and the components of the best solvent. Full article
Show Figures

Graphical abstract

14 pages, 4074 KiB  
Article
Synthesis and Characterization of Biodegradable Polymer Blends Based on Chitosan
by Lyazzat Bekbayeva, Grigoriy A. Mun, Bayana B. Yermukhambetova, El-Sayed Negim, Galiya Irmukhametova, Khaldun M. Al Azzam, Sergey V. Nechipurenko, Sergey A. Efremov, Mubarak Yermaganbetov and Moshera Samy
Polymers 2025, 17(13), 1853; https://doi.org/10.3390/polym17131853 - 2 Jul 2025
Viewed by 440
Abstract
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric [...] Read more.
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric blend formulations. Biodegradable polymers composed of chitosan (CS), itaconic acid (IT), and starch (S) were synthesized using two polymerization methods. The first method involved grafting IT onto CS at varying ratios of IT (4%, 6%, and 8% wt.), using 1% v/v acetic acid/water as the solvent and potassium persulfate as the initiator. In the second approach, starch (S) was blended with the copolymer P(CS-g-IT) at concentrations of 1%, 3%, and 5%, utilizing water as the solvent and glacial acetic acid as a catalyst. The resulting biodegradable films underwent characterization through FTIR, TGA, SEM, and mechanical property analysis. To further explore the effects of combining IT, starch, and carbon black, the blends, referred to as P[(CS-g-IT)-b-S], were also loaded with carbon black. This allowed for the evaluation of the materials’ physicomechanical properties, such as viscosity, tensile strength, elongation, and contact angle. The findings demonstrated that the presence of IT, starch, and carbon black collectively improved the films’ mechanical performance, physical traits, and biodegradability. Among the samples, the blended copolymer with 1% starch exhibited the highest mechanical properties, followed by the grafted copolymer with 8% IT and the blended copolymer mixed with carbon black at 7%. In contrast, the blended copolymer with 5% starch showed the highest hydrophilicity and the shortest degradation time compared to the grafted copolymer with 8% IT and the blended copolymer mixed with 7% carbon black. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 8830 KiB  
Article
Evaluation of the Grading and Morphology of Recycled Asphalt Pavement Clusters Using the Emulsification–Separation Disposal Method
by Peiliang Cong and Kexuan Yu
Appl. Sci. 2025, 15(13), 7375; https://doi.org/10.3390/app15137375 - 30 Jun 2025
Viewed by 238
Abstract
This study proposes a method for separating asphalt and aggregates in recycled asphalt pavement (RAP) materials using surfactants as solvents. This method utilizes surfactants to soften the asphalt by reducing its surface tension, separating the RAP clusters, and washing away the asphalt from [...] Read more.
This study proposes a method for separating asphalt and aggregates in recycled asphalt pavement (RAP) materials using surfactants as solvents. This method utilizes surfactants to soften the asphalt by reducing its surface tension, separating the RAP clusters, and washing away the asphalt from the RAP. The wastewater is recycled during the emulsification–separation process without discharge. Factors affecting the separation effect of RAP, including the type of anionic surfactants, the surfactant concentration, the emulsion-to-RAP ratio, temperature, the rotation rate and time, and the RAP’s particle size, were investigated in depth, and the separation effect and its influence on the aggregate properties were evaluated. The experimental results indicate that when using the optimal process to mix and treat 13.2 mm and 9.5 mm RAP clusters, it is possible to achieve 100% separation of the coarse RAP above 4.75 mm, with a 64.58% reduction in the asphalt content. The angularity of the aggregate remained unchanged after separation. It was observed from scanning electron microscopy (SEM) images that the asphalt on the surface of the coarse aggregate had been eluted, and the morphology of the aggregate surface was completely exposed. This environmentally friendly separation method provides new possibilities for high-content RAP recycling in pavement engineering. Full article
Show Figures

Figure 1

22 pages, 3243 KiB  
Article
Development of a Continuous Extrusion Process for Alginate Biopolymer Films for Sustainable Applications
by Zahra Eslami, Saïd Elkoun, Miraidin Mirzapour and Mathieu Robert
Polymers 2025, 17(13), 1818; https://doi.org/10.3390/polym17131818 - 29 Jun 2025
Viewed by 714
Abstract
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties [...] Read more.
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties were systematically investigated. Structural characterization was performed using 1H NMR and FT-IR, and thermal transitions were analyzed via DSC (Differential Scanning Calorimetry) and DMA (Dynamic Mechanical Analysis). The glass transition temperature (Tg) of the alginate/glycerol/water system was modeled using the Gordon–Taylor equation. Glycerol incorporation significantly reduced Tg—by up to 76 °C with 40 wt% glycerol—and enhanced ductility and toughness, reaching 3.26 MJ/m3 at the optimal level. The influence of processing temperature was found to depend on plasticizer content: at lower glycerol levels, elevated temperatures decreased Tg and elongation at break, likely due to thermal degradation. However, films with higher glycerol content retained stable mechanical and thermal behavior across both temperature profiles. This work is among the first to explore how processing temperature affects extruded, plasticized pure alginate films. The findings provide key insights into the formulation and scalable production of bio-based packaging materials, highlighting the importance of optimizing both plasticizer concentration and processing parameters. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

13 pages, 2255 KiB  
Article
Solid-Phase Oligosaccharide Synthesis with Highly Complexed Peptidoglycan Fragments
by Yuichiro Kadonaga, Ning Wang, Atsushi Shimoyama, Yukari Fujimoto and Koichi Fukase
Molecules 2025, 30(13), 2787; https://doi.org/10.3390/molecules30132787 - 28 Jun 2025
Viewed by 424
Abstract
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the [...] Read more.
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the PGN fragments via chemical synthesis is essential. However, the synthesis and purification of long PGN fragments are quite challenging due to their low solubility. In this study, we efficiently synthesized PGN fragments via solid-phase oligosaccharide synthesis (SPOS). Using the JandaJel™ Wang resin (JJ-Wang), an octasaccharide glycan chain of PGN was constructed by repeating glycosylation reactions to elongate β-1,4-linked disaccharide units composed of MurNAc and GlcNAc. To enhance reactivity, glycosylation was performed in a mixed solvent comprising C4F9OEt/CH2Cl2/THF with the intention of promoting substrate concentration onto the solid support through the fluorophobic effect, affording the PGN octasaccharide in a 19% overall yield (10 steps). Subsequently, after deprotection of the O-Fmoc, N-Troc, and ethyl ester groups, N- and O-acetylation proceeded smoothly, owing to the high swelling property of JJ-Wang. Peptide condensation with L-Ala-D-isoGln(OBn) and carboxylic acids was also achieved. Finally, cleavage of the PGN fragment from the resin with TFA afforded the desired octasaccharide with dipeptides in a 2.3% overall yield (15 steps). Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop