polymers-logo

Journal Browser

Journal Browser

Recent Advances and Applications of Polymer Nanocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1679

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Science and Technology, University of Silesia in Katowice, Katowice, Poland
Interests: polymer thin films; ultra-stable glasses; polymer nanocomposites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer nanocomposites have emerged as a groundbreaking class of materials, integrating nanoscale reinforcements into polymer matrices to enhance mechanical, thermal, electrical, and barrier properties. Recent advancements in nanofillers such as carbon nanotubes, graphene, nanoclays, and metal-oxide nanoparticles have significantly improved the functionality and performance of these materials. Innovative processing techniques, surface modifications, and the development of sustainable, bio-based polymer nanocomposites have further expanded their applications across diverse industries.

This Special Issue aims at showcasing the latest research and developments in polymer nanocomposites, covering synthesis, characterization, and advanced applications in fields such as aerospace, automotive, electronics, biomedical engineering, and energy storage. Topics of interest include, but are not limited to, nanocomposite fabrication strategies, multifunctional properties, recyclability, and environmental impact. We invite researchers to contribute original research articles, reviews, and perspectives that highlight novel approaches, experimental insights, and emerging trends in polymer nanocomposites. This collection will serve as a valuable resource for scientists and engineers seeking to advance the field and explore its vast technological potential.

Dr. Aparna Beena Unni
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • polymer
  • block copolymers
  • functional materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3243 KiB  
Article
Development of a Continuous Extrusion Process for Alginate Biopolymer Films for Sustainable Applications
by Zahra Eslami, Saïd Elkoun, Miraidin Mirzapour and Mathieu Robert
Polymers 2025, 17(13), 1818; https://doi.org/10.3390/polym17131818 - 29 Jun 2025
Viewed by 459
Abstract
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties [...] Read more.
This study presents a novel method for producing extrudable alginate-based films using continuous thermo-mechanical mixing, providing a scalable alternative to conventional solvent-casting techniques. The effects of glycerol concentration (30–50 wt%) and processing temperature (110–120 °C) on the films’ thermal, mechanical, and structural properties were systematically investigated. Structural characterization was performed using 1H NMR and FT-IR, and thermal transitions were analyzed via DSC (Differential Scanning Calorimetry) and DMA (Dynamic Mechanical Analysis). The glass transition temperature (Tg) of the alginate/glycerol/water system was modeled using the Gordon–Taylor equation. Glycerol incorporation significantly reduced Tg—by up to 76 °C with 40 wt% glycerol—and enhanced ductility and toughness, reaching 3.26 MJ/m3 at the optimal level. The influence of processing temperature was found to depend on plasticizer content: at lower glycerol levels, elevated temperatures decreased Tg and elongation at break, likely due to thermal degradation. However, films with higher glycerol content retained stable mechanical and thermal behavior across both temperature profiles. This work is among the first to explore how processing temperature affects extruded, plasticized pure alginate films. The findings provide key insights into the formulation and scalable production of bio-based packaging materials, highlighting the importance of optimizing both plasticizer concentration and processing parameters. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

22 pages, 6344 KiB  
Article
Tailoring the Properties of Magnetite/PLA Nanocomposites: A Composition-Dependent Study
by Mariana Martins de Melo Barbosa, Juliene Oliveira Campos de França, Quezia dos Santos Lima, Sílvia Cláudia Loureiro Dias, Carlos A. Vilca Huayhua, Fermín F. H. Aragón, José A. H. Coaquira and José Alves Dias
Polymers 2025, 17(12), 1713; https://doi.org/10.3390/polym17121713 - 19 Jun 2025
Viewed by 511
Abstract
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used [...] Read more.
This study focused on composites of magnetite magnetic nanoparticles (MNP) and poly(lactic acid) (PLA) prepared via sonochemical synthesis. The evaluation of MNP loadings (2, 5, 10, 15, and 20 wt.%) provided insights into the structural and reactivity properties of the materials. Methods used included XRD, FT-IR and Raman spectroscopy, SEM and TEM microscopy, textural and thermal analysis (TG and DTA), and magnetic property measurements. The agreement between theoretical and experimental MNP loadings was good. XRD patterns showed predominantly MNP and semicrystalline phases, with a minor maghemite phase detected by FT-Raman and magnetic measurements. FT-IR analysis revealed interactions between MNP and PLA, confirmed by thermal analysis showing higher transition temperatures for the composites (145 °C) compared to pure PLA (139 °C). FT-Raman spectra also indicated that PLA helps prevent iron oxide oxidation, enhancing nanoparticle stability. SEM and TEM micrographs showed well-dispersed, spherical nanoparticles with minimal agglomeration, dependent on MNP loading. The nanocomposites exhibited low N2 adsorption, resulting in low surface area (~2.1 m2/g) and porosity (~0.03 cm3/g). Magnetic analysis indicated that in the 2MNP/PLA sample, MNP were in a superparamagnetic-like regime at 300 K, suggesting good dispersion of 2 wt.% MNP in the PLA matrix. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

19 pages, 2940 KiB  
Article
Effect of Poly-γ-Glutamic Acid Molecular Weight on the Properties of Whey Protein Isolate Hydrogels
by Daniel K. Baines, Zuzanna Pawlak-Likus, Nikoleta N. Tavernaraki, Varvara Platania, Mattia Parati, Timothy N. Wong Wong Cheung, Iza Radecka, Patrycja Domalik-Pyzik, Maria Chatzinikolaidou and Timothy E. L. Douglas
Polymers 2025, 17(12), 1605; https://doi.org/10.3390/polym17121605 - 9 Jun 2025
Viewed by 442
Abstract
Whey protein isolate (WPI) hydrogel is a promising candidate as a biomaterial for tissue engineering. Previously, WPI hydrogels containing poly-γ-glutamic acid (γ-PGA) with a molecular weight (MW) of 440 kDa demonstrated potential as scaffolds for bone tissue engineering. Here, the study compares different [...] Read more.
Whey protein isolate (WPI) hydrogel is a promising candidate as a biomaterial for tissue engineering. Previously, WPI hydrogels containing poly-γ-glutamic acid (γ-PGA) with a molecular weight (MW) of 440 kDa demonstrated potential as scaffolds for bone tissue engineering. Here, the study compares different γ-PGA preparations of differing MW. WPI-γ-PGA hydrogels containing 40% WPI and 0%, 2.5%, 5%, 7.5%, and 10% γ-PGA were synthesised. Three γ-PGA MWs were compared, namely 10 kDa, 700 kDa, and 1100 kDa. Evidence of successful γ-PGA incorporation was demonstrated by scanning electron microscopy and Fourier transform infrared spectroscopy. Increasing γ-PGA concentration significantly improved the swelling potential of the hydrogels, as demonstrated by ratio mass increases of between 85 and 90% for each 10% variable group. Results suggested that γ-PGA delayed enzymatic proteolysis, potentially decreasing the rate of degradation. The addition of γ-PGA significantly decreased the Young’s modulus and compressive strength of hydrogels. Dental pulp mesenchymal stem cells proliferated on all hydrogels. The highest cellular growth was observed for the WPI-700 kDa γ-PGA group. Additionally, superior cell attachment was observed on all WPI hydrogels containing γ-PGA compared to the WPI control. These results further suggest the potential of WPI hydrogels containing γ-PGA as biomaterials for bone tissue engineering. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

Back to TopTop