Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases
Abstract
1. Introduction
- The origin of homochirality.
- Why is ribose and not another sugar the chiral component of ribonucleic acid?
2. Origin of Ribose and Nucleobases
3. Adsorption of NBs on Surfaces and Induced Chirality
4. Concept of Ribose Enantioseparation on NB-Coated Surface
5. Enantioseparation of Racemic Ribose
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soai, K. The Soai reaction and its implications with the life’s characteristic features of self-replication and homochirality. Tetrahedron 2022, 124, 133017. [Google Scholar] [CrossRef]
- Viedma, C. Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef] [PubMed]
- Noorduin, W.L.; Izumi, T.; Millemaggi, A.; Leeman, M.; Van Eckenvort, W.J.P.; Kellogg, R.M.; Kaptein, B.; Vlieg, E.; Blackmond, D.G. Emergence of a Single Solid Chiral State from a Nearly Racemic Amino Acid Derivative. J. Am. Chem. Soc. 2008, 130, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
- Sögütoglu, L.-C.; Steendam, R.R.E.; Meekes, H.; Vlieg, E.; Rutjes, F.P.J.T. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Capua, E.; Kesharwani, M.K.; Martin, J.M.L.; Sitbon, E.; Waldeck, E.H.; Naaman, R. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proc. Natl. Acad. Sci. USA 2017, 114, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, F.; Steidel, J.; Paltiel, S.; Fontanesi, C.; Lahav, M.; Paltiel, Y.; Naaman, R. Enantioseparation by crystallization using magnetic substrates. Chem. Sci. 2019, 10, 5246–5250. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.F.; Liu, Z.; Sutherland, J.D.; Sasselov, D.D. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. Sci. Adv. 2023, 9, adg8274. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A. Towards a chemical etiology of nucleic acid structure. Orig. Life Evol. Biosph. 1997, 27, 535–553. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 1999, 284, 2118–2124. [Google Scholar] [CrossRef] [PubMed]
- Eschenmoser, A.; Krishnamurthy, R. Chemical etiology of nucleic acid structure. Pure Appl Chem. 2000, 72, 343–345. [Google Scholar] [CrossRef]
- Eschenmoser, A. Searching for nucleic acids alternatives. Chimia 2006, 59, 836–850. [Google Scholar] [CrossRef]
- Eschenmoser, A. Etiology of Potentially Primordial Biomolecular Structures: From Vitamin B12 to the Nucleic Acids and an Inquiry into the Chemistry of Life’s Origin: A Retrospective. Angew. Chem. (Int. Ed.) 2011, 50, 12412–12472. [Google Scholar] [CrossRef] [PubMed]
- Banfalvi, G. Prebiotic Pathway from Ribose to RNA Formation. Int. J. Mol. Sci. 2021, 22, 3857. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct. 2012, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.P.; Joyce, G.F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 2012, 4, a003608. [Google Scholar] [CrossRef] [PubMed]
- Higgs, P.G.; Lehman, N. The RNA World: Molecular Cooperation at the Origins of Life. Nat. Rev. Genet. 2015, 16, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A. No Homochirality—No Life. Viva Origino 2012, 40, 40–46. [Google Scholar]
- Devinsky, F. Chirality and Origin of Life. Symmetry 2021, 13, 2277. [Google Scholar] [CrossRef]
- Martínez, R.F.; Cuccia, L.A.; Viedma, C.; Cintas, P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links—A Review. Orig Life Evol. Biosph. 2022, 52, 21–56. [Google Scholar] [CrossRef] [PubMed]
- Joyce, G.; Visser, G.; van Boeckel, C.; Van Boom, J.H.; Orgel, L.E.; van Westrenen, J. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 1984, 310, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Bielski, R.; Tencer, M. Absolute enantioselective separation: Optical activity ex machina. J. Sep. Sci. 2005, 28, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Bielski, R.; Tencer, M. A Possible Path to the RNA World: Enantioselective and Diastereoselective Purification of Ribose. Orig. Life Evol. Biosph. 2007, 37, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Sutherland, J.D.; Szostak, J.W. The Origins of Nucleotides. Synlett 2011, 2, 1956–1964. [Google Scholar] [CrossRef]
- Nam, I.; Lee, J.K.; Nam, H.G.; Zare, R.N. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proc. Natl. Acad. Sci. USA 2017, 114, 12396–12400. [Google Scholar] [CrossRef] [PubMed]
- Nam, I.; Nam, H.G.; Zare, R.N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc. Natl. Acad. Sci. USA 2018, 115, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.C.; Cafferty, B.J.; Mamaianov, I.; Gállego, I.; Krishnamurthy, R.; Hud, N.V. Spontaneous Prebiotic Formation of a β-Ribofuranoside that Self-Assembles with a Complementary Heterocycle. J. Am. Chem. Soc. 2014, 136, 5640–5646. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Benner, S.A. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. USA 2017, 114, 11315–11320. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kim, J. A Prebiotic Synthesis of Canonical Pyrimidine and Purine Ribonucleotides. Astrobiology 2019, 19, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Marina, I.; Abul-Haija, Y.M.; Turk-MacLeod, R.; Gromski, P.S.; Cooper, G.J.T.; Olivé, A.O.; Colón-Santos, S.; Cronin, L. Integrated synthesis of nucleotide and nucleosides influenced by amino acids. Commun. Chem. 2019, 2, 28. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Kakegawa, T.; Furukawa, Y. Borate-guided ribose phosphorylation for prebiotic nucleotide synthesis. Sci. Rep. 2022, 12, 11828. [Google Scholar] [CrossRef] [PubMed]
- Roche, T.P.; Fialh, D.M.; Menor-Salván, C.; Krishnamurthy, R.; Schuster, G.B.; Hud, N.V. A Plausible Prebiotic Path to Nucleosides: Ribosides and Related Aldosides Generated from Ribulose, Fructose, and Similar Abiotic Precursors. Chem. Eur. J. 2023, 29, e202203036. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Thoma, I.; Deutsch, A.; Gehrke, T.; Mayer, P.; Zipse, H.; Carell, T. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 2016, 352, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Feldmann, J.; Wiedemann, S.; Okamura, H.; Schneider, C.; Iwan, K.; Crisp, A.; Rossa, M.; Amatov, T.; Carell, T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 2019, 366, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H. Exploring the chemical origin of RNA on the early Earth: Prebiotic synthesis of ribonucleosides. Viva Origino 2021, 49, 12. [Google Scholar]
- Feldmann, J.; Skaanning, M.K.; Lommel, M.; Kernmayr, T.; Mayer, P.; Carell, T. A Unifying Concept for the Prebiotic Formation of RNA Pyrimidine Nucleosides. ChemistryEurope 2023, 1, e202300013. [Google Scholar] [CrossRef]
- Pressman, A.; Blanco, C.; Chen, I.A. The RNA World as a Model System to Study the Origin of Life. Curr. Biol. 2015, 25, R953–R963. [Google Scholar] [CrossRef] [PubMed]
- Jeilani, Y.A.; Williams, P.N.; Walton, S.; Nguyen, M.N. Unified reaction pathways for the prebiotic formation of RNA and DNA nucleobases. Phys. Chem. Chem. Phys. 2016, 18, 20177–20188. [Google Scholar] [CrossRef] [PubMed]
- Ferus, M.; Rimmer, P.; Cassone, G.; Knížek, A.; Civiš, S.; Šponer, J.E.; Ivanek, O.; Šponer, J.; Saeidfirozeh, H.; Kubelík, P.; et al. One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology 2020, 20, 1476–1488. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C.E.; Eschenmoser, A.; Ohlofjgewidmet, G. Chemistry of α-Aminonitriles. Part 4. Aldomerization of Glycolaldehyde Phosphate to rac-Hexose 2,4,6-Triphosphates and (in Presence of Formaldehyde) rac-Pentose 2,4-Diphosphates: Rac-Allose 2,4,6-Triphosphate and rac-Ribose 2,4-Diphosphate are the Main Reaction Products. Helv. Chim. Acta 1990, 73, 1410–1468. [Google Scholar]
- Kofoed, J.; Reymond, J.-L.; Darbre, T. Prebiotic carbohydrate synthesis: Zinc–proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones. Org. Biomol. Chem. 2005, 3, 1850–1855. [Google Scholar] [CrossRef] [PubMed]
- Usami, K.; Okamoto, A. Hydroxyapatite: Catalyst for a one-pot pentose formation. Org. Biomol. Chem. 2017, 5, 8888–8893. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A. Borate minerals stabilize ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef] [PubMed]
- Scorei, R.; Cimpoiaşu, V.M. Boron enhances the thermostability of carbohydrates. Orig. Life Evol. Biosph. 2006, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.A.L.; Holm, N.G. Borophosphates and silicophosphates as plausible contributors to the emergence of life. J. Colloid Interface Sci. 2014, 431, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; da Silva, J.A.L. Boron in Prebiological Evolution. Angew. Chem. (Int. Ed.) 2021, 60, 10458–10468. [Google Scholar] [CrossRef] [PubMed]
- Springsteen, G.; Joyce, G.F. Selective Derivatization and Sequestration of Ribose from a Prebiotic Mix. J. Am. Chem. Soc. 2004, 126, 9578–9583. [Google Scholar] [CrossRef] [PubMed]
- Katsonis, N.; Lacaze, E.; Feringa, B.L. Molecular chirality at fluid/solid interfaces: Expression of asymmetry in self-organised monolayers. J. Mater. Chem. 2008, 18, 2065–2073. [Google Scholar] [CrossRef]
- Fujita, S. Substitution Criteria Based on Stereoisograms to Determine Prochirality and Pro-RS-Stereogenicity. MATCH Commun. Math. Comput. Chem. 2009, 61, 39–70. [Google Scholar]
- Ernst, K.-H. Molecular Chirality at Surfaces. Phys. Status Solidi B 2012, 249, 2057–2088. [Google Scholar] [CrossRef]
- Stetsovych, O.; Švec, M.; Vacek, J.; Vacek Chocholoušová, J.; Jančařík, A.; Rybáček, J.; Kosmider, K.; Stará, I.G.; Jelínek, P.; Starý, I. From helical to planar chirality by on-surface chemistry. Nature Chem. 2017, 9, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Kelly, R.E.A.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L.N.; Besenbacher, F. Prochiral Guanine Adsorption on Au (111): An Entropy-Stabilized Intermixed Guanine-Quartet Chiral Structure. Small 2009, 5, 1952–1956. [Google Scholar] [CrossRef] [PubMed]
- Livshits, A.I.; Kantorovich, L. Guanine Assemblies on the Au (111) Surface: A Theoretical Study. J. Phys. Chem. C 2013, 117, 5684–5692. [Google Scholar] [CrossRef]
- Piana, S.; Bilic, A. The Nature of the Adsorption of Nucleobases on the Gold [111] Surface. J. Phys. Chem. B 2006, 110, 23467–23471. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Frankel, D.J.; Richardson, N.V. Self-Assembly of Adenine on Cu (110) Surfaces. Langmuir 2002, 18, 3219–3225. [Google Scholar] [CrossRef]
- Cheng, L. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu (110) Surfaces. Materials 2016, 9, 1016. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.E.A.; Xu, W.; Lukas, M.; Otero, R.; Mura, M.; Lee, Y.-J.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L.N.; Besenbacher, F. An Investigation into the Interactions Between Self-Assembled Adenine Molecules and a Au (111) Surface. Small 2008, 4, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, S.J.; Heckl, W.M.; Petersen, G.B. Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules. J. Mol. Evol. 1996, 43, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Chiorcea, A.-M.; Oliveira-Brett, A.M. Scanning probe microscopic imaging of guanine on a highly oriented pyrolytic graphite electrode. Bioelectrochemistry 2002, 55, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.G.; Deak, D.S.; Liua, S.; Castell, M.R. Structure of vapour deposited adenine on a nanostructured perovskite surface studied by STM. Faraday Discuss. 2006, 133, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Plekan, O.; Feyer, V.; Šutara, F.; Skála, T.; Švec, M.; Cháb, V.; Matolín, V.; Prince, K.C. The adsorption of adenine on mineral surfaces: Iron pyrite and silicon dioxide. Surf. Sci. 2007, 601, 1973–1980. [Google Scholar] [CrossRef]
- Ding, N.; Chen, X.; Wu, C.-M.L.; Li, H. Adsorption of nucleobase pairs on hexagonal boron nitride sheet: Hydrogen bonding versus stacking. Phys. Chem. Chem. Phys. 2013, 15, 10767. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, T.K.; Datta, A. Design Rules for the Generation of Stable Quartet Phases of Nucleobases over Two-Dimensional Materials. J. Phys. Chem. C 2018, 122, 28918–28933. [Google Scholar] [CrossRef]
- Saravanan, R.K.; Avasthi, I.; Prajapati, R.K.; Verma, S. Surface modification and pattern formation by nucleobases and their coordination complexes. RSC Adv. 2018, 8, 24541–24560. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, T.; Brucato, J.R.; Pace, E.; Guidi, M.C.; Branciamore, S.; Pucci, A. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces. Icarus 2013, 26, 1068–1085. [Google Scholar] [CrossRef]
- Bhai, S.; Ganguly, B. Probing the Interaction of Nucleobases and Fluorophore Tagged Nucleobases with Graphene Surface: Adsorption and Fluorescence Studies. ChemistrySelect 2020, 5, 3191–3200. [Google Scholar] [CrossRef]
- Vovusha, H.; Sanyal, B. Adsorption of nucleobases on 2D transition-metal dichalcogenides and graphene sheet: A first principles density functional theory study. RSC Adv. 2015, 5, 67427. [Google Scholar] [CrossRef]
- Hashizume, H. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals. Life 2015, 5, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, A.; El Garah, M.; Masiero, S.; Samorì, P. Self-assembly of Natural and Unnatural Nucleobases at Surfaces and Interfaces. Small 2016, 12, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, S.J.; Heckl, W.M. The Role of Self-Assembled Monolayers of the Purine and Pyrimidine Bases in the Emergence of Life. Orig. Life Evol. Biosph. 1998, 28, 283–310. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A. The origin and amplification of biomolecular chirality. Orig. Life Evol. Biosph. 2007, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, A.; Kahlfuss, C.; Minoia, A.; Eyley, S.; Zwaenepoel, K.; Velpula, G.; Thielemans, W.; Lazzaroni, R.; Bulach, V.; Hosseini, M.W.; et al. Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks. J. Am. Chem. Soc. 2023, 145, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Sairanova, N.I.; Gainullina, Y.Y. A Chiral Stationary Phase Based on Guanine Conglomerates Obtained Under Viedma Ripening Conditions. J. Anal. Chem. 2021, 6, 1321–1326. [Google Scholar] [CrossRef]
- Paragi, G.; Fonseca Guerra, C. Cooperativity in the Self-Assembly of the Guanine Nucleobase into Quartet and Ribbon Structures on Surfaces. Chem. Eur. J. 2017, 23, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Maurel, M.-C.; Décout, J.-L. Origins of life: Molecular foundations and new approaches. Tetrahedron 1999, 55, 3141–3182. [Google Scholar] [CrossRef]
- Lago, J.L.; Burcar, B.T.; Hud, N.V.; Febrian, R.; Mehta, C.; Bracher, P.J.; Atlas, Z.D.; Pasek, M.A. The Prebiotic Provenance of Semi-Aqueous Solvents. Orig. Life Evol. Biosph. 2020, 50, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Pertíñez, S.; Wilks, T.R. Deep Eutectic Solvents as Media for the Prebiotic DNA-Templated Synthesis of Peptides. Front. Chem. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, T.; Takai, K. Liquid and supercritical CO2 as an organic solvent in Hadean seafloor hydrothermal systems: Implications for prebiotic chemical evolution. Prog. Earth Planet Sci. 2022, 9, 60. [Google Scholar] [CrossRef]
- Bielski, R.; Tencer, M. Macroscopically chiral system of three independent orientational effects as a condition for absolute asymmetric synthesis. Can. J. Chem. 2003, 81, 1029–1037. [Google Scholar] [CrossRef]
- Srinivasan, A.R.; Sauers, R.R.; Fenley, M.O.; Boschitsch, A.H.; Matsumoto, A.; Colasanti, A.V.; Olson, W.K. Properties of the Nucleic-acid Bases in Free and Watson-Crick Hydrogen-Bonded States: Computational Insights into the Sequence-Dependent Features of Double-Helical DNA. Biophys. Rev. 2009, 1, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Vovusha, H.; Amorim, R.G.; Scheicher, R.; Sanyal, B. Controlling the orientation of nucleobases by dipole moment interaction with graphene/h-BN interfaces. RSC Adv. 2018, 8, 6527–6531. [Google Scholar] [CrossRef] [PubMed]
- Alabugin, I.V.; Kuhn, L.; Medvedev, M.G.; Krivoshchapov, N.V.; Vil’, V.A.; Yaremenko, A.I.; Mehaffy, P.; Yarie, M.; Terent’ev, A.O.; Zolfigol, M.A. Stereoelectronic power of oxygen in control of chemical reactivity: The anomeric effect is not alone. Chem. Soc. Rev. 2021, 50, 10253–10345. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.G.; Williams, L.D.; Shaw, B.R. Dimers, Trimers, and Tetramers of Cytosine with Guanine. J. Am. Chem. Soc. 1989, 111, 7205–7209. [Google Scholar] [CrossRef]
- Sobolewski, A.L.; Domcke, W. Ab initio studies on the photophysics of the guanine–cytosine base pair. Phys. Chem. Chem. Phys. 2004, 6, 2763–2771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielski, R.; Tencer, M. Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases. Life 2025, 15, 1160. https://doi.org/10.3390/life15081160
Bielski R, Tencer M. Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases. Life. 2025; 15(8):1160. https://doi.org/10.3390/life15081160
Chicago/Turabian StyleBielski, Roman, and Michal Tencer. 2025. "Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases" Life 15, no. 8: 1160. https://doi.org/10.3390/life15081160
APA StyleBielski, R., & Tencer, M. (2025). Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases. Life, 15(8), 1160. https://doi.org/10.3390/life15081160