Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,560)

Search Parameters:
Keywords = microRNA-34a-5p

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3032 KiB  
Article
Combined Bioinformatic and Experimental Approaches to Analyze miR-182-3p and miR-24-3p Expression and Their Target Genes in Gestational Diabetes Mellitus and Iron Deficiency Anemia During Pregnancy
by Badr Alzahrani, Bisma Rauff, Aqsa Ikram and Mariya Azam
Curr. Issues Mol. Biol. 2025, 47(8), 610; https://doi.org/10.3390/cimb47080610 (registering DOI) - 2 Aug 2025
Abstract
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles [...] Read more.
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles in GDM and IDA are unclear. The present study aimed to analyze the expression and functional relevance of miR-182-3p and miR-24-3p in GDM and IDA. Experimental validation via RT-PCR revealed significant upregulation of both miRNAs in GDM and IDA samples. We identified common target genes and signaling pathways associated with these miRNAs, using a combination of data mining, bioinformatic tools (miRDB, TargetScan, miRTarBase, and miRWalk), and differentially expressed gene (DEGs) analysis using the GEO, OMIM, MalaCards, and GeneCards datasets. GO and KEGG pathway analyses revealed that the shared miRNA–mRNA in target genes were enriched in insulin signaling, apoptosis, and inflammatory pathways—key mechanisms implicated in GDM and IDA. Furthermore, hub genes such as IRS1, PIK3CA, CASP3, MAPK7, and PDGFRB were identified, supporting their central role in metabolic dysregulation during pregnancy. These findings demonstrate the potential of miR-182-3p and miR-24-3p as diagnostic biomarkers and therapeutic targets in managing GDM and IDA, offering new insights into the molecular interplay underlying pregnancy complications. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

13 pages, 724 KiB  
Article
Investigating the Diagnostic Utility of LncRNA GAS5 in NAFLD Patients
by Maysa A. Mobasher, Alaa Muqbil Alsirhani, Sahar Abdulrahman Alkhodair, Amir Abd-elhameed, Shereen A. Baioumy, Marwa M. Esawy and Marwa A. Shabana
Biomedicines 2025, 13(8), 1873; https://doi.org/10.3390/biomedicines13081873 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in patients with NAFLD and find out if they are related to any clinical factors. Subjects and Methods: Thirty-eight age-matched healthy persons and thirty-eight NAFLD patients were enrolled. Patients were split into the following three groups: non-alcoholic steatohepatitis (NASH) (n = 12), patients with NAFLD-related cirrhosis (n = 8), and patients with NAFLD-related simple steatosis (n = 18). Real-time PCR was utilized to examine the expression. Results: The lncRNA GAS5 and NOTCH2 were higher in NAFLD cases in comparison to controls. On the other hand, microRNA-29a-3p was underexpressed in NAFLD cases in comparison to controls. Regarding NAFLD diagnosis, lncRNA GAS5 was the best single marker with a sensitivity of 100% and a specificity of 94.7% at the cutoff values of ≥1.16-fold change. Regarding different stages of the disease, the highest level of lncRNA GAS5 was in cirrhosis. lncRNA GAS5 expression, among other studied parameters, is still a significant predictor of NAFLD (adjusted odds ratio of 162, C.I. = 5.7–4629) (p = 0.003). LncRNA GAS5 has a positive correlation with NOTCH2 and a negative correlation with miR-29a-3p. LncRNA GAS5, NOTCH2, and RNA-29a-3p were significantly different in NAFLD cases compared to controls. Conclusions: lncRNA GAS5 appears to be the most effective single marker for detecting NAFLD. LncRNA GAS5 expression is a significant independent predictor of NAFLD. LncRNA GAS5 can differentiate different NAFLD stages. Full article
Show Figures

Figure 1

16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 37
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Viewed by 170
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 644 KiB  
Article
Asynchrony Between Endometrial miRNA- and mRNA-Based Receptivity Stages Associated with Impaired Receptivity in Recurrent Implantation Failure
by Yu-Jen Lee, Chi-Ying Lee, En-Hui Cheng, Wei-Ming Chen, Pok Eric Yang, Chun-I Lee, Tsung-Hsien Lee and Maw-Sheng Lee
Int. J. Mol. Sci. 2025, 26(15), 7349; https://doi.org/10.3390/ijms26157349 - 30 Jul 2025
Viewed by 142
Abstract
Understanding the molecular basis of endometrial receptivity is crucial for improving implantation outcomes in assisted reproduction, especially for patients with recurrent implantation failure (RIF). This study investigates the timing relationship between microRNA (miRNA) and messenger RNA (mRNA) profiles in the endometrium using simultaneously [...] Read more.
Understanding the molecular basis of endometrial receptivity is crucial for improving implantation outcomes in assisted reproduction, especially for patients with recurrent implantation failure (RIF). This study investigates the timing relationship between microRNA (miRNA) and messenger RNA (mRNA) profiles in the endometrium using simultaneously the endometrial receptivity array (ERA) and the microRNA receptivity assay (MIRA) in 100 RIF patients undergoing euploid blastocyst transfer. The concordance rate between ERA and MIRA was 72% (Kappa = 0.50), suggesting partial overlap in profiling. Patients were stratified by the timing sequence of miRNA relative to mRNA into Fast, Equal, and Slow groups. Those with delayed miRNA expression (Slow group) had significantly lower pregnancy rates (54.5%) than those with synchronous or leading miRNA expression (81.9% and 94.1%, respectively; p = 0.031). Moreover, the Slow group exhibited higher prior implantation failure counts and altered expression in 15 miRNAs, many involved in aging-related pathways. These findings highlight that asynchronous miRNA–mRNA profiles may reflect impaired receptivity and suggest that miRNA-based staging adds valuable diagnostic insight beyond mRNA profiling alone. Dual assessment of mRNA and miRNA profiles may offer additional diagnostic insight into endometrial receptivity but requires further validation before clinical application. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 132
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Role of Plasma-Derived Exosomal MicroRNAs in Mediating Type 2 Diabetes Remission
by Sujing Wang, Shuxiao Shi, Xuanwei Jiang, Guangrui Yang, Deshan Wu, Kexin Li, Victor W. Zhong and Xihao Du
Nutrients 2025, 17(15), 2450; https://doi.org/10.3390/nu17152450 - 27 Jul 2025
Viewed by 376
Abstract
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month [...] Read more.
Objective: This study aimed to identify plasma exosomal microRNAs (miRNAs) associated with weight loss and type 2 diabetes (T2D) remission following low-calorie diet (LCD) intervention. Methods: A 6-month dietary intervention targeting T2D remission was conducted among individuals with T2D. Participants underwent a 3-month intensive weight loss phase consuming LCD (815–835 kcal/day) and a 3-month weight maintenance phase (N = 32). Sixteen participants were randomly selected for characterization of plasma-derived exosomal miRNA profiles at baseline, 3 months, and 6 months using small RNA sequencing. Linear mixed-effects models were used to identify differentially expressed exosomal miRNAs between responders and non-responders. Pathway enrichment analyses were conducted using target mRNAs of differentially expressed miRNAs. Logistic regression models assessed the predictive value of differentially expressed miRNAs for T2D remission. Results: Among the 16 participants, 6 achieved weight loss ≥10% and 12 achieved T2D remission. Eighteen exosomal miRNAs, including miR-92b-3p, miR-495-3p, and miR-452b-5p, were significantly associated with T2D remission and weight loss. Pathway analyses revealed enrichment in PI3K-Akt pathway, FoxO signaling pathway, and insulin receptor binding. The addition of individual miRNAs including miR-15b-3p, miR-26a-5p, and miR-3913-5p to base model improved the area under the curve values by 0.02–0.08 at 3 months and by 0.02–0.06 at 6 months for T2D remission. Conclusions: This study identified exosomal miRNAs associated with T2D remission and weight loss following LCD intervention. Several exosomal miRNAs might serve as valuable predictors of T2D remission in response to LCD intervention. Full article
(This article belongs to the Special Issue Nutrition for Patients with Diabetes and Clinical Obesity)
Show Figures

Figure 1

13 pages, 3424 KiB  
Article
Identification of miRNA/FGFR2 Axis in Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors
by Elisabetta Cavalcanti, Viviana Scalavino, Leonardo Vincenti, Emanuele Piccinno, Lucia De Marinis, Raffaele Armentano and Grazia Serino
Int. J. Mol. Sci. 2025, 26(15), 7232; https://doi.org/10.3390/ijms26157232 - 26 Jul 2025
Viewed by 247
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors with different clinical and biological characteristics. Ki-67 staining and mitotic counts are the most commonly used prognostic markers, but these methods are time-consuming and lack reproducibility, highlighting the need for innovative approaches that improve histological evaluation [...] Read more.
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare tumors with different clinical and biological characteristics. Ki-67 staining and mitotic counts are the most commonly used prognostic markers, but these methods are time-consuming and lack reproducibility, highlighting the need for innovative approaches that improve histological evaluation and prognosis. In our previous study, we observed that the microRNA (miRNA) expression profile of GEP-NENs correlates with the three grades of GEP-NENs. This study aimed to characterize a group of miRNAs that discriminate well-differentiated GEP-NENs grading 1 (G1) and grading (G2). Fifty formalin-fixed and paraffin-embedded tissue specimens from well-differentiated GEP-NENs G1 and G2 tissues were used for this study. The expression levels of 21 miRNAs were examined using qRT-PCR, while FGFR2 and FGF1 protein expression were evaluated through immunohistochemistry (IHC). We identified four miRNAs (hsa-miR-133, hsa-miR-150-5p, hsa-miR-143-3p and hsa-miR-378a-3p) that are downregulated in G2 GEP-NENs compared to G1. Bioinformatic analysis revealed that these miRNAs play a key role in modulating the FGF/FGFR signaling pathway. Consistent with this observation, we found that fibroblast growth factor receptor 2 (FGFR2) expression is markedly higher in G2 NENs patients, whereas its expression remains low in G1 NENs. Our findings highlight the potential use of miRNAs to confirm the histological evaluation of GEP-NENs by employing them as biomarkers for improving histological evaluation and tumor classification. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancers: Advances and Challenges, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 1429 KiB  
Article
Extracellular Vesicles-Induced Cell Homing and Odontogenesis via microRNA Signaling for Dentin Regeneration
by Venkateswaran Ganesh, Douglas C. Fredericks, Emily B. Petersen, Henry L. Keen, Rui He, Jordon D. Turner, James A. Martin, Aliasger K. Salem, Kyungsup Shin, Abhishek Parolia and Dongrim Seol
Int. J. Mol. Sci. 2025, 26(15), 7182; https://doi.org/10.3390/ijms26157182 - 25 Jul 2025
Viewed by 145
Abstract
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. [...] Read more.
Reparative tertiary dentinogenesis requires the recruitment and odontogenic differentiation of dental pulp stem cells (DPSCs). Extracellular vesicles (EVs) as bioactive molecules have gained attention in regenerative medicine for their ability to mediate tissue repair through intercellular communication, influencing cell recruitment, proliferation, and differentiation. This study aimed to evaluate the effects of EVs on DPSC homing and odontogenic differentiation for dentin regeneration. DPSC-derived EVs were cultured in either growth (EV-G) or odontogenic differentiation (EV-O) conditions and isolated using a modified precipitation method. EVs were characterized by nanoparticle tracking analysis, scanning electron microscopy, antibody array, and cellular uptake assay. Treatment with 5 × 108 EVs/mL significantly enhanced DPSC chemotaxis and proliferation compared with a no-treatment control and a lower dosage of EV (5 × 107 EVs/mL). Gene expression and biochemical analyses revealed that EV-O up-regulated odontogenic markers including collagen type 1A1 (COL1A1), runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALP). EV-O enhanced dentin regeneration by approximately 55% over vehicle controls in a rabbit partial dentinotomy/pulpotomy model. We identified key microRNAs (miR-21-5p, miR-221-3p, and miR-708-3p) in EV-O involved in cell homing and odontogenesis. In conclusion, our EV-based cell homing and odontogenic differentiation strategy has significant therapeutic potential for dentin regeneration. Full article
Show Figures

Graphical abstract

28 pages, 2482 KiB  
Article
Characterization of microRNA Expression Profiles of Murine Female Genital Tracts Following Nippostrongylus brasiliensis and Herpes Simplex Virus Type 2 Co-Infection
by Roxanne Pillay, Pragalathan Naidoo and Zilungile L. Mkhize-Kwitshana
Microorganisms 2025, 13(8), 1734; https://doi.org/10.3390/microorganisms13081734 - 24 Jul 2025
Viewed by 371
Abstract
Soil-transmitted helminths (STHs) and Herpes Simplex Virus type 2 (HSV-2) are highly prevalent infections with overlapping distribution, particularly in resource-poor regions. STH/HSV-2 co-infections may impact female reproductive health. However, many aspects of STH/HSV-2 co-infections, including the role of microRNAs (miRNAs) in regulating female [...] Read more.
Soil-transmitted helminths (STHs) and Herpes Simplex Virus type 2 (HSV-2) are highly prevalent infections with overlapping distribution, particularly in resource-poor regions. STH/HSV-2 co-infections may impact female reproductive health. However, many aspects of STH/HSV-2 co-infections, including the role of microRNAs (miRNAs) in regulating female genital tract (FGT) immunity and their potential contribution to pathologies such as chronic inflammation, impaired mucosal defense, and reproductive tract cancers remain unclear. In this study we investigated the miRNA expression profiles in murine FGT tissues following single or co-infection with Nippostrongylus brasiliensis (Nb) and HSV-2 and explored predicted miRNA-mRNA targets and pathways. An analysis of miRNA sequencing data was conducted to determine differentially expressed (DE) miRNAs between infected FGT tissues and uninfected controls. Ingenuity Pathway Analysis was conducted to predict the immune-related target genes of the DE miRNAs and reveal enriched canonical pathways, top diseases, and biological functions. Selected representative DE miRNAs were validated using RT-qPCR. Our results showed a total of eight DE miRNAs (mmu-miR-218-5p, mmu-miR-449a-5p, mmu-miR-497a-3p, mmu-miR-144-3p, mmu-miR-33-5p, mmu-miR-451a, mmu-miR-194-5p, and mmu-miR-192-5p) in the comparison of Nb-infected versus uninfected controls; nine DE miRNAs (mmu-miR-451a, mmu-miR-449a-5p, mmu-miR-144-3p, mmu-miR-376a-3p, mmu-miR-192-5p, mmu-miR-218-5p, mmu-miR-205-3p, mmu-miR-103-3p, and mmu-miR-200b-3p) in the comparison of HSV-2-infected versus uninfected controls; and one DE miRNA (mmu-miR-199a-5p) in the comparison of Nb/HSV-2 co-infected versus uninfected controls (p-value < 0.05, |logFC| ≥ 1). Core expression analysis showed that, among other canonical pathways, the DE miRNAs and their predicted mRNA targets were involved in neutrophil degranulation, interleukin-4 and interleukin-13 signaling, natural killer cell signaling, interferon alpha/beta signaling, and ISGylation. Additionally, cancer was predicted as one of the significantly enriched diseases, particularly in the co-infected group. This is the first study to provide insights into the FGT miRNA profiles following Nb and HSV-2 single and co-infection, as well as the predicted genes and pathways they regulate, which may influence host immunity and pathology. This study highlights the role of miRNAs in regulating FGT immunity and pathology in the context of STH/HSV-2 co-infection. Full article
(This article belongs to the Special Issue Insights into Microbial Infections, Co-Infections, and Comorbidities)
Show Figures

Figure 1

21 pages, 32710 KiB  
Article
Differences in Starvation-Induced Autophagy Response and miRNA Expression Between Rat Mammary Epithelial and Cancer Cells: Uncovering the Role of miR-218-5p
by Mateusz Gotowiec, Antoni Smoliński, Katarzyna Marcinkowska, Wiktor Pascal and Paweł Krzysztof Włodarski
Cancers 2025, 17(15), 2446; https://doi.org/10.3390/cancers17152446 - 23 Jul 2025
Viewed by 293
Abstract
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA [...] Read more.
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA changes during starvation-induced autophagy in both mammary epithelial cells and BC cells could reveal potential molecular therapy targets. Methods: Rat mammary gland healthy epithelial and cancer cells were subjected to starvation, and differences in proliferation, migration, invasion, autophagy, and expression of autophagy-associated miRNAs were determined. Afterward, we assessed the effects of miR-218-5p modulation on the aforementioned processes. Results: Starvation-induced autophagy reduced the proliferation of all cells and increased the invasive and migratory capacity of cancer cells (p ≤ 0.05). We identified a miRNA signature related to starvation, comprising twenty-seven miRNAs. One miRNA had a significantly elevated baseline expression, while another six, including miR-218-5p, had a significantly lower basal expression in cancer cells compared to healthy cells (p ≤ 0.05). However, starvation caused significant miRNA expression changes, with miR-218-5p being upregulated specifically in cancer cells (p = 0.20–0.01). Functional studies on the role of miR-218-5p show that its inhibition decreases migration and leads to autophagosome accumulation. The study of miR-218-5p molecular targets has shown that its inhibition of sorting nexin 18 (SNX18) may act as an important regulator of the starvation-induced response in cancer cells. Conclusions: The baseline expression of miRNA related to starvation and autophagy differs between rat mammary gland cancer and healthy cells. The response to starvation also varies between cancer cells and normal cells. Starvation induces BC-specific miRNA dysregulation, affecting particularly miR-218-5p, which acts via SNX18, promoting the cancer cells’ survival. Full article
(This article belongs to the Special Issue The Role of Apoptosis and Autophagy in Cancer)
Show Figures

Figure 1

14 pages, 1895 KiB  
Article
MicroRNA Signatures in Dental Pulp Stem Cells Following Nicotine Exposure
by David Vang, Leyla Tahrani Hardin, Nabil Abid, Der Thor and Nan Xiao
Dent. J. 2025, 13(8), 338; https://doi.org/10.3390/dj13080338 - 23 Jul 2025
Viewed by 223
Abstract
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has [...] Read more.
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has a distinctive impact on molecular mechanisms in stem cells. Methods: The cellular impact of nicotine on the regenerative capacity of human dental pulp stem cells (DPSCs) and the microRNA (miRNA) profile was examined. Bioinformatic analysis was performed to identify miRNA-regulated cellular pathways associated with nicotine exposure. These pathways were then compared to those induced by cigarette smoke condensate (CSC). Results: Prolonged exposure to nicotine significantly impaired the regeneration of DPSCs and changed the expression of miRNAs. Nicotine upregulated the expression of hsa-miR-7977, hsa-miR-3178, and hsa-miR-10400-5p compared to vehicle control. Interestingly, nicotine did not change the expression of hsa-miR-29b-3p, hsa-miR-199b-5p, hsa-miR-26b-5p, or hsa-miR-26a-5p compared to the control. However, the expressions of these miRNAs were significantly altered when compared to CSC treatment. Further analysis revealed that nicotine was distinctively associated with certain miRNA-targeted pathways including apoptosis, ErbB, MAPK signaling, PI3K-Akt, TGF-b signaling, and Wnt signaling. Conclusions: Our work provides evidence on the distinctive miRNA signature induced by nicotine. The information will be important for identifying the unique molecular pathways downstream of nicotine from smoking and vaping in different individuals, providing a new direction for personalized disease prevention, prognosis, and treatment. Full article
(This article belongs to the Special Issue Recreational Drugs, Smoking, and Their Impact on Oral Health)
Show Figures

Figure 1

21 pages, 3237 KiB  
Article
Temporal miRNA Biomarkers for Pupal Age Estimation in Sarcophaga peregrina (Diptera: Sarcophagidae)
by Yang Xia, Hai Wu, Sile Chen, Yuanxing Wang, Jiasheng Sun, Yi Li, Yadong Guo and Yanjie Shang
Insects 2025, 16(8), 754; https://doi.org/10.3390/insects16080754 - 23 Jul 2025
Viewed by 366
Abstract
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina [...] Read more.
The pupal stage in necrophagous flies represents the longest and least morphologically distinct phase of development, posing a persistent challenge for accurately estimating postmortem intervals (PMI) in forensic investigations. Here, we present a novel molecular approach to pupal age estimation in Sarcophaga peregrina, a forensically important species, by profiling microRNA (miRNA) expression dynamics. High-throughput sequencing across early, mid, and late pupal stages identified 191 known miRNAs, of which nine exhibited distinct monotonic temporal trends. Six miRNAs (miR-210-3p, miR-285, miR-927-5p, miR-956-3p, miR-92b, and miR-275-5p) were validated by qRT-PCR and demonstrated consistent time-dependent expression patterns. Polynomial regression models revealed a strong correlation between miRNA abundance and developmental age (R2 = 0.88–0.99). Functional enrichment analyses of predicted miRNA targets highlighted their roles in key regulatory pathways, including ecdysteroid signaling, hypoxia response, autophagy, and energy metabolism. This study establishes, for the first time, a robust miRNA-based framework for estimating pupal age in forensic entomology, underscoring the potential of miRNAs as temporally precise biomarkers for PMI estimation. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 285
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

16 pages, 2130 KiB  
Article
A Distinct miRNA Profile in Intimal Hyperplasia of Failed Arteriovenous Fistulas Reveals Key Pathogenic Pathways
by Carmen Ciavarella, Francesco Vasuri, Alessio Degiovanni, Lena Christ, Raffaella Mauro, Mauro Gargiulo and Gianandrea Pasquinelli
Biomolecules 2025, 15(8), 1064; https://doi.org/10.3390/biom15081064 - 23 Jul 2025
Viewed by 284
Abstract
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of [...] Read more.
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH. This study was aimed at identifying a specific miRNA panel in failed AVFs and clarifying the miRNA involvement in IH. miRNA profiling performed in tissues from patients with IH (AVFs) and normal veins (NVs) highlighted a subset of four miRNAs significantly deregulated (hsa-miR-155-5p, hsa-miR-449a-5p, hsa-miR-29c-3p, hsa-miR-194-5p) between the two groups. These miRNAs were analyzed in tissue-derived cells (NVCs and AVFCs), human aortic smooth muscle cells (HAOSMCs) and human umbilical vein endothelial cells (HUVECs). The panel of hsa-miR-449a-5p, hsa-miR-155-5p, hsa-miR-29c-3p and hsa-miR-194-5p was up-regulated in AVFCs, HAOSMCs and HUVEC under inflammatory stimuli. Notably, overexpression of hsa-miR-449a-5p exacerbated the proliferative, migratory and inflammatory features of AVFCs. In vitro pharmacological modulation of these miRNAs with pioglitazone, particularly the down-regulation of hsa-miR-155-5p and hsa-miR-29c-3p, suggested their involvement in IH pathogenesis and a potential translational application. Overall, these findings provide new insights into the pathogenesis of AVF failure, reinforcing the miRNA contribution to IH detection and prevention. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop