Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Viability Assay for Emodin
2.2. Anti-Inflammatory Activity of Emodin
2.3. Antibacterial Activity of Emodin
2.4. Preparation of the Emodin-Loaded Thermoresponsive Hydrogels
2.5. Viscosity and pH of the Emodin-Loaded Thermoresponsive Hydrogels
2.6. Scanning Electron Microscopy Findings for the Emodin-Loaded Thermoresponsive Hydrogel
2.7. Gelation Temperature and Injectability of the Emodin-Loaded Thermoresponsive Hydrogels
2.8. Release of Emodin from the Emodin-Loaded Thermoresponsive Hydrogels
2.9. Cell Viability of the Emodin-Loaded Thermoresponsive Hydrogels
2.10. Antibacterial Activity of the Emodin-Loaded Thermoresponsive Hydrogels
2.11. Alveolar Bone Loss and Inflammatory Cytokine Expression in a Rat Model of Ligature-Induced Periodontitis
2.12. Statistical Analysis
3. Results
3.1. Cell Viability and Anti-Inflammatory and Antibacterial Activities of Emodin
3.2. Viscosity and pH of the Emodin-Loaded Thermoresponsive Hydrogels
3.3. Scanning Electron Microscopy Analysis of the Emodin-Loaded Thermoresponsive Hydrogels
3.4. Injectability and Gelation Temperature of the Emodin-Loaded Thermoresponsive Hydrogels
3.5. Emodin Release from the Emodin-Loaded Thermoresponsive Hydrogels
3.6. Effect of the Emodin-Loaded Thermoresponsive Hydrogels on Cell Viability
3.7. Antibacterial Activity of the Emodin-Loaded Thermoresponsive Hydrogels
3.8. Effects on Alveolar Bone Loss and Inflammatory Cytokine Expression in a Rat Model of Ligature-Induced Periodontitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, S.; Lin, M.; Chen, W.; Chen, X.; Tian, Z.; Jia, T.; Xue, Y.; Song, J.; Lu, Y.; Zhou, L.; et al. Identification of potential diagnostic biomarkers associated with periodontitis by comprehensive bioinformatics analysis. Sci. Rep. 2024, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Serra, S.; Boato, M.; Sculean, A. Relationship between periodontitis and systemic diseases: A bibliometric and visual study. Periodontol. 2000 2025, in press. [Google Scholar] [CrossRef]
- Shuning, L.; Zhiyong, Z.; Wei, Y.; Jilun, L.; Xuhui, F. Association between periodontitis and cardiometabolic index (CMI): A study from NHANES 2009–2014. Sci. Rep. 2024, 14, 28503. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440. [Google Scholar] [CrossRef]
- Harrel, S.K.; Cobb, C.M.; Sheldon, L.N.; Rethman, M.P.; Sottosanti, J.S. Calculus as a risk factor for periodontal disease: Narrative review on treatment indications when the response to scaling and root planing is inadequate. Dent. J. 2022, 10, 195. [Google Scholar] [CrossRef]
- Meghil, M.M.; Cornelius Timothius, C.J.; Miller, E.C.; Ghaly, M. Osseous surgery: Traditional vs fiber retention resective surgery. Dent. Rev. 2022, 2, 100050. [Google Scholar] [CrossRef]
- De Sousa, E.T.; de Araujo, J.S.M.; Pires, A.C.; Lira Dos Santos, E.J. Local delivery natural products to treat periodontitis: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 4599–4619. [Google Scholar] [CrossRef]
- Munasur, S.L.; Turawa, E.B.; Chikte, U.M.E.; Musekiwa, A. Mechanical debridement with antibiotics in the treatment of chronic periodontitis: Effect on systemic biomarkers—A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 5601. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, T.; Wang, W.; Liu, T.; Jin, X.; Chen, Z. Promising role of emodin as therapeutics to against viral infections. Front. Pharmacol. 2022, 13, 902626. [Google Scholar] [CrossRef] [PubMed]
- Qun, T.; Zhou, T.; Hao, J.; Wang, C.; Zhang, K.; Xu, J.; Wang, X.; Zhou, W. Antibacterial activities of anthraquinones: Structure-activity relationships and action mechanisms. RSC Med. Chem. 2023, 14, 1446–1471. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Wen, K.; Caruso, F.; Belli, S. Emodin Scavenging of superoxide radical Includes pi-pi Interaction. X-ray crystal structure, hydrodynamic voltammetry and theoretical studies. Antioxidants 2020, 9, 194. [Google Scholar] [CrossRef]
- Stompor-Gorący, M. The health benefits of emodin, a natural anthraquinone derived from rhubarb—A summary update. Int. J. Mol. Sci. 2021, 22, 9522. [Google Scholar] [CrossRef]
- Son, J.L.; Oh, S.; Kim, S.H.; Bae, J.M. Antibacterial activities of phytochemicals against Porphyromonas gingivalis with and without experimental fluoride varnish for periodontal disease prevention. Dent. Mater. J. 2024, 43, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, H.R.; Dhamecha, D.; Jagwani, S.; Rao, M.; Jadhav, K.; Shaikh, S.; Puzhankara, L.; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control. Release 2019, 307, 393–409. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, Y.; Zheng, Y.; Liu, G. Advances in hydrogels for the treatment of periodontitis. J. Mater. Chem. B 2023, 11, 7321–7333. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Yu, T.; Song, G.; Xu, T.; Xin, T.; Lin, Y.; Han, B. Nano-based drug delivery systems for periodontal tissue regeneration. Pharmaceutics 2022, 14, 2250. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Tang, M.; Peng, C.; Wang, G.; Wang, J.; Wang, X.; Chang, X.; Guo, J.; Gui, S. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed. Pharmacother. 2023, 162, 114688. [Google Scholar] [CrossRef]
- Amato, M.; Santonocito, S.; Polizzi, A.; Tartaglia, G.M.; Ronsivalle, V.; Viglianisi, G.; Grippaudo, C.; Isola, G. Local delivery and controlled release drugs systems: A new approach for the clinical treatment of periodontitis therapy. Pharmaceutics 2023, 15, 1312. [Google Scholar] [CrossRef]
- Mensah, A.; Rodgers, A.M.; Larraneta, E.; McMullan, L.; Tambuwala, M.; Callan, J.F.; Courtenay, A.J. Treatment of periodontal infections, the possible role of hydrogels as antibiotic drug-delivery systems. Antibiotics 2023, 12, 1073. [Google Scholar] [CrossRef]
- Amiri, M.A.; Amiri, D.; Hamedani, S. Thermosensitive hydrogels for periodontal regeneration: A systematic review of the evidence. Clin. Exp. Dent. Res. 2024, 10, e70029. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cheng, Y.; Tong, J.; Zhang, L.; Wei, Y.; Tian, M. Recent advances in thermo-sensitive hydrogels for drug delivery. J. Mater. Chem. B 2021, 9, 2979–2992. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Wang, Y.; Ran, J.; Chen, L.; Wei, Z.; Zou, H.; Cai, Y.; Han, W. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration. J. Nanobiotechnol. 2023, 21, 367. [Google Scholar] [CrossRef]
- Murugaiyan, V.; Utreja, S.; Hovey, K.M.; Sun, Y.; LaMonte, M.J.; Wactawski-Wende, J.; Diaz, P.I.; Buck, M.J. Defining Porphyromonas gingivalis strains associated with periodontal disease. Sci. Rep. 2024, 14, 6222. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.J.; Moon, S.H.; Kim, H.J.; Oh, S.H.; Bae, J.M. Oral microbiome using Colocasia antiquorum var. esculenta extract varnish in a mouse model with oral gavage of P. gingivalis ATCC 53978. Medicina 2022, 58, 506. [Google Scholar] [CrossRef] [PubMed]
- Tomina, D.C.; Petrutiu, S.A.; Dinu, C.M.; Crisan, B.; Cighi, V.S.; Ratiu, I.A. Comparative testing of two ligature-induced periodontitis models in rats: A clinical, histological and biochemical study. Biology 2022, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.B.; Santos-Junior, N.N.; Luiz, J.P.M.; de Oliveira, M.; Kanashiro, A.; Taira, T.M.; Fukada, S.Y.; Alves-Filho, J.C.; Fazan Junior, R.; Salgado, H.C. Cardiovascular and autonomic dysfunction in murine ligature-induced periodontitis. Sci. Rep. 2020, 10, 6891. [Google Scholar] [CrossRef]
- Lin, P.; Niimi, H.; Ohsugi, Y.; Tsuchiya, Y.; Shimohira, T.; Komatsu, K.; Liu, A.; Shiba, T.; Aoki, A.; Iwata, T.; et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. Int. J. Mol. Sci. 2021, 22, 8900. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5. Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Chen, N.; Ren, R.; Wei, X.; Mukundan, R.; Li, G.; Xu, X.; Zhao, G.; Zhao, Z.; Lele, S.M.; Reinhardt, R.A.; et al. Thermoresponsive hydrogel-based local delivery of simvastatin for the treatment of periodontitis. Mol. Pharm. 2021, 18, 1992–2003. [Google Scholar] [CrossRef]
- Hankittichai, P.; Buacheen, P.; Pitchakarn, P.; Na Takuathung, M.; Wikan, N.; Smith, D.R.; Potikanond, S.; Nimlamool, W. Artocarpus lakoocha Extract Inhibits LPS-Induced inflammatory Response in RAW 264.7 Macrophage Cells. Int. J. Mol. Sci. 2020, 21, 1355. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Herrera-Bravo, J.; Kamiloglu, S.; Petroni, K.; Mishra, A.P.; Monserrat-Mesquida, M.; Sureda, A.; Martorell, M.; Aidarbekovna, D.S.; Yessimsiitova, Z.; et al. Recent advances in the therapeutic potential of emodin for human health. Biomed. Pharmacother. 2022, 154, 113555. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, P.; Chen, Z.L.; Zhang, S.J.; Wang, Y.Q.; Cai, X.; Luo, L.; Zhou, X.; Zhao, L. Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathway in vitro and in vivo. Front. Pharmacol. 2018, 9, 962. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, W.; Feng, S.-J.; Yu, H.-P. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int. Immunopharmacol. 2016, 34, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, H.; Kong, W.; Jin, C.; Zhao, Y.; Qu, Y.; Xiao, X. Microcalorimetric assay on the antimicrobial property of five hydroxyanthraquinone derivatives in rhubarb (Rheum palmatum L.) to Bifidobacterium adolescentis. Phytomedicine 2010, 17, 684–689. [Google Scholar] [CrossRef]
- Dubar, M.; Lizambard, M.; Delcourt-Debruyne, E.; Batool, F.; Huck, O.; Siepmann, F.; Agossa, K. In-situ forming drug-delivery systems for periodontal treatment: Current knowledge and perspectives. Biomed. Mater. 2021, 16. [Google Scholar] [CrossRef] [PubMed]
- Sheshala, R.; Quah, S.Y.; Tan, G.C.; Meka, V.S.; Jnanendrappa, N.; Sahu, P.S. Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Deliv. Transl. Res. 2019, 9, 434–443. [Google Scholar] [CrossRef]
- Lin, H.R.; Sung, K.C.; Vong, W.J. In situ gelling of alginate/Pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules. 2004, 5, 2358–2365. [Google Scholar] [CrossRef]
- Akkari, A.C.S.; Papini, J.Z.B.; Garcia, R.B.; de Araújo, D.R.; de Oliveira, R.N.; Taveira, S.F.; Gremião, M.P.D. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physicochemical characterization and pharmacological evaluation. Mater. Sci. Eng. C. 2016, 68, 299–307. [Google Scholar] [CrossRef]
- Khlibsuwan, R.; Khunkitti, W.; Pongjanyakul, T. Alginate–poloxamer beads for clotrimazole delivery: Molecular interactions, mechanical properties, and anticandidal activity. Int. J. Biol. Macromol. 2020, 148, 1061–1071. [Google Scholar] [CrossRef]
- Abdeltawab, H.; Svirskis, D.; Hill, A.G.; Sharma, M. Increasing the hydrophobic component of poloxamers and the inclusion of salt extend the release of bupivacaine from injectable in situ gels, while common polymer additives have little effect. Gels 2022, 8, 484. [Google Scholar] [CrossRef]
- Luo, J.S.; Zhao, X.; Yang, Y. Effects of emodin on inflammatory bowel disease-related osteoporosis. Biosci. Rep. 2020, 40, BSR20192317. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Wang, Q.; Chen, Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci. 2019, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Pers, J.O.; Saraux, A.; Pierre, R.; Youinou, P. Anti-TNF-alpha immunotherapy is associated with increased gingival inflammation without clinical attachment loss in subjects with rheumatoid arthritis. J. Periodontol. 2008, 79, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | GCCTCCTCCAATTCAACCCT | ATCCGTTCACACCGACCTTC |
IL-1β | GCCACCTTTTGACAGTGATGAG | AAGGTCCACGGGAAAGACAC |
IL-6 | CAACGATGATGCACTTGCAGA | TGTGACTCCAGCTTATCTCTTGG |
TNF-α | ACCCTCACACTCACAAACCA | ATAGCAAATCGGCTGACGGT |
Code | P188 (g) | CMC (g) | PF127 (g) | Emodin (g) | Distilled Water (mL) | Emodin Concentration (mg/mL) |
---|---|---|---|---|---|---|
VC | 1 | 0.4 | 8 | 0 | 40 | 0 |
E1 | 1 | 0.4 | 8 | 0.4 | 40 | 8.0 |
E2 | 1 | 0.4 | 8 | 0.8 | 40 | 15.9 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | GGCCTTCCGTGTTCCTA | AAGGTGGAAGAATGGGAGTTG |
IL-1β | TGTGATGAAAGACGGCACAC | CTTCTTCTTTGGGTATTGTTTGG |
IL-6 | ACAAGTCCGGAGAGGAGACT | ACAGTGCATCATCGCTGTTC |
TNF-α | ATGGCCCAGACCCTCACACTCAGA | CTCCGCTTGGTGGTTTGCTACGAC |
Code | pH | Gelation Temperature (°C) |
---|---|---|
VC | 6.92 ± 0.01 b | 34 |
E1 | 6.63 ± 0.01 a | 34 |
E2 | 6.61 ± 0.01 a | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, G.-Y.; Moon, S.-H.; Shin, S.-J.; Kim, H.-J.; Oh, S.; Bae, J.-M. Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis. Polymers 2025, 17, 2108. https://doi.org/10.3390/polym17152108
Shim G-Y, Moon S-H, Shin S-J, Kim H-J, Oh S, Bae J-M. Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis. Polymers. 2025; 17(15):2108. https://doi.org/10.3390/polym17152108
Chicago/Turabian StyleShim, Gyu-Yeon, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh, and Ji-Myung Bae. 2025. "Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis" Polymers 17, no. 15: 2108. https://doi.org/10.3390/polym17152108
APA StyleShim, G.-Y., Moon, S.-H., Shin, S.-J., Kim, H.-J., Oh, S., & Bae, J.-M. (2025). Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis. Polymers, 17(15), 2108. https://doi.org/10.3390/polym17152108