Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = methane-CO2  reform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 238
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

35 pages, 1196 KiB  
Review
Reversible Thermochemical Routes for Carbon Neutrality: A Review of CO2 Methanation and Steam Methane Reforming
by Marisa Martins, Carlos Andrade and Amadeu D. S. Borges
Physchem 2025, 5(3), 29; https://doi.org/10.3390/physchem5030029 - 23 Jul 2025
Viewed by 352
Abstract
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility [...] Read more.
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility can be strategically leveraged for decarbonization. The study addresses methane production via CO2 methanation and hydrogen production via SMR, focusing on their thermodynamic behaviors, catalytic systems, environmental impacts, and economic viability. CO2 methanation, when powered by renewable hydrogen, can result in emissions ranging from −471 to 1076 kg CO2-equivalent per MWh of methane produced, while hydrogen produced from SMR ranges from 90.9 to 750.75 kg CO2-equivalent per MWh. Despite SMR’s lower production costs (USD 21–69/MWh), its environmental footprint is considerably higher. In contrast, methanation offers environmental benefits but remains economically uncompetitive (EUR 93.53–204.62/MWh). Both processes rely primarily on Ni-based catalysts, though recent developments in Ru-based and bimetallic systems have demonstrated improved performance. The review also examines operational challenges such as carbon deposition and catalyst deactivation. By framing these technologies through the shared lens of reversibility, this work outlines pathways toward integrated, efficient, and circular energy systems aligned with long-term sustainability and climate neutrality goals. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

9 pages, 798 KiB  
Article
Mechanistic Behavior of Basicity of Bimetallic Ni/ZrO2 Mixed Oxides for Stable Oxythermal Reforming of CH4 with CO2
by Hyuk Jong Bong, Nagireddy Gari Subba Reddy and A. Geetha Bhavani
Catalysts 2025, 15(8), 700; https://doi.org/10.3390/catal15080700 - 22 Jul 2025
Viewed by 349
Abstract
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and [...] Read more.
The mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were prepared using the co-precipitation method at a pH of precisely 8.3. The catalytic mixed oxides of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were characterized using x-ray diffraction XRD, Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), and metal dispersion for the screening of phase purity, surface area, and morphology. The mixed oxides are subjected to CO2-TPD to quantify the basicity of every composition. The mixed oxide catalysts of Ni/ZrO2, Ni-Ca/ZrO2, Ni-Ba/ZrO2, and Ni-Ba-Ca/ZrO2 were screened for oxythermal reforming of CH4 with CO2 in a fixed bed tubular reactor at 800 °C. Among all catalysts, the Ba- and Ca- loaded Ni-Ba-Ca/ZrO2 showed high conversion by the decomposition of methane and CO2 disproportionation throughout the time on stream of 29 h. The high activity with stability led to less coke formation over Ni-Ba-Ca/ZrO2 over the surface. The stable syngas production with an active catalyst bed contributed to the improved bimetallic synergy. The high surface basicity of Ni-Ba-Ca/ZrO2 may keep actively gasifying the formed soot and allow for further stable reforming reactions. Full article
Show Figures

Figure 1

16 pages, 2200 KiB  
Article
Effect of Partial Noble Metal (M = Pd, Rh, Ru, Pt) Substitution in La1−xSrxCo1−yMyO3 Perovskite-Derived Catalysts for Dry Reforming of Methane
by Pradeep Kumar Yadav, Ganesh Jabotra and Sudhanshu Sharma
Hydrogen 2025, 6(3), 49; https://doi.org/10.3390/hydrogen6030049 - 16 Jul 2025
Viewed by 538
Abstract
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of [...] Read more.
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of techniques. To explore the effect of noble metal ion substitution on the DRM, surface reaction was probed by CH4/CO2 TPSR using mass spectroscopy. It was recognized that La1−xSrxCo1−yPdyO3 show the best activities for the reaction in terms of the temperature but became deactivated over time. CH4/CO2 temperature-programmed surface reactions (TPSRs) were set up to unravel the details of the surface phenomena responsible for the deactivation of the DRM activity on the LSPdCO. The CH4/CO2 TPSR analysis conclusively demonstrated the importance of lattice oxygen in the removal of carbon, which is responsible for the stability of the catalysts on the synthesized perovskites upon noble metal ion substitution. Full article
Show Figures

Figure 1

22 pages, 1515 KiB  
Article
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
by Felister Dibia, Oghenovo Okpako, Jovana Radulovic, Hom Nath Dhakal and Chinedu Dibia
Appl. Sci. 2025, 15(14), 7839; https://doi.org/10.3390/app15147839 - 13 Jul 2025
Viewed by 490
Abstract
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a [...] Read more.
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS, supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency, and inverse DEA/sensitivity analysis identified maximum flare gas reduction, which was modeled in Aspen HYSYS V14. Subsequently, an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit), indicating strong economic feasibility. These findings promote a practical approach for waste reduction, aiding Nigeria’s transition to a circular, low-carbon economy, and demonstrate a positive relationship between lean and green strategies in the petroleum sector. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

18 pages, 4443 KiB  
Article
Comparative Study on Ni/MgO-Al2O3 Catalysts for Dry and Combined Steam–CO2 Reforming of Methane
by Tingting Zheng, Yuqi Zhou, Hongjie Cui and Zhiming Zhou
Catalysts 2025, 15(7), 659; https://doi.org/10.3390/catal15070659 - 6 Jul 2025
Viewed by 396
Abstract
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 [...] Read more.
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 catalysts with varying Mg/Al molar ratios (Ni/MgAl(x), x = 0.5–0.9), along with Ni/MgO and Ni/Al2O3, were synthesized, characterized, and evaluated in both the DRM and CSCRM. Ni/MgO and Ni/Al2O3 exhibited a lower activity due to fewer active sites and a poor CH4/CO2 activation balance. In contrast, Ni/MgAl(0.6), Ni/MgAl(0.7), and Ni/MgAl(0.8) showed an enhanced activity, attributed to more abundant active sites and a more balanced activation of CH4 and CO2. Ni/MgAl(0.7) delivered the best DRM performance, whereas Ni/MgAl(0.8) was optimal for the CSCRM, likely due to its greater number of strong basic sites promoting CO2 and H2O adsorption. At 750 °C and 0.1 MPa over 100 h, Ni/MgAl(0.7) maintained a stable DRM performance (77% CH4 and 86% CO2 conversion; H2/CO = 0.9) at 120 L/(gcat·h), while Ni/MgAl(0.8) achieved a stable CSCRM performance (80% CH4 and 62% CO2 conversion; H2/CO = 2.1) at 132 L/(gcat·h). This study provides valuable insights into designing efficient Ni/MgO-Al2O3 catalysts for targeted syngas production. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 457
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

12 pages, 3285 KiB  
Article
Ceria Promoted Ni/SiO2 as an Efficient Catalyst for Carbon Dioxide Reforming of Methane
by Hua-Ping Ren, Lin-Feng Zhang, Yu-Xuan Hui, Xin-Ze Wu, Shao-Peng Tian, Si-Yi Ding, Qiang Ma and Yu-Zhen Zhao
Catalysts 2025, 15(7), 649; https://doi.org/10.3390/catal15070649 - 2 Jul 2025
Viewed by 431
Abstract
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions [...] Read more.
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions of CH4/CO2 = 1.0, T = 800 °C, and GHSV = 60,000 mL·g−1·h−1. As a result, a high CDR performance, especially stability, was obtained over Ni-CeO2/SiO2, in which the conversion of CH4 was very similar to that of the thermodynamic equilibrium (88%), and a negligible decrease in CH4 conversion was observed after 50 h of the CDR reaction. Ni/SiO2 and Ni-CeO2/SiO2 before and after the CDR reaction were subjected to structural characterization by XRD, TEM, TG–DSC, and physical adsorption. It was found that the addition of CeO2 into Ni/SiO2 significantly affected its surface area, the size and dispersion of Ni, the reduction behavior, and the coking properties. Moreover, the redox property of Ce3+-Ce4+, which accelerates the gasification of the coke, made Ni-CeO2/SiO2 successfully operate for 50 h without observable deactivation. Thus, the developed catalyst is very promising for the CDR. Full article
(This article belongs to the Special Issue Trends and Prospects in Catalysis for Sustainable CO2 Conversion)
Show Figures

Figure 1

16 pages, 6370 KiB  
Article
The Role of Ga Promoter in Enhancing the Performance of Ni/ZrO2+SiO2 Catalysts for Dry Methane Reforming
by Salma A. Al-Zahrani, Ahmed A. Ibrahim, Ghzzai Almutairi, Anis Hamza Fakeeha, Najat Masood, Sahar Y. Rajeh, Ahmed Al Otaib, Hessah Difallah A. Al-Enazy and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 627; https://doi.org/10.3390/catal15070627 - 26 Jun 2025
Viewed by 451
Abstract
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the [...] Read more.
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the support material. To promote the catalysts with a 5 wt.% Ni concentration, we used varying gallium loadings, specifically 0.1, 0.25, 0.5, 0.75, and 1 wt.%. After a detailed analysis, characterization was performed using X-ray diffraction, N2-physorption, temperature-programmed reduction/desorption techniques, thermogravimetry, and Raman spectroscopy. The optimal DRM performance, achieved at 700 °C with a 1:1 CH4:CO2 feed, was recorded for the catalyst that has 0.25 wt.% Ga. The catalyst demonstrated remarkable average conversion rates of 56% for CH4 and 66% for CO2 after 300 min at 700 °C, with an H2:CO ratio of 0.84. Activity was further enhanced by raising the temperature to 800 °C, which resulted in an 87% CO2 conversion and an 80% CH4 conversion. Studies on the catalyst’s long-term stability revealed a slow deactivation. With computed activation energies of 28,009 J/mol for CH4 conversion and 21,875 J/mol for CO2 conversion, temperature-programmed reaction tests conducted over the best catalyst demonstrated the DRM reaction’s endothermic character. Small additions of Ga encouraged the creation of more graphitic carbon structures, according to Raman spectroscopy of spent catalysts; the ideal catalyst had the lowest ID/IG ratio. These results suggest that the 5Ni+0.25Ga/SZ31107 catalyst is a promising candidate for large-scale syngas and hydrogen production. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 735
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Aspen Plus Simulation of a Sorption-Enhanced Steam Methane Reforming Process in a Fluidized Bed Reactor Using CaO as a Sorbent for CO2 Capture
by Fiorella Massa, Fabrizio Scala and Antonio Coppola
Appl. Sci. 2025, 15(12), 6535; https://doi.org/10.3390/app15126535 - 10 Jun 2025
Viewed by 823
Abstract
In this work, Aspen Plus was used to simulate a sorption-enhanced steam methane reforming (SE-SMR) process in a fluidized bed reformer using a Ni-based catalyst and CaO as a sorbent for CO2 removal from the reaction environment. The performances of the process [...] Read more.
In this work, Aspen Plus was used to simulate a sorption-enhanced steam methane reforming (SE-SMR) process in a fluidized bed reformer using a Ni-based catalyst and CaO as a sorbent for CO2 removal from the reaction environment. The performances of the process in terms of the outlet gas hydrogen purity (yH2), methane conversion (XCH4), and hydrogen yield (ηH2) were investigated. The process was simulated by varying the following different reformer operating parameters: pressure, temperature, steam/methane (S/C) feed ratio, and CaO/CH4 feed ratio. A clear sorption-enhanced effect occurred, where CaO was fed to the reformer, compared with traditional SMR, resulting in improvements of yH2, XCH4, and ηH2. This effect, in percentage terms, was more relevant, as expected, in conditions where the traditional process was unfavorable at higher pressures. The presence of CaO could only partially balance the negative effect of a pressure increase. This partial compensation of the negative pressure effect demonstrated that the intensification process has the potential to produce blue hydrogen while allowing for less severe operating conditions. Indeed, when moving traditional SMR from 1 to 10 bar, an average decrease of yH2, X, and η by −16%, −44%, and −41%, respectively, was recorded, while when moving from 1 bar SMR to 10 bar SE-SMR, yH2 showed an increase of +20%, while XCH4 and ηH2 still showed a decrease of −14% and −4%. Full article
(This article belongs to the Special Issue Advances and Challenges in Carbon Capture, Utilisation and Storage)
Show Figures

Figure 1

24 pages, 3128 KiB  
Review
Biochar-Based Materials for Catalytic CO2 Valorization
by Shahab Zomorodbakhsh, Lucas D. Dias, Mário J. F. Calvete, Andreia F. Peixoto, Rui M. B. Carrilho and Mariette M. Pereira
Catalysts 2025, 15(6), 568; https://doi.org/10.3390/catal15060568 - 8 Jun 2025
Viewed by 1516
Abstract
Biochar-based materials have gathered increasing attention as sustainable catalysts for carbon dioxide (CO2) valorization, offering a green alternative to traditional metal-based systems. Produced from renewable biomass through pyrolysis, biochar possesses key features—such as high surface area, rich porosity and tunable surface [...] Read more.
Biochar-based materials have gathered increasing attention as sustainable catalysts for carbon dioxide (CO2) valorization, offering a green alternative to traditional metal-based systems. Produced from renewable biomass through pyrolysis, biochar possesses key features—such as high surface area, rich porosity and tunable surface chemistry—that make it particularly suited for heterogeneous catalysis. This review highlights recent advances in the use of biochar-derived catalysts for key CO2 conversion reactions, focusing on cycloaddition to epoxides, dry reforming of methane and catalytic biomass upgrading. Emphasis is given to the role of biochar’s origin and preparation methods, which critically influence its structure, surface functionality and catalytic performance. Feedstocks rich in mineral content or oxygenated groups, for instance, can enhance CO2 activation and product selectivity. Furthermore, tailored modifications—such as doping with heteroatoms or supporting metal nanoparticles—further boost catalytic activity and stability by tuning acid–base behavior, while maintaining low toxicity and cost-effectiveness. Compared to conventional catalysts, biochar-based systems offer advantages in low cost, recyclability and resistance to deactivation. Challenges remain in standardizing production methods, controlling structural variability, minimizing metal leaching and scaling up. This review presents biochar as a versatile, renewable platform for CO2 utilization, highlighting the importance of rational design, feedstock selection and functionalization strategies for developing efficient, sustainable catalytic systems, in line with green chemistry and circular economy principles. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

21 pages, 7386 KiB  
Article
Enhanced Stability and Activity of Nitrogen-Doped Carbon Nanotube-Supported Ni Catalysts for Methane Dry Reforming
by Zhizhi Tao, Dong Shen, Yanni Liu, Xiaodi Zhang and Guojie Zhang
Catalysts 2025, 15(6), 559; https://doi.org/10.3390/catal15060559 - 4 Jun 2025
Viewed by 756
Abstract
The dry reforming of methane (DRM) converts two greenhouse gases, CH4 and CO2, into H2 and CO, offering a crucial technological pathway for reducing greenhouse gas emissions and producing clean energy. However, the reaction faces two main challenges: high [...] Read more.
The dry reforming of methane (DRM) converts two greenhouse gases, CH4 and CO2, into H2 and CO, offering a crucial technological pathway for reducing greenhouse gas emissions and producing clean energy. However, the reaction faces two main challenges: high activation energy barriers require high temperatures to drive the reaction, while sintering and carbon deactivation at high temperatures are common with conventional nickel-based catalysts, which severely limit the further development of the methane dry reforming reaction. In this study, a nitrogen-doped carbon nanotube-loaded nickel catalytic system (Ni/NCNT) was developed to overcome the challenges caused by limited active sites while maintaining the stable structure of the Ni/CNT system. Ni/NCNT catalysts were prepared using different nitrogen precursors, and the impact of the mixing method on catalytic performance was examined. Characterization using H2-TPR, XPS, and TEM revealed that nitrogen doping enhanced the metal–support interaction (MSI). Additionally, pyridine nitrogen species synergistically interact with nickel particles, modulating the electronic environment on the carbon nanotube surface and increasing catalyst active site density. The Ni/NCNT-IU catalyst, prepared with impregnated urea, exhibited excellent stability, with methane conversion decreasing from 85.0% to 82.9% over 24 h of continuous reaction. This study supports the use of non-precious-metal carbon-based catalysts in high-temperature catalytic systems, which is strategically important for the industrialization of DRM and the development of decarbonized energy conversion. Full article
(This article belongs to the Special Issue Catalysis for Hydrogen Storage and Release)
Show Figures

Graphical abstract

25 pages, 2228 KiB  
Article
Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements
by Dhruv Singh, Piero Sirini and Lidia Lombardi
Energies 2025, 18(10), 2631; https://doi.org/10.3390/en18102631 - 20 May 2025
Cited by 1 | Viewed by 858
Abstract
Biogas is a crucial renewable energy source for green hydrogen (H2) production, reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently, methane reforming dominates H2 production to meet growing global [...] Read more.
Biogas is a crucial renewable energy source for green hydrogen (H2) production, reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently, methane reforming dominates H2 production to meet growing global demand, with biogas/landfill gas (LFG) reform offering a promising alternative. This study provides a comprehensive simulation-based evaluation of Steam Methane Reforming (SMR) and Dry Methane Reforming (DMR) of biogas/LFG, using Aspen Plus. Simulations were conducted under varying operating conditions, including steam-to-carbon (S/C) for SMR and steam-to-carbon monoxide (S/CO) ratios for DMR, reforming temperatures, pressures, and LFG compositions, to optimize H2 yield and process efficiency. The comparative study showed that SMR attains higher specific H2 yields (0.14–0.19 kgH2/Nm3), with specific energy consumption between 0.048 and 0.075 MWh/kg of H2, especially at increased S/C ratios. DMR produces less H2 than SMR (0.104–0.136 kg H2/Nm3) and requires higher energy inputs (0.072–0.079 MWh/kg H2), making it less efficient. Both processes require an additional 1.4–2.1 Nm3 of biogas/LFG per Nm3 of feed for energy. These findings provide key insights for improving biogas-based H2 production for sustainable energy, with future work focusing on techno–economic and environmental assessments to evaluate its feasibility, scalability, and industrial application. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 3rd Edition)
Show Figures

Figure 1

22 pages, 3206 KiB  
Article
CO2 Reforming of Methane over Ru Supported Catalysts Under Mild Conditions
by Alexandros K. Bikogiannakis, Andriana Lymperi, Paraskevas Dimitropoulos, Kyriakos Bourikas, Alexandros Katsaounis and Georgios Kyriakou
Molecules 2025, 30(10), 2135; https://doi.org/10.3390/molecules30102135 - 12 May 2025
Viewed by 690
Abstract
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water [...] Read more.
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water Gas Shift (RWGS) reaction under mild conditions using Ru-based catalysts supported on CeO2, YSZ, TiO2, and SiO2, with three reactant ratios: (i) stoichiometric, PCO2 = 1 kPa, PCH4 = 1 kPa, (ii) oxidizing, PCO2 = 2 kPa, PCH4 = 1 kPa, and (iii) reducing, PCO2 = 1 kPa, PCH4 = 4 kPa. The results highlight the importance of redox support for catalyst stability, with mobile lattice oxygen aiding carbon gasification. While Ru/CeO2 is stable at high temperatures, it rapidly deactivates at low temperatures, emphasizing the need for precise metal particle size control. This work demonstrates the necessity of fine-tuning catalyst properties for more sustainable DRM, offering insights for next-generation CO2 utilization catalysts. Full article
(This article belongs to the Special Issue New Insight in Catalysis and Electrocatalysis for CO2 Conversion)
Show Figures

Graphical abstract

Back to TopTop