Catalytic Reforming and Hydrogen Production: From the Past to the Future, 2nd Edition

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Industrial Catalysis".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 992

Special Issue Editors


E-Mail Website
Guest Editor
School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
Interests: methane production; catalyst; synthesis gas; hydrogen production; steam reforming; WGS reaction
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
Interests: heterogeneous catalysis; nanoparticle synthesis; surface science; catalysts; environmental processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This is the second edition of the Special Issue, “Catalytic Reforming and Hydrogen Production: From the Past to the Future, 2nd Edition”. In this updated edition, we continue to highlight cutting-edge research in the field of heterogeneous catalysis, with a focus on catalytic reforming and hydrogen production. As the global transition toward clean and sustainable energy accelerates, this issue aspires to advance the discourse on innovative solutions and transformative technologies.

The aim of this edition is not only to provide a platform for sharing groundbreaking scientific discoveries but also to foster interdisciplinary collaboration among researchers, industry experts, and policymakers. By addressing both fundamental science and applied engineering challenges, we hope to bridge the gap between laboratory-scale innovation and large-scale industrial implementation, contributing to a future driven by cleaner energy systems.

We warmly welcome submissions of original research articles and comprehensive reviews that showcase the latest advancements and insights in this dynamic research domain. Contributions may address, but are not limited to, the following key topics:

  • Advanced methane conversion techniques.
  • Dry reforming innovations.
  • CO₂ methanation strategies.
  • Hydrogen production technologies.
  • The water–gas shift (WGS) reaction.
  • Syngas production advancements.
  • Fischer–Tropsch synthesis developments.
  • Utilization of renewable feedstocks for hydrogen generation.
  • Catalytic processes for ammonia decomposition.
  • Integration of catalytic reforming with carbon capture and storage (CCS) technologies.

Dr. Georgios Bampos
Dr. Paraskevi Panagiotopoulou
Dr. Eleni A. Kyriakidou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • syngas
  • hydrogen production
  • steam reforming
  • CO₂ methanation
  • water–gas shift (WGS) reaction
  • fuels
  • clean energy
  • hydrocarbons to fuels
  • catalytic hydrogenation
  • carbon-neutral energy systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 5102 KiB  
Article
Electrocatalytic Investigation of the SOFC Internal CH4 Dry Reforming with Modified Ni/GDC: Effect of Au Content on the Performance Enhancement by Fe-Au Doping
by Evangelia Ioannidou, Stylianos G. Neophytides and Dimitrios K. Niakolas
Catalysts 2025, 15(7), 618; https://doi.org/10.3390/catal15070618 - 23 Jun 2025
Viewed by 168
Abstract
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect [...] Read more.
Internal Dry Reforming of Methane (IDRM) in biogas fed Solid Oxide Fuel Cells (SOFCs) was investigated on Fe-Au modified Ni/GDC electrolyte-supported cells at 900 and 850 °C. The aim was to clarify the synergistic interaction between Fe and Au, focusing on the effect of X wt.% of Au loading (where X = 1 or 3 wt.%) in binary Au-Ni/GDC and ternary 0.5 wt.% Fe-Au-Ni/GDC fuel electrodes. The investigation combined i-V, Impedance Spectroscopy and Gas Chromatography electrocatalytic measurements. It was found that modification with 0.5Fe-Au enhanced significantly the electrocatalytic activity of Ni/GDC for the IDRM reaction, whereas the low wt.% Au content had the most promoting effect. The positive interaction of 0.5 wt.% Fe with 1 wt.% Au increased the conductivity of Ni/GDC and enhanced the corresponding IDRM charge transfer electrochemical processes, especially those in the intermediate frequency region. Comparative long-term measurements, between cells comprising Ni/GDC and 0.5Fe-1Au-Ni/GDC, highlighted the significantly higher IDRM electrocatalytic activity of the modified electrode. The latter operated for almost twice the time (280 h instead of 160 h for Ni/GDC) with a lower degradation rate (0.44 mV/h instead of 0.51 mV/h). Ni/GDC degradation was ascribed to inhibited charge transfer processes in the intermediate frequencies region and to deteriorated ohmic resistance. Stoichiometric analysis on the (post-mortem) surface state of each fuel electrode showed that the wt.% content of reduced nickel on Ni/GDC was lower, compared to 0.5Fe-1Au-Ni/GDC, verifying the lower re-oxidation degree of the latter. This was further correlated to the hindered H2O production during IDRM operation, due to the lower selectivity of the modified electrode for the non-desired RWGS reaction. Full article
Show Figures

Graphical abstract

16 pages, 2483 KiB  
Article
H2 Production from Pyrolysis-Steam Reforming of Municipal Solid Waste and Biomass: A Comparative Study When Using the Self-Derived Char-Based Catalysts
by Maijia Qiu, Chenhao Xiang, Yitao Wen, Weichen Hong, Renkai Liu, Dehong Chen and Dezhen Chen
Catalysts 2025, 15(6), 531; https://doi.org/10.3390/catal15060531 - 27 May 2025
Viewed by 516
Abstract
This study employed a two-stage fixed-bed pyrolysis-reforming reactor to investigate H2 production behaviors from municipal solid waste (MSW) and biomass with their self-derived catalysts under different operating parameters. The self-derived catalysts are prepared by mechanically mixing pyrolysis-derived chars with CaO and iron [...] Read more.
This study employed a two-stage fixed-bed pyrolysis-reforming reactor to investigate H2 production behaviors from municipal solid waste (MSW) and biomass with their self-derived catalysts under different operating parameters. The self-derived catalysts are prepared by mechanically mixing pyrolysis-derived chars with CaO and iron powders. The main results are as follows: (1) The higher oxygen content in biomass facilitates oxidative dehydrogenation reactions, enabling in situ generation of H2O, which results in a higher H2/CO ratio for biomass compared to MSW under steam-free conditions. (2) There are optimal values for the reforming temperature and steam-to-feedstock ratio (S/F) to achieve best performance. In the presence of steam, MSW generally exhibits superior H2 and syngas production performance to biomass; (3) Both MSW char (MSWC)- and biomass char (BC)-based catalysts showed satisfied H2 production and tar cracking performance at 850–900 °C, and the MSWC-based catalyst demonstrated better catalytic activity than the BC-based catalyst due to its higher contents of several active metals. In addition, the iron powder can be recycled easily, proving the effectiveness of the self-derived convenient and cheap catalysts. Full article
Show Figures

Graphical abstract

Back to TopTop