Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (78,091)

Search Parameters:
Keywords = mechanical processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1789 KB  
Review
The Extracellular Matrix, the Silent ‘Architect’ of Glioma
by Carmen Rubio, Javier Pérez-Villavicencio, Nadia F. Esteban-Román, Ángel Lee, Gervith Reyes-Soto and Moisés Rubio-Osornio
Biomedicines 2026, 14(1), 205; https://doi.org/10.3390/biomedicines14010205 (registering DOI) - 17 Jan 2026
Abstract
The brain’s extracellular matrix (ECM) serves as a dynamic and instructive regulator of glioma progression. The ECM provides structural support while integrating pharmacological and mechanical signals that influence glioma initiation, progression, and treatment resistance. Deviant ECM remodeling fosters tumor heterogeneity, invasion, and immune [...] Read more.
The brain’s extracellular matrix (ECM) serves as a dynamic and instructive regulator of glioma progression. The ECM provides structural support while integrating pharmacological and mechanical signals that influence glioma initiation, progression, and treatment resistance. Deviant ECM remodeling fosters tumor heterogeneity, invasion, and immune evasion by altering stiffness, composition, and cellular matrix signaling. We proposed that ECM remodeling in gliomas not only facilitates tumor growth and heterogeneity but also establishes advantageous biophysical and metabolic conditions that foster treatment resistance and recurrence. Our objective is to analyze current findings regarding the structural, biochemical, and mechanical roles of the brain ECM in glioma growth, emphasizing its contribution to tumor heterogeneity, mechanotransduction, immunological modulation, and its potential as a therapeutic target. Method: A comprehensive literature review was conducted using scientific databases including PubMed, Web of Science, and Scopus. Peer-reviewed literature published between 2000 and 2025 was selected for its relevance to ECM composition, stiffness, remodeling enzymes, extracellular vesicles, and mechanobiological processes in gliomas. Results: Recent investigations demonstrate that glioma cells actively alter the ECM by secreting collagens, laminins, and metalloproteinases, establishing a feedback loop that facilitates invasion and resistance. Discussion: Mechanical variables, such as ECM stiffness and solid stress, influence glioma growth, metabolism, and immune exclusion. Moreover, extracellular vesicles facilitate significant extracellular matrix remodeling and improve communication between tumors and stromal cells. The disruption of ependymal and subventricular extracellular matrix niches enhances invasion and cerebrospinal fluid-mediated signaling. The remodeling of the ECM influences glioma growth through interconnected biochemical, mechanical, and immunological mechanisms. Examining ECM stiffness, crosslinking enzymes, and vesicle-mediated signaling represents a potential therapeutic approach. Integrative methodologies that combine mechanobiology, imaging, and multiomics analysis could uncover ECM-related vulnerabilities to improve glioma treatment. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas: 2nd Edition)
23 pages, 4062 KB  
Review
Nanoscale Microstructure and Microbially Mediated Mineralization Mechanisms of Deep-Sea Cobalt-Rich Crusts
by Kehui Zhang, Xuelian You, Chao Li, Haojia Wang, Jingwei Wu, Yuan Dang, Qing Guan and Xiaowei Huang
Minerals 2026, 16(1), 91; https://doi.org/10.3390/min16010091 (registering DOI) - 17 Jan 2026
Abstract
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from [...] Read more.
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from the Magellan Seamount region in the northwestern Pacific and synthesizes existing geological, mineralogical, and geochemical studies to systematically elucidate their mineralization processes and metal enrichment mechanisms from a microstructural perspective, with particular emphasis on cobalt enrichment and its controlling factors. Based on published observations and experimental evidence, the formation of cobalt-rich crusts is divided into three stages: (1) Mn/Fe colloid formation—At the chemical interface between oxygen-rich bottom water and the oxygen minimum zone (OMZ), Mn2+ and Fe2+ are oxidized to form hydrated oxide colloids such as δ-MnO2 and Fe(OH)3. (2) Key metal adsorption—Colloidal particles adsorb metal ions such as Co2+, Ni2+, and Cu2+ through surface complexation and oxidation–substitution reactions, among which Co2+ is further oxidized to Co3+ and stably incorporated into MnO6 octahedral vacancies. (3) Colloid deposition and mineralization—Mn–Fe colloids aggregate, dehydrate, and cement on the exposed seamount bedrock surface to form layered cobalt-rich crusts. This process is dominated by the Fe/Mn redox cycle, representing a continuous evolution from colloidal reactions to solid-phase mineral formation. Biological processes play a crucial catalytic role in the microstructural evolution of the crusts. Mn-oxidizing bacteria and extracellular polymeric substances (EPS) accelerate Mn oxidation, regulate mineral-oriented growth, and enhance particle cementation, thereby significantly improving the oxidation and adsorption efficiency of metal ions. Tectonic and paleoceanographic evolution, seamount topography, and the circulation of Antarctic Bottom Water jointly control the metallogenic environment and metal sources, while crystal defects, redox gradients, and biological activity collectively drive metal enrichment. This review establishes a conceptual framework of a multi-level metallogenic model linking macroscopic oceanic circulation and geological evolution with microscopic chemical and biological processes, providing a theoretical basis for the exploration, prediction, and sustainable development of potential cobalt-rich crust deposits. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Polymetallic Deep-Sea Deposits)
Show Figures

Figure 1

22 pages, 8535 KB  
Article
Experimental Study and THM Coupling Analysis of Slope Instability in Seasonally Frozen Ground
by Xiangshen Chen, Chao Li, Feng Ding and Yongju Shao
GeoHazards 2026, 7(1), 13; https://doi.org/10.3390/geohazards7010013 (registering DOI) - 17 Jan 2026
Abstract
Freeze–thaw cycles (FTCs) are a prevalent weathering process that threatens the stability of canal slopes in seasonally frozen regions. This study combines direct shear tests under multiple F-T cycles with coupled thermo-hydro-mechanical numerical modeling to investigate the failure mechanisms of slopes with different [...] Read more.
Freeze–thaw cycles (FTCs) are a prevalent weathering process that threatens the stability of canal slopes in seasonally frozen regions. This study combines direct shear tests under multiple F-T cycles with coupled thermo-hydro-mechanical numerical modeling to investigate the failure mechanisms of slopes with different moisture contents (18%, 22%, 26%). The test results quantify a marked strength degradation, where the cohesion decreases to approximately 50% of its initial value and the internal friction angle is weakened by about 10% after 10 freeze–thaw cycles. The simulation reveals that temperature gradient-driven moisture migration is the core process, leading to a dynamic stress–strain concentration zone that propagates from the upper slope to the toe. The safety factors of the three soil specimens with different moisture contents fell below the critical threshold of 1.3. They registered values of 1.02, 0.99, and 0.78 within 44, 44, and 46 days, which subsequently induced shallow failure. The failure mechanism elucidated in this study enhances the understanding of freeze–thaw-induced slope instability in seasonally frozen regions. Full article
Show Figures

Figure 1

27 pages, 2413 KB  
Article
Edge AI in Nature: Insect-Inspired Neuromorphic Reflex Islands for Safety-Critical Edge Systems
by Pietro Perlo, Marco Dalmasso, Marco Biasiotto and Davide Penserini
Symmetry 2026, 18(1), 175; https://doi.org/10.3390/sym18010175 (registering DOI) - 17 Jan 2026
Abstract
Insects achieve millisecond sensor–motor loops with tiny sensors, compact neural circuits, and powerful actuators, embodying the principles of Edge AI. We present a comprehensive architectural blueprint translating insect neurobiology into a hardware–software stack: a latency-first control hierarchy that partitions tasks between a fast, [...] Read more.
Insects achieve millisecond sensor–motor loops with tiny sensors, compact neural circuits, and powerful actuators, embodying the principles of Edge AI. We present a comprehensive architectural blueprint translating insect neurobiology into a hardware–software stack: a latency-first control hierarchy that partitions tasks between a fast, dedicated Reflex Tier and a slower, robust Policy Tier, with explicit WCET envelopes and freedom-from-interference boundaries. This architecture is realized through a neuromorphic Reflex Island utilizing spintronic primitives, specifically MRAM synapses (for non-volatile, innate memory) and spin-torque nano-oscillator (STNO) reservoirs (for temporal processing), to enable instant-on, memory-centric reflexes. Furthermore, we formalize the biological governance mechanisms, demonstrating that, unlike conventional ICEs and miniturbines that exhibit narrow best-efficiency islands, insects utilize active thermoregulation and DGC (Discontinuous Gas Exchange) to maintain nearly constant energy efficiency across a broad operational load by actively managing their thermal set-point, which we map into thermal-debt and burst-budget controllers. We instantiate this integrated bio-inspired model in an insect-like IFEVS thruster, a solar cargo e-bike with a neuromorphic safety shell, and other safety-critical edge systems, providing concrete efficiency comparisons, latency, energy budgets, and safety-case hooks that support certification and adoption across autonomous domains. Full article
(This article belongs to the Special Issue New Trends in Biomimetics for Life-Sciences)
Show Figures

Figure 1

15 pages, 666 KB  
Article
Serum Chemerin Levels in Polish Women with PCOS-Phenotype D
by Justyna Kuliczkowska-Płaksej, Jowita Halupczok-Żyła, Łukasz Gojny, Agnieszka Zembska, Aneta Zimoch, Monika Skrzypiec-Spring, Marek Bolanowski and Aleksandra Jawiarczyk-Przybyłowska
J. Clin. Med. 2026, 15(2), 772; https://doi.org/10.3390/jcm15020772 (registering DOI) - 17 Jan 2026
Abstract
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved [...] Read more.
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved in inflammatory and metabolic processes. It remains unclear whether altered chemerin levels in PCOS reflect metabolic dysfunction alone or are directly associated with hyperandrogenism. The aim of this study was to compare serum chemerin levels in women with normoandrogenic PCOS and a control group. Methods: This cross-sectional preliminary study included 49 women with phenotype D PCOS and 40 healthy, age- and body mass index (BMI)-matched controls. Anthropometric, biochemical, hormonal parameters, and serum chemerin concentrations were assessed. Results: Serum chemerin concentrations did not differ significantly between the groups. In the PCOS group, the 95% confidence interval ranged from 198.61 to 234.37, while in the controls, it ranged from 187.13 to 216.21. In women with PCOS, chemerin showed significant positive correlations with weight, BMI, waist and hip circumference, total adipose tissue, and both gynoid and android fat content. Positive correlations were also observed with highly sensitive C-reactive protein (hs-CRP), insulin, glucose, triglycerides, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and a negative correlation was found with high-density lipoprotein (HDL) cholesterol. Chemerin was weakly negatively correlated with sex hormone binding globulin (SHBG) and positively correlated with the free androgen index (FAI). In the control group, chemerin correlated positively with CRP, insulin, triglycerides, total and gynoid adipose tissue, and negatively correlated with HDL cholesterol and SHBG. Conclusions Although chemerin levels did not differ from controls, chemerin was associated with metabolic and inflammatory markers in both groups. These findings should be considered preliminary due to the limited sample size. Chemerin may reflect metabolic and inflammatory status rather than hyperandrogenism in normoandrogenic PCOS. Full article
(This article belongs to the Topic Gynecological Endocrinology Updates)
Show Figures

Figure 1

25 pages, 14882 KB  
Article
Tracing the Origin of Groundwater Salinization in Multilayered Coastal Aquifers Using Geochemical Tracers
by Mariana La Pasta Cordeiro, Johanna Wallström and Maria Teresa Condesso de Melo
Water 2026, 18(2), 252; https://doi.org/10.3390/w18020252 (registering DOI) - 17 Jan 2026
Abstract
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced [...] Read more.
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced by Na-Cl hydrochemical facies, high electrical conductivity, and Na+/Cl, Cl/Br and SO42−/Cl molar ratios consistent with marine signatures. In areas affected by diapiric dissolution, besides elevated electrical conductivity, groundwater is enriched in SO42− and Ca2+ and in minor elements like K+, Li+, B3+, Ba2+ and Sr2+, and high SO42−/Cl and Ca2+/HCO3 molar ratios, indicative of gypsum/anhydrite dissolution. The relationship between δ18O and electrical conductivity further supports the identification of distinct salinity sources. This study integrates hydrogeochemical tracers to investigate hydrochemical evolution in the aquifer with increasing residence time and influence of water–rock interaction, as well as the accurate characterization of salinization mechanisms in multilayer aquifers. A comprehensive understanding of these processes is essential for identifying vulnerable zones and developing effective management strategies to ensure the protection and sustainable use of groundwater resources. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

26 pages, 1090 KB  
Review
The Influence of Sex and Hormones on Organelle Stress in Kidney Injury: Insights from Preclinical Models
by Hector Salazar-Gonzalez, Yanet Karina Gutierrez-Mercado and Raquel Echavarria
Biology 2026, 15(2), 173; https://doi.org/10.3390/biology15020173 (registering DOI) - 17 Jan 2026
Abstract
Kidney cells are exposed to a wide range of physiological and pathological stresses, including hormonal changes, mechanical forces, hypoxia, hyperglycemia, and inflammation. These insults can trigger adaptive responses, but when they persist, they can lead to organelle stress. Organelles such as mitochondria, the [...] Read more.
Kidney cells are exposed to a wide range of physiological and pathological stresses, including hormonal changes, mechanical forces, hypoxia, hyperglycemia, and inflammation. These insults can trigger adaptive responses, but when they persist, they can lead to organelle stress. Organelles such as mitochondria, the endoplasmic reticulum, and primary cilia sustain cellular metabolism and tissue homeostasis. When organelle stress occurs, it disrupts cellular processes and organelle communication, leading to metabolic dysfunction, inflammation, fibrosis, and progression of kidney disease. Sex and hormonal factors play a significant role in the development of renal disorders. Many glomerular diseases show distinct differences between the sexes. Chronic Kidney Disease is more common in women, while men often experience a faster decline in kidney function, partly due to the influence of androgens. Additionally, the loss of female hormonal protection after menopause highlights the importance of sex as a factor in renal susceptibility. This narrative review synthesizes preclinical evidence on how sexual dimorphism and sex hormones affect organelle stress in mitochondria, the endoplasmic reticulum, and primary cilia, from 33 studies identified through a non-systematic literature search of the PubMed database, to provide an overview of how these mechanisms contribute to sex-specific differences in kidney disease pathophysiology. Full article
16 pages, 901 KB  
Systematic Review
Sleep, Stress, and Recovery as Predictors of Injury Risk in Soccer Players: A Systematic Review
by Enrique Cantón, Joel Raga and David Peris-Delcampo
Healthcare 2026, 14(2), 236; https://doi.org/10.3390/healthcare14020236 (registering DOI) - 17 Jan 2026
Abstract
Introduction. Sleep is an essential component in the recovery, performance, and injury prevention processes of soccer players. Associated psychological variables, such as the balance between stress and recovery, have been less explored, despite their potential influence on rest and injury vulnerability. This [...] Read more.
Introduction. Sleep is an essential component in the recovery, performance, and injury prevention processes of soccer players. Associated psychological variables, such as the balance between stress and recovery, have been less explored, despite their potential influence on rest and injury vulnerability. This study aims to examine the relationship between sleep quality, quantity, and chronotype and injury risk in soccer players, also incorporating the modulating role of stress and recovery. Method. A PRISMA systematic review was conducted using searches in ScienceDirect, PubMed, Ovid, EBSCO, MDPI, Springer Nature Link, SPORTDiscuss (full text), and Dialnet. Original studies and reviews on sleep and its relationship with sports injuries in soccer players or comparable athletic populations were included. Eighteen studies were selected that addressed sleep indicators (quality, quantity, chronotype), injury incidence, and, to a lesser extent, measures of stress and recovery using instruments such as the RESTQ-Sport or wellness questionnaires. Results. There is evidence of an association between poor sleep quality or quantity and an increased risk of injury or illness. Chronotype is an emerging variable of interest, although still insufficiently researched. Regarding stress and recovery, direct evidence is limited, although studies that address this issue show that an imbalance between these two dimensions negatively impacts sleep quality and increases susceptibility to injury. Conclusions: Sleep and the stress–recovery balance are key and interdependent factors in the risk of injury in soccer players. Future research should consider including these variables to further understand the mechanisms underlying the injury process and optimize prevention and recovery strategies. Full article
Show Figures

Figure 1

19 pages, 3295 KB  
Article
Biobased Random Copolymers of Poly(Hexamethylene Furanoate) for Sustainable Food Packaging: Camphoric Acid as a Valuable Co-Monomer for Improved Mechanical Properties
by Enrico Bianchi, Michelina Soccio, Valentina Siracusa, Massimo Gazzano and Nadia Lotti
Polymers 2026, 18(2), 255; https://doi.org/10.3390/polym18020255 (registering DOI) - 17 Jan 2026
Abstract
In recent years, the unsustainable consumption of fossil resources has been causing major ecological concerns, especially for the production of polymeric materials. 2,5-furandicarboxylic acid (FDCA) is one of the most appealing biobased chemical building blocks, because of its potential to replace the industrially [...] Read more.
In recent years, the unsustainable consumption of fossil resources has been causing major ecological concerns, especially for the production of polymeric materials. 2,5-furandicarboxylic acid (FDCA) is one of the most appealing biobased chemical building blocks, because of its potential to replace the industrially widespread petrochemical, terephthalic acid. Camphoric acid (CA) is also an interesting biobased chemical derived from camphor, one of the most widespread fragrances. This work had the objective of combining CA, FDCA and biobased 1,6-hexanediol to synthesize random copolymers for sustainable food packaging applications by means of a solvent-free polycondensation process, obtaining poly(hexamethylene furanoate-co-camphorate)s (PHFC). The optimization of the synthesis made it possible to obtain high molecular weight polyesters with a percentage of camphoric acid up to 17 mol%, which could be compression-molded into films. They were subjected to molecular, structural, thermal and functional characterization via NMR, GPC, WAXS, DSC, and TGA analyses, as well as mechanical and gas permeability tests. Compared to the homopolymer of reference, it was possible to obtain higher flexibility, 430% higher elongation at break, and 223% higher toughness, with comparable, excellent gas permeability properties. Calorimetric evidence suggested that camphoric acid might have enhanced the formation of a partially ordered mesomorph phase in the copolymers under study. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
22 pages, 7044 KB  
Article
Design of a SMART Valve Testbed for Nuclear Thermal Dispatch
by Anutam Bairagi, Minghui Chen, Ark Ifeanyi, Sarah Creasman, Jamie Coble and Vivek Agarwal
Energies 2026, 19(2), 470; https://doi.org/10.3390/en19020470 (registering DOI) - 17 Jan 2026
Abstract
By the year 2050, the United States aims to achieve net-zero carbon emissions. To achieve this target, the licensing of the Light Water Reactor (LWR) fleet has been extended for 20 more years. To stay economically competitive with other power sources such as [...] Read more.
By the year 2050, the United States aims to achieve net-zero carbon emissions. To achieve this target, the licensing of the Light Water Reactor (LWR) fleet has been extended for 20 more years. To stay economically competitive with other power sources such as renewable and fossil-fuel power plants, the U.S. Department of Energy has introduced a plan to modernize the existing LWR fleet and diversify the revenue stream. One of the plans is to dispatch thermal energy to endothermic industrial processes. SMART valves will play an important role in this initiative by efficiently balancing the load by regulating valves in a coordinated manner while monitoring the thermal-hydraulic systems to enhance safety and maintain the integrity of the power plant. This research aims to develop a facility to test the coordinated control algorithm and produce various test results for training the monitoring system. The constructed facility is capable of simulating various operational and accidental scenarios by coordinating all the valves (positions) and pump (flowrate). The facility is developed with an Internet of Things (IoT)-based custom system and a python-based valve position control and coordination mechanism. It has achieved stable sensor outputs, pump control, and coordinated valve regulation in all three valves with minimum obstruction in the system. Full article
(This article belongs to the Special Issue Operation Safety and Simulation of Nuclear Energy Power Plant)
Show Figures

Figure 1

20 pages, 1376 KB  
Article
Menthol–Fatty Acid HDES Boosts In Vitro Oral Bioavailability of Oleanolic Acid via Synergistic Digestive Release and Cellular Absorption
by Qin Zhang, Chenjia Li, Jie Yu, Benyang Li and Chaoxi Zeng
Foods 2026, 15(2), 343; https://doi.org/10.3390/foods15020343 (registering DOI) - 17 Jan 2026
Abstract
To improve the oral bioavailability of oleanolic acid (OA), this study developed a menthol–fatty acid-based hydrophobic deep eutectic solvent (HDES) system. Through a comprehensive evaluation using in vitro simulated digestion and Caco-2 cell transport models, the short-chain HDES was found to increase the [...] Read more.
To improve the oral bioavailability of oleanolic acid (OA), this study developed a menthol–fatty acid-based hydrophobic deep eutectic solvent (HDES) system. Through a comprehensive evaluation using in vitro simulated digestion and Caco-2 cell transport models, the short-chain HDES was found to increase the apparent in vitro bioavailability index of OA by 9.3-fold compared to conventional ethanol systems, with efficacy showing clear fatty acid chain-length dependence. The mechanism was systematically investigated through spectral characterization and cellular studies, revealing a two-stage enhancement process: during the digestion phase, HDES significantly improved OA bioaccessibility to 14.30% compared to 4.90% with ethanol; during the absorption phase, it markedly increased cellular uptake to 25.79% versus 4.71% with ethanol. Molecular analysis indicated that the optimal hydrophobicity and diffusion properties of HDES contributed to this enhancement. This study reveals a fatty acid chain-length-dependent mechanism in HDES-facilitated OA delivery, providing a tunable strategy for enhancing the absorption of hydrophobic bioactive compounds. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
31 pages, 425 KB  
Review
Recent Research on the Role of Lactobacilli Probiotics in Cancer Management
by See-Hyoung Park
Nutrients 2026, 18(2), 297; https://doi.org/10.3390/nu18020297 (registering DOI) - 17 Jan 2026
Abstract
Lactobacilli strains are one of the major groups belonging to probiotics. Lactobacilli strains are known to be beneficial microbes widely studied and utilized for their health benefits and applications in various fields. Recently, Lactobacilli strains have emerged as promising agents in cancer management [...] Read more.
Lactobacilli strains are one of the major groups belonging to probiotics. Lactobacilli strains are known to be beneficial microbes widely studied and utilized for their health benefits and applications in various fields. Recently, Lactobacilli strains have emerged as promising agents in cancer management due to their ability to influence various physiological processes. Lactobacilli strains have shown potential in producing tumor-suppressive compounds, enhancing immune responses, and reshaping gut microbiota balance for the management of various cancer types. Lactobacilli strains demonstrated tumor-suppressive activity through mechanisms including induction of apoptosis, inhibition of migration, and regulation of key oncogenic signaling pathways. However, the effects of Lactobacilli strains appear to be strain- and cancer-type-dependent, necessitating further research to identify the most effective strains for the proper cancer type with the optimal treatment regimens. In this review article, we focus on Lactobacilli strains studied between 2021 and 2025 that have demonstrated tumor-suppressive properties in various experimental models. In addition, this article explores the current limitations in research methodologies and proposes potential avenues for future investigations in this area of study. Full article
23 pages, 2620 KB  
Article
Secretome Profiling of Lactiplantibacillus plantarum CRL681 Predicts Potential Molecular Mechanisms Involved in the Antimicrobial Activity Against Escherichia coli O157:H7
by Ayelen Antonella Baillo, Leonardo Albarracín, Eliana Heredia Ojeda, Mariano Elean, Weichen Gong, Haruki Kitazawa, Julio Villena and Silvina Fadda
Antibiotics 2026, 15(1), 96; https://doi.org/10.3390/antibiotics15010096 (registering DOI) - 17 Jan 2026
Abstract
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface [...] Read more.
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface and in the extracellular environment, the characterization of the bacterial secretome is essential for elucidating these mechanisms. In this study, the secretome of L. plantarum CRL681 was comprehensively characterized using an integrated in silico and in vitro approach. Methods. The exoproteome and surfaceome were analyzed by LC-MS/MS under pure culture conditions and during co-culture with E. coli O157:H7. Identified proteins were functionally annotated, classified according to subcellular localization and secretion pathways, and evaluated through protein–protein interaction network analysis. Results. A total of 275 proteins were proposed as components of the CRL681 secretome, including proteins involved in cell surface remodeling, metabolism and nutrient transport, stress response, adhesion, and genetic information processing. Co-culture with EHEC induced significant changes in the expression of proteins associated with energy metabolism, transport systems, and redox homeostasis, indicating a metabolic and physiological adaptation of L. plantarum CRL681 under competitive conditions. Notably, several peptidoglycan hydrolases, ribosomal proteins with reported antimicrobial activity, and moonlighting proteins related to adhesion were identified. Conclusions. Overall, these findings suggest that the antagonistic activity of L. plantarum CRL681 against E. coli O157:H7 would be mediated by synergistic mechanisms involving metabolic adaptation, stress resistance, surface adhesion, and the production of non-bacteriocin antimicrobial proteins, supporting its potential application as a bioprotective and functional probiotic strain. Full article
Show Figures

Figure 1

25 pages, 2739 KB  
Article
The Entropy Field Structure and the Recursive Collapse of the Electron: A Thermodynamic Foundation for Quantum Behavior
by John T. Solomon
Quantum Rep. 2026, 8(1), 5; https://doi.org/10.3390/quantum8010005 (registering DOI) - 17 Jan 2026
Abstract
Conventional quantum mechanics treats the electron as a point-like particle endowed with intrinsic properties—mass, charge, and spin—that are inserted as axioms rather than derived from first principles. Here, we propose a thermodynamic reformulation of the electron grounded in entropy field dynamics, based on [...] Read more.
Conventional quantum mechanics treats the electron as a point-like particle endowed with intrinsic properties—mass, charge, and spin—that are inserted as axioms rather than derived from first principles. Here, we propose a thermodynamic reformulation of the electron grounded in entropy field dynamics, based on S-Theory. In this framework, the electron is composed of three distinct entropic components: Score (a collapsed entropy core from configurational mass), SEM (a structured electromagnetic entropy field from charge), and Sthermal (a diffuse entropy component from ambient interactions). We show that spin emerges as a rotating SEM shell around Score, and that electron collapse—as in quantum measurement—can be modeled as a Recursive Amplification of Sfield (RAS) process driven by entropic feedback. Through mathematical formulation and high-resolution simulations, we demonstrate how the S-field components evolve under entropic excitation, culminating in a collapse threshold defined by local entropy density matching. This model not only explains the emergence of quantum properties but also offers a thermodynamic mechanism for electron–photon interaction, wavefunction collapse, and spin generation, revealing the inner structure and dynamics of one of nature’s most fundamental particles. Full article
19 pages, 4513 KB  
Article
Ginseng Polysaccharides Protect Against Endoplasmic Reticulum Stress-Induced Damage via PI3K/Akt Signalling Pathway in Bovine Ovarian Granulosa Cells
by Hongjie Wang, Yi Fang, Lei Huang, Xu Yang, Xin Ma, Yang Lyu, Guo Jing, He Ding, Hongyu Liu and Wenfa Lyu
Cells 2026, 15(2), 172; https://doi.org/10.3390/cells15020172 (registering DOI) - 17 Jan 2026
Abstract
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive [...] Read more.
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive function; however, whether GPS can protect against granulosa cell injury and the underlying mechanisms remain unclear. To address this gap, this study aimed to investigate the protective effects of GPS on ERS-induced bovine granulosa cell damage and to elucidate the associated mechanisms. An ERS model was established in bovine granulosa cells using tunicamycin (Tm), and cellular responses were evaluated via flow cytometry, ELISA, and EdU assays. Further, a mouse model was used to validate the protective effects of GPS against Tm-induced ovarian injury. The results showed that 40 μg/mL of GPS significantly alleviated ERS-induced granulosa cell damage, inhibited necroptosis, and mitigated ERS. Moreover, using the PI3K/Akt pathway inhibitor LY294002, we demonstrated that the inhibitor antagonized the effects of GPS, indicating that GPS promotes granulosa cell proliferation and restores estrogen secretion via activating the PI3K/Akt pathway. In vivo experiments further confirmed that GPS effectively attenuates ERS-induced ovarian damage in mice. Collectively, these findings reveal that GPS improves granulosa cell function and ovarian tissue integrity by modulating the ERS network and the PI3K/Akt pathway, yielding a theoretical basis for preventing follicular atresia and enhancing reproductive efficiency in cattle. Full article
Show Figures

Figure 1

Back to TopTop