Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,172)

Search Parameters:
Keywords = mature capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 910 KiB  
Article
Antimicrobial Effect of Gentamicin/Heparin and Gentamicin/Citrate Lock Solutions on Staphylococcus aureus and Pseudomonas aeruginosa Clinical Strains
by Daniel Salas-Treviño, Arantxa N. Rodríguez-Rodríguez, María T. Ramírez-Elizondo, Magaly Padilla-Orozco, Edeer I. Montoya-Hinojosa, Paola Bocanegra-Ibarias, Samantha Flores-Treviño and Adrián Camacho-Ortiz
Infect. Dis. Rep. 2025, 17(4), 98; https://doi.org/10.3390/idr17040098 - 6 Aug 2025
Abstract
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter [...] Read more.
Background/Objectives: Hemodialysis catheter-related bloodstream infection (HD-CRBSIs) is a main cause of morbidity in hemodialysis. New preventive strategies have emerged, such as using lock solutions with antiseptic or antibiotic capacity. In this study, the antimicrobial effect was analyzed in vitro and with a catheter model of lock solutions of gentamicin (LSG), gentamicin/heparin (LSG/H), and gentamicin/citrate (LSG/C) in clinical and ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The formation, minimum inhibitory concentration, and minimum inhibitory concentration of the biofilm and minimum biofilm eradication concentration of the lock solutions were determined. Additionally, colony-forming unit assays were performed to evaluate the antimicrobial efficacy of the lock solutions in a hemodialysis catheter inoculation model. Results: The minimum inhibitory concentration (MIC) of planktonic cells of both P. aeruginosa and S. aureus for LSG/H and LSG/C was 4 µg/mL. In the minimum biofilm inhibitory concentration (MBIC) tests, the LSG/H was less effective than LSG/C, requiring higher concentrations for inhibition, contrary to the minimum biofilm eradication concentration (MBEC), where LSG/H was more effective. All lock solutions eradicated P. aeruginosa biofilms in the HD catheter model under standard conditions. Nevertheless, under modified conditions, the lock solutions were not as effective versus ATCC and clinical strains of S. aureus. Conclusions: Our analysis shows that the lock solutions studied managed to eradicate intraluminal mature P. aeruginosa in non-tunneled HD catheters under standard conditions. Biofilm inhibition and eradication were observed at low gentamicin concentrations, which could optimize the gentamicin concentration in lock solutions used in HD catheters. Full article
Show Figures

Figure 1

20 pages, 1090 KiB  
Article
Reforming Water Governance: Nordic Lessons for Southern Europe
by Eleonora Santos
Sustainability 2025, 17(15), 7079; https://doi.org/10.3390/su17157079 - 5 Aug 2025
Viewed by 85
Abstract
Water governance in Europe faces mounting challenges from climate change, demographic pressures, and aging infrastructure—especially in Southern regions increasingly affected by drought and institutional fragmentation. In contrast, Nordic countries such as Denmark and Sweden exhibit coherent, integrated governance systems with strong regulatory oversight. [...] Read more.
Water governance in Europe faces mounting challenges from climate change, demographic pressures, and aging infrastructure—especially in Southern regions increasingly affected by drought and institutional fragmentation. In contrast, Nordic countries such as Denmark and Sweden exhibit coherent, integrated governance systems with strong regulatory oversight. This study introduces the Water Governance Maturity Index (WGMI), a document-based assessment tool designed to evaluate national water governance across five dimensions: institutional capacity, operational effectiveness, environmental ambition, equity, and climate adaptation. Applying the WGMI to eight EU countries—four Nordic and four Southern—reveals a persistent North–South divide in governance maturity. Nordic countries consistently score in the “advanced” or “model” range, while Southern countries face systemic gaps in implementation, climate integration, and territorial inclusion. Based on these findings, the study offers actionable policy recommendations, including the establishment of independent regulators, strengthening of river basin coordination, mainstreaming of climate-water strategies, and expansion of affordability and participation mechanisms. By translating complex governance principles into measurable indicators, the WGMI provides a practical tool for benchmarking reform progress and supporting the EU’s broader agenda for just resilience and climate adaptation. Unlike broader frameworks like SDG 6.5.1, the WGMI’s document-based, dimension-specific approach provides granular, actionable insights for governance reform, enhancing its utility for EU and global policymakers. Full article
(This article belongs to the Special Issue Sustainability in Urban Water Resource Management)
Show Figures

Figure 1

14 pages, 1820 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 - 4 Aug 2025
Viewed by 75
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
Show Figures

Figure 1

20 pages, 462 KiB  
Article
Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles
by Ana Saldanha, Mikel Añibarro-Ortega, Adriana K. Molina, José Pinela, Maria Inês Dias and Carla Pereira
Separations 2025, 12(8), 204; https://doi.org/10.3390/separations12080204 - 2 Aug 2025
Viewed by 221
Abstract
Fistulina hepatica (Schaeff.) With. and Clitocybe nuda (Bull.) H.E. Bigelow & A.H. Sm. are wild edible mushrooms with nutritional and functional potential that remain insufficiently characterized. This study provides the first comparative assessment of their nutritional profiles, phenolic composition, and antioxidant activity, using [...] Read more.
Fistulina hepatica (Schaeff.) With. and Clitocybe nuda (Bull.) H.E. Bigelow & A.H. Sm. are wild edible mushrooms with nutritional and functional potential that remain insufficiently characterized. This study provides the first comparative assessment of their nutritional profiles, phenolic composition, and antioxidant activity, using specimens collected from Montesinho Natural Park (Portugal). Proximate composition, organic and phenolic acids, free sugars, and fatty acids were analyzed by chromatographic methods, and antioxidant capacity was assessed through OxHLIA and TBARS assays. F. hepatica showed higher carbohydrates (9.3 ± 0.2 g/100 g fw) and estimated energy values (43 ± 1 kcal/100 g fw), increased phenolic acids content (2.7 ± 0.1 mg/g extract), and the exclusive presence of p-coumaric and cinnamic acids, along with OxHLIA activity (IC50 = 126 ± 5 µg/mL at Δt = 60 min). C. nuda displayed higher protein (2.5 ± 0.1 g/100 g dw) and quinic acid contents (4.13 ± 0.02 mg/g extract), a PUFA-rich profile, and greater TBARS inhibition (EC50 = 303 ± 17 µg/mL). These findings highlight distinct and complementary bioactive traits, supporting their valorization as natural functional ingredients. Their compositional features offer promising applications in sustainable food systems and nutraceutical development, encouraging further investigations into safety, bioaccessibility, and formulation strategies. Notably, F. hepatica is best consumed at a young developmental stage, as its sensory properties tend to decline with maturity. Full article
Show Figures

Graphical abstract

20 pages, 5322 KiB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 - 31 Jul 2025
Viewed by 295
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Figure 1

27 pages, 6405 KiB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 981
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 437
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

14 pages, 4627 KiB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 568
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 464
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

23 pages, 4112 KiB  
Article
Metabolic Culture Medium Enhances Maturation of Human iPSC-Derived Cardiomyocytes via Cardiac Troponin I Isoform Induction
by Daria V. Goliusova, Agnessa P. Bogomolova, Alina V. Davidenko, Kristina A. Lavrenteva, Margarita Y. Sharikova, Elena A. Zerkalenkova, Ekaterina M. Vassina, Alexandra N. Bogomazova, Maria A. Lagarkova, Ivan A. Katrukha and Olga S. Lebedeva
Int. J. Mol. Sci. 2025, 26(15), 7248; https://doi.org/10.3390/ijms26157248 - 26 Jul 2025
Viewed by 483
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This [...] Read more.
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This study aimed to identify practical culture conditions that promote iCMs maturation, thereby generating more physiologically relevant in vitro cardiac models. We evaluated the effects of short- and long-term culture in media supplemented with various stimulatory compounds under 2D conditions, focusing on intracellular content and localization of slow skeletal troponin I (ssTnI) and cardiac troponin I (cTnI) isoforms. Our findings demonstrate that the multicomponent metabolic maturation medium (MM-1) effectively enhances the transition toward a more mature iCM phenotype, as evidenced by increased cTnI expression and formation of cross-striated myofibrils. iCMs cultured in MM-1 more closely resemble adult cardiomyocytes and are compatible with high-resolution single-cell techniques such as electron microscopy and patch-clamp electrophysiology. This work provides a practical and scalable approach for advancing the maturation of iPSC-derived cardiac models, with applications in disease modeling and drug screening. Full article
Show Figures

Figure 1

18 pages, 14270 KiB  
Article
Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors
by Zahra Khosrowpour, Nivedha Ramaswamy, Elise N. Engquist, Berkay Dincer, Alisha M. Shah, Hossam A. N. Soliman, Natalya A. Goloviznina, Peter I. Karachunski and Michael Kyba
Cells 2025, 14(15), 1150; https://doi.org/10.3390/cells14151150 - 25 Jul 2025
Viewed by 292
Abstract
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, [...] Read more.
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, although in vivo studies to date have provided only an early single-time-point snapshot. In this study, we isolated a specific population of CD82+ ERBB3+ NGFR+ cells from human iPSC-derived teratomas and verified their long-term in vivo regenerative capacity following transplantation into NSG-mdx4Cv mice. Transplanted cells engrafted, expanded, and generated human Dystrophin+ muscle fibers that increased in size over time and persisted stably long-term. A dynamic population of PAX7+ human satellite cells was established, initially expanding post-transplantation and declining moderately between 4 and 8 months as fibers matured. MyHC isoform analysis revealed a time-based shift from embryonic to neonatal and slow fiber types, indicating a slow progressive maturation of the graft. We further show that these progenitors can be cryopreserved and maintain their engraftment potential. Together, these findings give insight into the evolution of teratoma-derived human myogenic stem cell grafts, and highlight the long-term regenerative potential of teratoma-derived human skeletal myogenic progenitors. Full article
Show Figures

Figure 1

26 pages, 3318 KiB  
Article
Responses of Tomato Growth and Soil Environment Properties to Integrated Deficit Water-Biogas Slurry Application Under Indirect Subsurface Drip Irrigation
by Peng Xiang, Jian Zheng, Panpan Fan, Yan Wang and Fenyan Ma
Agriculture 2025, 15(15), 1601; https://doi.org/10.3390/agriculture15151601 - 25 Jul 2025
Viewed by 321
Abstract
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation [...] Read more.
To explore the feasibility of integrated deficit water-biogas slurry irrigation under indirect subsurface drip irrigation, three deficit irrigation levels (60%FC, 70%FC, and 80%FC; FC represents field capacity) were established during the three growth stages of tomatoes. The results indicated that biogas slurry irrigation treatments increased the soil organic matter content in the root zone and water use efficiency (WUE) and reduced soil pH. As the degree of deficit increased, the plant height and stem diameter of tomatoes decreased significantly (p < 0.05), particularly during the seedling and flowering-fruiting stages. A mild deficit during the seedling stage was beneficial for subsequent plant growth, yielding maximum leaf area (6871.42 cm2 plant−1). Moderate deficit treatment at the seedling stage maximized yield, which was 19.79% higher than the control treatment in 2020 and 19.22% higher in 2021. The WUE of severe deficit treatment at the maturity stage increased by 26.6% (2020) and 31.04% (2021) compared to the control treatment. Comprehensive evaluation using TOPSIS combined with the weighted method revealed that severe deficit treatment at the maturity stage provided the best comprehensive benefits for tomatoes. In summary, deficit irrigation at different growth stages positively influenced tomato growth, quality, and soil environment in response to water-biogas slurry irrigation. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 722 KiB  
Article
From Desalination to Governance: A Comparative Study of Water Reuse Strategies in Southern European Hospitality
by Eleonora Santos
Sustainability 2025, 17(15), 6725; https://doi.org/10.3390/su17156725 - 24 Jul 2025
Viewed by 315
Abstract
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater [...] Read more.
As climate change intensified water scarcity in Southern Europe, tourism-dependent regions such as Portugal’s Algarve faced growing pressure to adapt their water management systems. This study investigated how hotel groups in the Algarve have adopted and communicated water reuse technologies—specifically desalination and greywater recycling—under environmental, institutional, and reputational constraints. A comparative qualitative case study was conducted involving three hotel groups—Vila Vita Parc, Pestana Group, and Vila Galé—selected through purposive sampling based on organizational capacity and technology adoption stage. The analysis was supported by a supplementary mini-case from Mallorca, Spain. Publicly accessible documents, including sustainability reports, media coverage, and policy frameworks, were thematically coded using organizational environmental behavior theory and the OECD Principles on Water Governance. The results demonstrated that (1) higher organizational capacity was associated with greater maturity in water reuse implementation; (2) communication transparency increased alongside technological advancement; and (3) early-stage adopters encountered stronger financial, regulatory, and operational barriers. These findings culminated in the development of the Maturity–Communication–Governance (MCG) Framework, which elucidates how internal resources, stakeholder signaling, and institutional alignment influence sustainable infrastructure uptake. This research offered policy recommendations to scale water reuse in tourism through financial incentives, regulatory simplification, and public–private partnerships. The study contributed to the literature on sustainable tourism and decentralized climate adaptation, aligning with UN Sustainable Development Goals 6.4, 12.6, and 13. Full article
Show Figures

Figure 1

9 pages, 398 KiB  
Article
The Presence and Size of the Corpus Luteum Influence the In Vitro Production of Sheep Embryos
by Alfredo Lorenzo-Torres, Raymundo Rangel-Santos, Yuri Viridiana Bautista-Pérez and Juan González-Maldonado
Vet. Sci. 2025, 12(8), 690; https://doi.org/10.3390/vetsci12080690 - 24 Jul 2025
Viewed by 316
Abstract
The corpus luteum (CL) is a transient gland that can directly influence follicular dynamics and oocyte quality. The objective of this study was to evaluate the influence of the absence or presence of a small (≤3 mm), medium (4–8 mm), or large (>8 [...] Read more.
The corpus luteum (CL) is a transient gland that can directly influence follicular dynamics and oocyte quality. The objective of this study was to evaluate the influence of the absence or presence of a small (≤3 mm), medium (4–8 mm), or large (>8 mm) CL in slaughterhouse ovaries on in vitro embryo production. Cumulus–oocyte complexes (COCs) were collected from each group of ovaries and matured in TCM-199 medium, plus hormones and fetal bovine serum. Fertilization was performed with fresh semen from a Katahdin ram of known fertility. Embryo development was carried out in commercial sequential media for 72 and 96 h, until the blastocyst stage. The number of follicles (2–6 mm in diameter) and COCs were influenced by the presence of CL, which was higher (p < 0.05) in the Large CL group (5.51 ± 0.33 and 3.62 ± 0.27) compared to the Without CL group (4.54 ± 0.19 and 2.62 ± 0.14, respectively), with no difference between the CL sizes. Likewise, the diameter and area of the COCs were higher in the Small CL group of ovaries compared to the Without CL group. In the Large CL group of ovaries, 9% more morulae (p < 0.05) were obtained compared to the Without CL group; in the Medium CL group, 13% more blastocysts were obtained compared to the Without CL group. However, in the hatching capacity and diameter of blastocysts, no statistical difference was evident (p > 0.05). In conclusion, the presence and size of the CL in the ovaries of slaughtered sheep influence the productive efficiency of embryos in vitro under the conditions in which the present study was carried out. Full article
Show Figures

Figure 1

20 pages, 3764 KiB  
Article
Neural Progenitor Cell- and Developing Neuron-Derived Extracellular Vesicles Differentially Modulate Microglial Activation
by Tsung-Lang Chiu, Hsin-Yi Huang, Hock-Kean Liew, Hui-Fen Chang, Hsin-Rong Wu and Mei-Jen Wang
Int. J. Mol. Sci. 2025, 26(15), 7099; https://doi.org/10.3390/ijms26157099 - 23 Jul 2025
Viewed by 186
Abstract
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due [...] Read more.
The developmental processes of microglia follow a general pattern, from immature amoeboid (activated) cells to fully ramified (inactivated) surveilling microglia. However, little is known about the mechanisms controlling the transition of microglia from an activated to an inactivated state during brain development. Due to the complexity of microenvironmentally dynamic changes during neuronal differentiation, interactions between developing nerve cells and microglia might be involved in this process. Extracellular vesicles (EVs) are cell-released particles that serve as mediators of cellular crosstalk and regulation. Using neural progenitor cells (NPCs) and a long-term neuron culture system, we found that EVs derived from NPCs or developing neurons possessed differential capacity on the induction of microglial activation. The exposure of microglia to NPC- or immature neuron (DIV7)-derived EVs resulted in the higher expression of protein and mRNA of multiple inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6), when compared with mature neuron-derived EVs. Exploration of the intracellular signaling pathways revealed that MAPK signaling, IκBα phosphorylation/degradation, and NF-κB p65 nuclear translocation were strongly induced in microglia treated with NPC- or immature neuron-derived EVs. Using a pharmacological approach, we further demonstrate that Toll-like receptor (TLR) 7-mediated activation of NF-κB and MAPK signaling cascades contribute to EV-elicited microglial activation. Additionally, the application of conditioned media derived from microglia treated with NPC- or immature neuron-derived EVs is found to promote the survival of late-developing dopaminergic neurons. Thus, our results highlight a novel mechanism used by NPCs and developing neurons to modulate the developmental phases and functions of microglia through EV secretion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop