Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Mushroom Samples, Chemical and Standards
2.2. Nutritional and Chemical Composition
2.2.1. Nutritional Analysis
2.2.2. Chemical Composition
2.3. Mushroom Extracts Preparation
2.4. Analysis of Phenolic Profile
2.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Value
3.2. Chemical Composition
3.3. Phenolic Profile
3.4. Antioxidant Activity
3.5. Principal Component Analysis
4. Conclusions
- F. hepatica showed higher contents of carbohydrates, fat, ash, and energy, as well as a more diverse phenolic acid profile, including the exclusive presence of p-coumaric and cinnamic acids. It also exhibited superior antioxidant capacity in the OxHLIA assay, suggesting potential protection at the cellular membrane level;
- C. nuda stood out for its greater protein and moisture contents, significantly higher levels of quinic acid, and a lipid profile rich in polyunsaturated fatty acids. It demonstrated a stronger inhibition of lipid peroxidation in the TBARS assay;
- Principal component analysis (PCA) confirmed a clear chemical and bioactive distinction between the two species, reinforcing the importance of integrating nutritional, phytochemical, and functional data for species differentiation;
- These findings support the targeted valorization of F. hepatica in energy- and antioxidant-enriched formulations, and of C. nuda in high-protein and PUFA-rich dietary products.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saldanha, A.; Gomes, L.C.; Pinela, J.; Coimbra, M.A.; Barros, L.; Dias, M.I.; Pereira, C. Sustainable Cultivation of Edible Mushrooms: Preserving Biodiversity and Ensuring Product Quality. Biol. Life Sci. Forum 2023, 27, 6. [Google Scholar] [CrossRef]
- Machado, H.; Sapata, M.M.; Ramos, A.C.; Barrento, M.J.; Bastidas, M.; Ferreira, M.; Coelho, R.; Banza, A.; Belchior, B.; Vitorino, C.; et al. Cogumelos Em Portugal: Tradição e Novas Abordagens; Investigação Agrária e Veterinária (INIAV): Oeiras, Portugal, 2021; ISBN 9789725790564. [Google Scholar]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Singh, A.; Saini, R.K.; Kumar, A.; Chawla, P.; Kaushik, R. Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products. Foods 2025, 14, 741. [Google Scholar] [CrossRef]
- Turfan, N.; Ayan, S.; Akın, Ş.S.; Akın, E. Nutritional and Antioxidant Variability of Some Wild and Cultivated Edible Mushrooms from Kastamonu Rural Areas. Turk. J. Agric. Food Sci. Technol. 2019, 7, 11–16. [Google Scholar] [CrossRef]
- Drewinski, M.P.; Corrêa-Santos, M.P.; Lima, V.X.; Lima, F.T.; Palacio, M.; Borges, M.E.A.; Trierveiler-Pereira, L.; Magnago, A.C.; Furtado, A.N.M.; Lenz, A.R.; et al. Over 400 Food Resources from Brazil: Evidence-Based Records of Wild Edible Mushrooms. IMA Fungus 2024, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Abdalla, N.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability 2022, 14, 4941. [Google Scholar] [CrossRef]
- Boa, E.R. Wild Edible Fungi: A Global Overview of Their Use and Importance to People; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; ISBN 9251051577. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2020: Forests, Biodiversity and People; FAO and UNEP: Rome, Italy, 2020; ISBN 9789251324196. [Google Scholar]
- Thu, Z.M.; Ko Myo, K.; Aung, H.T.; Clericuzio, M.; Armijos, C.; Vidari, G. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast Asia. Molecules 2020, 25, 1972. [Google Scholar] [CrossRef]
- De, J.; Nandi, S.; Acharya, K. A Review on Blewit Mushrooms (Lepista Sp.) Transition from Farm to Pharm. J. Food Process Preserv. 2022, 46, e17028. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis; AOAC: Rockville, MD, USA, 2016.
- Chapter 2: Methods of Food Analysis. Available online: https://www.fao.org/4/y5022e/y5022e03.htm?utm_source (accessed on 18 July 2025).
- FAO. Food and Nutrition Paper 77. Food Energy-Methods of Analysis and Conversion Factors: Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October. 2011. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj/eng (accessed on 1 June 2025).
- Leichtweis, M.G.; Molina, A.K.; Dias, M.I.; Calhelha, R.C.; Pires, T.C.S.P.; Pavli, O.; Oliveira, M.B.P.P.; Petropoulos, S.A.; Barros, L.; Pereira, C. Variability in Chemical Profile and Bioactivities of the Flesh of Greek Pumpkin Landraces. Horticulturae 2023, 9, 1232. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides, L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Liava, V.; Chaski, C.; Añibarro-Ortega, M.; Pereira, A.; Pinela, J.; Barros, L.; Petropoulos, S.A. The Effect of Biostimulants on Fruit Quality of Processing Tomato Grown under Deficit Irrigation. Horticulturae 2023, 9, 1184. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelh, R.C.; Ivanov, M.; Sokovi, M.D.; Ferreira, I.C.F.R.; Barros, L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina Subsp. Mixta (DC.) Runemark. Molecules 2020, 25, 3175. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. J. Agric. Food Chem. 2012, 60, 4634–4640. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Calhelha, R.C.; Barros, L.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Synergisms in Antioxidant and Anti-Hepatocellular Carcinoma Activities of Artichoke, Milk Thistle and Borututu Syrups. Ind. Crops Prod. 2014, 52, 709–713. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical Features and Bioactivities of Cornflower (Centaurea cyanus L.) Capitula: The Blue Flowers and the Unexplored Non-Edible Part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Regulation, E.C. The European Parliament and The Council REGULATION (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, 12, 3–18. [Google Scholar]
- Ouzouni, P.K.; Petridis, D.; Koller, W.D.; Riganakos, K.A. Nutritional Value and Metal Content of Wild Edible Mushrooms Collected from West Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- Rašeta, M.; Mišković, J.; Kebert, M.; Berežni, S.; Krstić, S.; Gojgić-Cvijović, G.; Pirker, T.; Bauer, R.; Karaman, M. Mycochemical Profiles and Bioactivities of Fistulina hepatica and Volvopluteus gloiocephalus from Serbia: Antioxidant, Enzyme Inhibition, and Cytotoxic Potentials. Food Biosci. 2025, 66, 106221. [Google Scholar] [CrossRef]
- Swain, J.H.; Minisola, S.; Razzaque, M.S.; Wimalawansa, S.J. Minerals and Human Health: From Deficiency to Toxicity. Nutrients 2025, 17, 454. [Google Scholar] [CrossRef]
- Mehta, D.; Vyas, S. Comparative Bio-Accumulation of Osmoprotectants in Saline Stress Tolerating Plants: A Review. Plant Stress 2023, 9, 100177. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Li, S.; Chang, Z.; Liu, H.; Zhang, D.; Wang, S.; Zhang, X.; Wang, J. Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy. Antioxidants 2024, 13, 253. [Google Scholar] [CrossRef] [PubMed]
- Linker, R.A.; Lee, D.H.; Ryan, S.; Van Dam, A.M.; Conrad, R.; Bista, P.; Zeng, W.; Hronowsky, X.; Buko, A.; Chollate, S.; et al. Fumaric Acid Esters Exert Neuroprotective Effects in Neuroinflammation via Activation of the Nrf2 Antioxidant Pathway. Brain 2011, 134, 678–692. [Google Scholar] [CrossRef]
- Rebelo, A.; Almeida, A.; Peixe, L.; Antunes, P.; Novais, C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics 2023, 12, 1474. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, F.; Xu, Z.; Ding, Z.; Han, Q.-B.; Wang, S.; Nie, S. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules 2017, 22, 955. [Google Scholar] [CrossRef]
- Herman, K.C.; Bleichrodt, R. Go with the Flow: Mechanisms Driving Water Transport during Vegetative Growth and Fruiting. Fungal Biol. Rev. 2022, 41, 10–23. [Google Scholar] [CrossRef]
- Erbiai, E.H.; Maouni, A.; Pinto da Silva, L.; Saidi, R.; Legssyer, M.; Lamrani, Z.; Esteves da Silva, J.C.G. Antioxidant Properties, Bioactive Compounds Contents, and Chemical Characterization of Two Wild Edible Mushroom Species from Morocco: Paralepista flaccida (Sowerby) Vizzini and Lepista nuda (Bull.) Cooke. Molecules 2023, 28, 1123. [Google Scholar] [CrossRef]
- Ribeiro, G.D.; de Holanda Paranhos, L.; Eleutherio, E.C.A. Trehalose Promotes Biological Fitness of Fungi. Fungal Biol. 2024, 128, 2381–2389. [Google Scholar] [CrossRef]
- Plassard, C.; Fransson, P. Regulation of Low-Molecular Weight Organic Acid Production in Fungi. Fungal Biol. Rev. 2009, 23, 30–39. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Antimicrobial Activity of Malic Acid against Listeria Monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in Apple, Pear and Melon Juices. Food Control. 2009, 20, 105–112. [Google Scholar] [CrossRef]
- Grąz, M. Role of Oxalic Acid in Fungal and Bacterial Metabolism and Its Biotechnological Potential. World J. Microbiol. Biotechnol. 2024, 40, 178. [Google Scholar] [CrossRef]
- Ribeiro, B.; Valentão, P.; Baptista, P.; Seabra, R.M.; Andrade, P.B. Phenolic Compounds, Organic Acids Profiles and Antioxidative Properties of Beefsteak Fungus (Fistulina hepatica). Food Chem. Toxicol. 2007, 45, 1805–1813. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- Pashaei, K.H.A.; Irankhah, K.; Namkhah, Z.; Sobhani, S.R. Edible Mushrooms as an Alternative to Animal Proteins for Having a More Sustainable Diet: A Review. J. Health Popul. Nutr. 2024, 43, 205. [Google Scholar] [CrossRef]
- Tan, R.Y.; Ilham, Z.; Wan-Mohtar, W.A.A.Q.I.; Abdul Halim-Lim, S.; Ahmad Usuldin, S.R.; Ahmad, R.; Adlim, M. Mushroom Oils: A Review of Their Production, Composition, and Potential Applications. Heliyon 2024, 10, e31594. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary Linoleic Acid and Human Health: Focus on Cardiovascular and Cardiometabolic Effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective Effects of Oleic Acid and Polyphenols in Extra Virgin Olive Oil on Cardiovascular Diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Teshima, T.; Funai, R.; Nakazawa, T.; Ito, J.; Utsumi, T.; Kakumyan, P.; Mukai, H.; Yoshiga, T.; Murakami, R.; Nakagawa, K.; et al. Coprinopsis Cinerea Dioxygenase Is an Oxygenase Forming 10(S)-Hydroperoxide of Linoleic Acid, Essential for Mushroom Alcohol, 1-Octen-3-Ol, Synthesis. J. Biol. Chem. 2022, 298, 102507. [Google Scholar] [CrossRef]
- Stillwell, W. Membrane Lipids: Fatty Acids. Introd. Biol. Membr. 2013, 43–56. [Google Scholar] [CrossRef]
- Ribeiro, B.; Guedes de Pinho, P.; Andrade, P.B.; Baptista, P.; Valentão, P. Fatty Acid Composition of Wild Edible Mushrooms Species: A Comparative Study. Microchem. J. 2009, 93, 29–35. [Google Scholar] [CrossRef]
- Noël-Suberville, C.; Cruz, C.; Guinberteau, J.; Montury, M. Correlation between Fatty Acid Content and Aromatic Compound Release in Fresh Blewit (Lepista nuda). J. Agric. Food Chem. 1996, 44, 1180–1183. [Google Scholar] [CrossRef]
- Panzella, L. Natural Phenolic Compounds for Health, Food and Cosmetic Applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- ERCAN, L.; DOĞRU, M. Antioxidant and Antimicrobial Capacity of Quinic Acid. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2022, 11, 1018–1025. [Google Scholar] [CrossRef]
- Muthukaruppiah, G.; Saravanan, N. Hepatoprotective Effect of Quinic Acid Against Ethanol-Induced Liver Toxicity in Rats: Biochemical, Physiological, and Histological Insights. Uttar Pradesh J. Zool. 2025, 46, 118–133. [Google Scholar] [CrossRef]
- Xiang, Z.; Guan, H.; Zhao, X.; Xie, Q.; Xie, Z.; Cai, F.; Dang, R.; Li, M.; Wang, C. Dietary Gallic Acid as an Antioxidant: A Review of Its Food Industry Applications, Health Benefits, Bioavailability, Nano-Delivery Systems, and Drug Interactions. Food Res. Int. 2024, 180, 114068. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New Progress in the Pharmacology of Protocatechuic Acid: A Compound Ingested in Daily Foods and Herbs Frequently and Heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- My Tien Truong, T.; Jang, H.J.; Ghosh, M.; Son, Y.O.; Kang, I. P-Coumaric Acid Alleviates Skeletal Muscle Atrophy by Improving Muscular Inflammation and Mitochondrial Dysfunction in High-Fat and High-Sucrose Diet-Fed C57BL/6 Male Mice. J. Funct. Foods 2024, 112, 105979. [Google Scholar] [CrossRef]
- Li, J.; Zhao, N.; Xu, R.; Li, G.; Dong, H.; Wang, B.; Li, Z.; Fan, M.; Wei, X. Deciphering the Antibacterial Activity and Mechanism of p-Coumaric Acid against Alicyclobacillus Acidoterrestris and Its Application in Apple Juice. Int. J. Food Microbiol. 2022, 378, 109822. [Google Scholar] [CrossRef]
- Tehami, W.; Nani, A.; Khan, N.A.; Hichami, A. New Insights Into the Anticancer Effects of p-Coumaric Acid: Focus on Colorectal Cancer. Dose-Response 2023, 21, 15593258221150704. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Alboghobeish, S.; Ahangarpour, A. Effects of Cinnamic Acid on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Korean J. Physiol. Pharmacol. 2018, 22, 257. [Google Scholar] [CrossRef]
- De Gaetano, F.; Leggio, L.; Celesti, C.; Genovese, F.; Falcone, M.; Giofrè, S.V.; Iraci, N.; Iraci, N.; Ventura, C.A. Study of Host-Guest Interaction and In Vitro Neuroprotective Potential of Cinnamic Acid/Randomly Methylated β-Cyclodextrin Inclusion Complex. Int. J. Mol. Sci. 2024, 25, 12778. [Google Scholar] [CrossRef]
- Rugolo, M.; Mascoloti Spréa, R.; Dias, M.I.; Pires, T.C.S.P.; Añibarro-Ortega, M.; Barroetaveña, C.; Caleja, C.; Barros, L. Nutritional Composition and Bioactive Properties of Wild Edible Mushrooms from Native Nothofagus Patagonian Forests. Foods 2022, 11, 3516. [Google Scholar] [CrossRef]
F. hepatica | C. nuda | |
---|---|---|
Moisture (g/100 g fw) | 88 ± 1 b | 94 ± 1 a |
Proteins (g/100 g fw) | 1.22 ± 0.05 b | 2.5 ± 0.1 a |
Ash (g/100 g fw) | 1.01 ± 0.01 a | 0.60 ± 0.01 b |
Crude fat (g/100 g fw) | 0.143 ± 0.002 a | 0.094 ± 0.001 b |
Available carbohydrates (g/100 g fw) | 9.3 ± 0.2 a | 2.1 ± 0.1 b |
Energy (kcal/100 g) | 43 ± 1 a | 19.3 ± 0.7 b |
Fructose (mg/100 g fw) | 1.79 ± 0.03 | - |
Mannitol (mg/100 g fw) | 0.032 ± 0.003 a | 0.018 ± 0.002 b |
Trehalose (mg/100 g fw) | 0.16 ± 0.01 b | 0.237 ± 0.002 a |
Σ Free sugars (mg/100 g fw) | 1.98 ± 0.05 a | 0.26 ± 0.1 b |
Oxalic acid (mg/100 g fw) | 19.4 ± 0.7 a | 18.0 ± 0.2 b |
Malic acid (mg/100 g fw) | 608 ± 2 | - |
Fumaric acid (μg/100 g fw) | 152.6 ± 0.2 | 102.6 ± 0.2 |
Σ Organic acids (mg/100 g fw) | 627 ± 3 a | 18.0 ± 0.2 b |
Fatty Acid (%, Relative Percentage) | F. hepatica | C. nuda |
---|---|---|
C6:0 | nd | 0.382 ± 0.006 |
C8:0 | nd | 0.10 ± 0.02 |
C10:0 | nd | 0.134 ± 0.009 |
C12:0 | 0.87 ± 0.04 a | 0.178 ± 0.003 b |
C14:0 | 2.5 ± 0.2 a | 0.60 ± 0.03 b |
C14:1 | 0.083 ± 0.004 a | 0.057 ± 0.001 b |
C15:0 | 0.29 ± 0.04 a | 0.303 ± 0.004 a |
C15:1 | nd | 0.012 ± 0.003 |
C16:0 | 19.7 ± 0.2 a | 15.1 ± 0.1 b |
C16:1 | 1.6 ± 0.2 a | 0.865 ± 0.004 b |
C17:0 | 0.180 ± 0.003 a | 0.071 ± 0.001 b |
C18:0 | 5.8 ± 0.5 a | 1.84 ± 0.04 b |
C18:1n-9 | 36.4 ± 0.7 b | 44.5 ± 0.4 a |
C18:2n-6 | 29.7 ± 0.9 b | 33.038 ± 0.001 a |
C18:3n-3 | 2.3 ± 0.3 a | 0.482 ± 0.002 b |
C20:0 | 0.45 ± 0.04 a | 0.25 ± 0.01 b |
C20:1 | nd | 0.145 ± 0.002 |
C20:2 | nd | 0.029 ± 0.006 |
C21:0 | nd | 0.17 ± 0.03 |
C20:3n-6 | nd | 0.118 ± 0.002 |
C22:0 | nd | 0.29 ± 0.03 |
C24:0 | nd | 0.36 ± 0.03 |
C24:1 | nd | 0.655 ± 0.005 |
Fatty Acid Class | ||
SFA | 29.8 ± 0.8 a | 19.81 ± 0.07 b |
MUFA | 1.7 ± 0.2 a | 1.732 ± 0.006 a |
PUFA | 69 ± 1 b | 78.2 ± 0.4 a |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Compound | Identification | Content (mg/g Extract) | |
---|---|---|---|---|---|---|---|---|
F. hepatica | C. nuda | |||||||
1 | 4.53 | 193 | 191 | 111(100); 173(18) | Quinic acid | MS/DAD | 0.818 ± 0.001 b | 4.13 ± 0.02 a |
2 | 5.51 | 280 | 169 | 125(100) | Gallic acid | STD | 1.103 ± 0.006 a | 0.858 ± 0.06 b |
3 | 6.26 | 259 | 153 | 109(100) | Protocatechuic acid | STD | 0.97 ± 0.09 a | 0.829 ± 0.005 b |
4 | 16.41 | 310 | 163 | 145(100); 119(17) | p-Coumaric acid | STD | 0.493 ± 0.006 | nd |
5 | 24.72 | 284 | 147 | 119(100) | Cinnamic acid | STD | 0.112 ± 0.002 | nd |
Σ Organic acids | 0.818 ± 0.001 b | 4.13 ± 0.02 a | ||||||
Σ Phenolic acids | 2.7 ± 0.1 a | 1.69 ± 0.04 b |
F. hepatica | C. nuda | Positive Control | |
---|---|---|---|
Antioxidant activity | Trolox | ||
OxHLIA (IC50, μg/mL), Δt 60 min | 126 ± 5 b | 182 ± 6 c | 21.5 ± 0.2 a |
TBARS formation inhibition (EC50, μg/mL) | 555 ± 29 c | 303 ± 17 b | 139 ± 5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldanha, A.; Añibarro-Ortega, M.; Molina, A.K.; Pinela, J.; Dias, M.I.; Pereira, C. Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles. Separations 2025, 12, 204. https://doi.org/10.3390/separations12080204
Saldanha A, Añibarro-Ortega M, Molina AK, Pinela J, Dias MI, Pereira C. Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles. Separations. 2025; 12(8):204. https://doi.org/10.3390/separations12080204
Chicago/Turabian StyleSaldanha, Ana, Mikel Añibarro-Ortega, Adriana K. Molina, José Pinela, Maria Inês Dias, and Carla Pereira. 2025. "Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles" Separations 12, no. 8: 204. https://doi.org/10.3390/separations12080204
APA StyleSaldanha, A., Añibarro-Ortega, M., Molina, A. K., Pinela, J., Dias, M. I., & Pereira, C. (2025). Chromatographic and Chemometric Characterization of the Two Wild Edible Mushrooms Fistulina hepatica and Clitocybe nuda: Insights into Nutritional, Phenolic, and Antioxidant Profiles. Separations, 12(8), 204. https://doi.org/10.3390/separations12080204