Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,270)

Search Parameters:
Keywords = low-melting materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4013 KiB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 3697 KiB  
Article
Investigating the Behavior of a Natural Emulsifier in One-Pot and Standard Cosmetic Emulsions
by Mauro Battaiotto, Paolo Sonzini, Simone Conti, Miryam Chiara Malacarne and Enrico Caruso
Cosmetics 2025, 12(4), 164; https://doi.org/10.3390/cosmetics12040164 - 5 Aug 2025
Abstract
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form [...] Read more.
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form emulsions, which are among the main cosmetic formulations. An important aspect in this regard is the evaluation of emulsions’ stability over time and emulsions’ production methodology. In this paper, a comparison is made between two emulsion production technologies, the Standard and the “One-Pot” methods, through the characterization of the raw material ABWAX® Revomul, a multifunctional wax for cosmetic use which consists of a low-melting structuring wax of vegetal origin (Rhus wax) and a natural emulsifier (Polyglyceril-3 Stearate). First, we evaluated the affinity between the wax raw materials and emollients of different chemical nature; then, we analyzed the impact of the production method on the emulsions to identify similarities and differences. ABWAX® Revomul demonstrated a high level of effectiveness in regard to stabilizing water-in-oil emulsions. This study suggests that from an industrial point of view, the application of the two procedures allows products with different characteristics to be obtained, consequently allowing a specific method to be chosen to obtain the desired product. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

18 pages, 3972 KiB  
Article
The Influence of Halloysite Clay on the Properties of the Polybutylene Succinate (PBS)/Sawdust, PBS/Sugarcane Bagasse, and PBS/Sawdust/Sugarcane Bagasse Hybrid Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Mpho Phillip Motloung, Tladi Gideon Mofokeng and Mokgaotsa Jonas Mochane
Polymers 2025, 17(15), 2120; https://doi.org/10.3390/polym17152120 - 31 Jul 2025
Viewed by 262
Abstract
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) [...] Read more.
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) on the properties of PBS/SD and PBS/SB binary and PBS/SB/SD hybrid composites. The morphological analysis indicated poor interfacial adhesion between PBS and the fibres. The obtained findings indicated enhancements in the complex viscosity of PBS in the presence of natural fibres, and further improvements in the presence of HS and EG. The stiffness of PBS hybrid composites also increased upon the addition of HS and EG. Moreover, the crystallization temperatures of PBS increased in the presence of fillers, with EG showing better nucleation efficiency. However, the mechanical properties (toughness and impact resilience) decreased due to the increased stiffness of the composites and the poor interfacial adhesion between the matrix and the fillers, indicating the need to pre-treat the fibres to enhance compatibility. Overall, the material properties of PBS/SD/SB hybrid composites were enhanced by incorporating HS and EG at low concentrations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 4836 KiB  
Article
Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing
by Deepak Gadde, Alaa Elwany and Yang Du
Metals 2025, 15(8), 840; https://doi.org/10.3390/met15080840 - 28 Jul 2025
Viewed by 440
Abstract
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, [...] Read more.
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, four deep learning algorithms are applied: YOLOv5, Fast R-CNN, RetinaNet, and EfficientDet. They are trained by the recorded videos to learn and extract information on spatter and melt pool behavior during the laser powder bed fusion process. The well-trained models achieved high accuracy and low loss, demonstrating strong capability in accurately detecting and tracking spatter and melt pool dynamics. A stability index is proposed and calculated based on the melt pool length change rate. Greater index value reflects a more stable melt pool. We found that more spatters were detected for the unstable melt pool, while fewer spatters were found for the stable melt pool. The spatter’s size can affect its initial ejection speed, and large spatters are ejected slowly while small spatters are ejected rapidly. In addition, more than 58% of detected spatters have their initial ejection angle in the range of 60–120°. These findings provide a better understanding of spatter and melt pool dynamics and behavior, uncover the influence of melt pool stability on spatter formation, and demonstrate the correlation between the spatter size and its initial ejection speed. This work will contribute to the extraction of important information from high-speed recorded videos for additive manufacturing to reduce waste, lower cost, enhance part quality, and increase process reliability. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 291
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

15 pages, 8311 KiB  
Article
Enhanced Heat Transfer of 1-Octadecanol Phase-Change Materials Using Carbon Nanotubes
by Xiuli Wang, Qingmeng Wang, Xiaomin Cheng, Yi Yang, Xiaolan Chen and Qianju Cheng
Molecules 2025, 30(15), 3075; https://doi.org/10.3390/molecules30153075 - 23 Jul 2025
Viewed by 225
Abstract
Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid [...] Read more.
Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition–structure–performance of the CPCMs was established. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

23 pages, 3187 KiB  
Article
Elastocaloric Performance of Natural Rubber: The Role of Nanoclay Addition
by Marica Bianchi, Luca Fambri, Mauro Bortolotti, Alessandro Pegoretti and Andrea Dorigato
Molecules 2025, 30(14), 3035; https://doi.org/10.3390/molecules30143035 - 19 Jul 2025
Viewed by 318
Abstract
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under [...] Read more.
This work investigates the effect of nanoclay addition—specifically natural montmorillonite (MMT) and organo-modified montmorillonite (O-MMT)—on the elastocaloric performance of natural rubber (NR), a promising material for solid-state cooling due to its non-toxicity, low cost, and ability to exhibit large adiabatic temperature changes under moderate stress (~a few MPa). Despite these advantages, the cooling efficiency of NR remains lower than that of conventional vapor-compression systems. Therefore, improving the cooling capacity of NR is essential for the development of solid-state cooling technologies competitive with existing ones. To address this, two series of NR-based nanocomposites, containing 1, 3, and 5 phr nanofiller, were prepared by melt compounding and hot pressing and characterized in terms of morphology, thermal, mechanical, and elastocaloric properties. The results highlighted that the better dispersion of the organoclays within the rubber matrix promoted not only a better mechanical behavior (in terms of stiffness and strength), but also a significantly enhanced cooling performance compared to MMT nanofilled systems. Moreover, NR/O-MMT samples demonstrated up to a ~45% increase in heat extracted per refrigeration cycle compared to the unfilled NR, with a coefficient of performance (COP) up to 3, approaching the COP of conventional vapor-compression systems, typically ranging between 3 and 6. The heat extracted per refrigeration cycle of NR/O-MMT systems resulted in approx. 16 J/cm3, higher with respect to the values reported in the literature for NR-based systems (ranging between 5 and 12 J/cm3). These findings emphasize the potential of organoclays in enhancing the refrigeration potential of NR for novel state cooling applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 6762 KiB  
Article
Influence of Annealing on the Properties of Fe62Ni18P13C7 Alloy
by Aleksandra Małachowska, Łukasz Szczepański, Andrzej Żak, Anna Kuś, Łukasz Żrodowski, Łukasz Maj and Wirginia Pilarczyk
Materials 2025, 18(14), 3376; https://doi.org/10.3390/ma18143376 - 18 Jul 2025
Viewed by 278
Abstract
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness [...] Read more.
In this study, the influence of annealing on the phase evolution and mechanical properties of the Fe62Ni18P13C7 (at.%) alloy was investigated. Ribbons produced via melt-spinning were annealed at various temperatures, and their structural transformations and hardness were evaluated. The alloy exhibited a narrow supercooled liquid region (ΔTx ≈ 22 °C), confirming its low glass-forming ability (GFA). Primary crystallization began at approximately 380 °C with the formation of α-(Fe,Ni) and Fe2NiP, followed by the emergence of γ-(Fe,Ni) phase at higher temperatures. A significant increase in hardness was observed after annealing up to 415 °C, primarily due to nanocrystallization and phosphide precipitation. Further heating resulted in a hardness plateau, followed by a noticeable decline. Additionally, samples were produced via selective laser melting (SLM). The microstructure of the SLM-processed material revealed extensive cracking and the coexistence of phosphorus-rich regions corresponding to Fe2NiP and iron-rich regions associated with γ-(Fe,Ni). Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

15 pages, 3375 KiB  
Article
Mechanical Property and Microcellular Foamability of iPP/PA11/PP-g-MAH Blends
by Bosi Liu, Yangzheng Wang, Jingke Pei, Qiongdan Fan, Kun Li, Lele Li and Xiaoli Zhang
Polymers 2025, 17(14), 1952; https://doi.org/10.3390/polym17141952 - 16 Jul 2025
Viewed by 248
Abstract
To improve the mechanical property and foamability of linear structured isotactic polypropylene (iPP), a second phase of polyamide11 (PA11) was introduced to the iPP matrix, and a low contented PP-g-MAH was added to adjust their compatibility. As a result, a high impact strength [...] Read more.
To improve the mechanical property and foamability of linear structured isotactic polypropylene (iPP), a second phase of polyamide11 (PA11) was introduced to the iPP matrix, and a low contented PP-g-MAH was added to adjust their compatibility. As a result, a high impact strength of 8.43 kJ/m2 (a 118% increase compared to that of iPP) and an elongation at break of 465.87% (a 130% increase compared to that of iPP) of the compounded iPP/20PA11/10PP-g-MAH were achieved, which was attributed to the PA11 being well distributed in the iPP matrix and to the compatibility enhancement by PP-g-MAH. Depending on a suitable material formulation and a bath foaming strategic design, microcellular cells with an average size from 204.8 to 5.9 μm and a cell density from 6.0 × 106 to 6.5 × 109 cells/cm3 were obtained. Due to the significant enhancement of melt strength by partially melted crystals, combined with the synergistic effect of PA11, a quiet high expansion ratio of up to 37.9 was achieved. These manufactured foams have potential applications in packaging, thermal insulation, and other industrial fields. Full article
(This article belongs to the Special Issue Porous Polymers: Preparation, Characterization and Applications)
Show Figures

Graphical abstract

25 pages, 6536 KiB  
Article
Ni20/PTFE Composite Coating Material and the Synergistic Friction Reduction and Wear Resistance Mechanism Under Multiple Working Conditions
by Xiyao Liu, Ye Wang, Zengfei Guo, Xuliang Liu, Lejia Qin and Zhiwei Lu
Coatings 2025, 15(7), 830; https://doi.org/10.3390/coatings15070830 - 16 Jul 2025
Viewed by 211
Abstract
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, [...] Read more.
The design of friction materials with integrated friction reduction and wear resistance functions has been a research challenge for many researchers and scholars, based on this problem, this paper proposes a nickel-based hard-soft composite coating structure. With 20CrMo steel as the matrix material, Ni20 powder doped with reinforced phase WC as hard coating material, using laser melting technology to prepare nickel-based hard coating on the surface of 20CrMo. PTFE emulsion and MoS2 as a soft coating are prepared on the hard coating, and the nickel-based hard-soft composite coating is formed. At 6N-0.3 m/s, the new interface structure obtains the optimum tribological performance, and compared to 20CrMo, the friction coefficient and wear amount are reduced by 83% and 93% respectively. The new friction interface can obtain stable and prominent tribological properties at wide load and low to high speed, which can provide the guidance on the structural design of friction reduction and wear resistance materials. Full article
Show Figures

Figure 1

16 pages, 5637 KiB  
Article
Optimizing High-Al2O3 Limonite Pellet Performance: The Critical Role of Basicity in Consolidation and Reduction
by Yufeng Guo, Yixi Zhang, Feng Chen, Shuai Wang, Lingzhi Yang, Yanqin Xie and Xinyao Xia
Metals 2025, 15(7), 801; https://doi.org/10.3390/met15070801 - 16 Jul 2025
Viewed by 260
Abstract
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material [...] Read more.
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material sources. However, producing qualified pellets from limonite and other low-grade iron ores remains highly challenging. This study investigates the mechanism by which basicity affects the consolidation and reduction behavior of high-Al2O3 limonite pellets from a thermodynamic perspective. As the binary basicity of the pellets increased from 0.01 under natural conditions to 1.2, the compressive strength of the roasted pellets increased from 1100 N/P to 5200 N/P. The enhancement in basicity led to an increase in the amount of low-melting-point calcium ferrite in the binding phase, which increased the liquid phase in the pellets, thereby strengthening the consolidation. CaO infiltrated into large-sized iron particles and reacted with Al and Si elements, segregating the contiguous large-sized iron particles and encapsulating them with liquid-phase calcium ferrite. Calcium oxide reacts with the Al and Si elements in large hematite particles, segmenting them and forming liquid calcium ferrite that encapsulates the particles. Additionally, this study used thermodynamic analysis to characterize the influence of CaO on aluminum elements in high-aluminum iron ore pellets. Adding CaO boosted the liquid phase’s ability to incorporate aluminum, lessening the inhibition by high-melting-point aluminum elements of hematite recrystallization. During the reduction process, pellets with high basicity exhibited superior reduction performance. Full article
Show Figures

Graphical abstract

44 pages, 14734 KiB  
Article
Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys
by Xiaomi Chen, Kun Liu, Quan Liu, Jing Kong, Valentino A. M. Cristino, Kin-Ho Lo, Zhengchao Xie, Zhi Wang, Dongfu Song and Chi-Tat Kwok
Materials 2025, 18(14), 3306; https://doi.org/10.3390/ma18143306 - 14 Jul 2025
Viewed by 431
Abstract
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different [...] Read more.
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different Zn contents (0, 3.4, 6.5, and 8.3 wt%) were friction stir welded (FSWed) at a translational speed of 200 mm/min and a rotational speed of 800 rpm. These parameters were chosen based on the observations of visually sound welds, defect-free and fine-grained microstructures, homogeneous secondary phase distribution, and low roughness. Zn can affect the microstructure of Al-Si-Mg-Fe-Zn alloys, including the grain size and the content of secondary phases, leading to different mechanical and corrosion behavior. Adding different Zn contents with Mg forms the various amount of MgZn2, which has a significant strengthening effect on the alloys. Softening observed in the weld zones of the alloys with 0, 3.4, and 6.5 wt% Zn is primarily attributed to the reduction in Kernel Average Misorientation (KAM) and a decrease in the Si phase and MgZn2. Consequently, the mechanical strengths of the FSWed joints are lower as compared to the base material. Conversely, the FSWed alloy with 8.3 wt% Zn exhibited enhanced mechanical properties, with hardness of 116.3 HV0.2, yield strength (YS) of 184.4 MPa, ultimate tensile strength (UTS) of 226.9 MP, percent elongation (EL%) of 1.78%, and a strength coefficient exceeding 100%, indicating that the joint retains the strength of the as-cast one, due to refined grains and more uniformly dispersed secondary phases. The highest corrosion resistance of the FSWed alloy with 6.5%Zn is due to the smallest grain size and KAM, without MgZn2 and the highest percentage of {111} texture (24.8%). Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

17 pages, 4663 KiB  
Article
Low-Cycle Fatigue Behavior of Nuclear-Grade Austenitic Stainless Steel Fabricated by Additive Manufacturing
by Jianhui Shi, Huiqiang Liu, Zhengping Liu, Runzhong Wang, Huanchun Wu, Haitao Dong, Xinming Meng and Min Yu
Crystals 2025, 15(7), 644; https://doi.org/10.3390/cryst15070644 - 13 Jul 2025
Viewed by 333
Abstract
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy [...] Read more.
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM), including additive manufactured (AM) and forged materials. The results showed that the microstructure of the AM material exhibited anisotropy for the X, Y, and Z directions. The tensile and impact properties of the X, Y, and Z directions in AM material were similar. The fatigue life (Nf) of X- and Y-direction specimens was better than that of Z-direction specimens. The tensile, impact, and fatigue properties of all AM materials were lower than those of the forged specimens. The Z direction specimens of AM material showed the best plastic strain by the highest transition fatigue life (NT) during the fatigue strain amplitude at 0.3% to 0.6%. The forged specimens showed the best fatigue properties under the plastic strain amplitude control mode. Fatigue fracture surfaces of AM and forged materials exhibited multi- and single-fatigue crack initiation sites, respectively. This could be attributed to the presence of incompletely melted particles and manufacturing defects inside the AM specimens. The dislocation morphology of AM and forged fatigue specimens was observed to study the low-cycle fatigue behaviors in depth. Full article
Show Figures

Figure 1

27 pages, 18408 KiB  
Article
Optimizing Al7072 Grooved Joints After Gas Tungsten Arc Welding
by Wei Guo, Qinwei Yu, Pengshen Zhang, Shunjie Yao, Hui Wang and Hongliang Li
Metals 2025, 15(7), 767; https://doi.org/10.3390/met15070767 - 8 Jul 2025
Viewed by 212
Abstract
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove [...] Read more.
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove parameters via the Box-Behnken Response Surface Methodology. The focus is on improving tensile strength and penetration depth by analyzing the effects of groove angle, root face width, and root gap. The results show that groove angle most significantly affects tensile strength and penetration depth. Hardness profiles exhibit a W-shape, with base material hardness decreasing and weld zone hardness increasing as groove angle rises. Root face width reduces hardness fluctuation in the weld zone, and an appropriate root gap compensates for thermal expansion, enhancing joint performance. The interaction between root face width and root gap most impacts tensile strength, while groove angle and root face width interaction most affects penetration depth. The optimal welding parameters for 7xxx aluminum alloy GTAW are a groove angle of 70.8°, root face width of 1.38 mm, and root gap of 0 mm. This results in a tensile strength of 297.95 MPa and penetration depth of 5 mm, a 90.38% increase in tensile strength compared to the RSM experimental worst group. Microstructural analysis reveals the presence of β-Mg2Si and η-MgZn2 strengthening phases, which contribute to the material’s enhanced mechanical properties. Fracture surface examination exhibits characteristic ductile fracture features, including dimples and shear lips, confirming the material’s high ductility. The coexistence of these strengthening phases and ductile fracture behavior indicates excellent overall mechanical performance, balancing strength and plasticity. Full article
Show Figures

Figure 1

28 pages, 11235 KiB  
Article
Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)
by Shuai Yuan, Qiwei Wang, Bowen Zhang, Xiaoping Gong and Chunmei Su
Minerals 2025, 15(7), 710; https://doi.org/10.3390/min15070710 - 3 Jul 2025
Viewed by 584
Abstract
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon [...] Read more.
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon U-Pb ages of the Kamusite, Laoyaquan, and Beilekuduke plutons are 315.1 ± 3.4 Ma, 313.6 ± 2.9 Ma, and 316.5 ± 4.6 Ma, respectively. The plutons have high silica (SiO2 = 75.53%–77.85%), potassium (K2O = 4.43%–5.42%), and alkalis (K2O + Na2O = 8.17%–8.90%) contents and low ferroan (Fe2O3T = 0.90%–1.48%), calcium, and magnesium contents and are classified as metaluminous–peraluminous, high-potassium, calc-alkaline iron granite. The rocks are enriched in Rb, Th, U, K, Pb, and Sn and strongly depleted in Ba, Sr, P, Eu, and Ti. They have strongly negative Eu anomalies (δEu = 0.01–0.05), 10,000 Ga/Al = 2.87–4.91 (>2.6), showing the geochemical characteristics of A-type granite. The zircon U/Pb ratios indicate that the above granites should be I- or A-type granite, which is generally formed under high-temperature (768–843 °C), low-pressure, and reducing magma conditions. The high Rb/Sr ratio (a mean of 48 > 1.2) and low K/Rb ratio (53.93–169.94) indicate that the tin-bearing plutons have undergone high differentiation. The positive whole-rock εNd(t) values (3.99–5.54) and the relatively young Nd T2DM model ages (616–455 Ma) suggest the magma is derived from partially melted juvenile crust, and the underplating of basic magma containing mantle materials that affected the source area. The results indicate the KGB was formed in the tectonic transition period in the late Carboniferous subduction post-collision environment. Orogenic compression influenced the tin-bearing plutons in the western part of the KGB, forming highly differentiated and reduced I, A-type transition granite. An extensional environment affected the plutons in the eastern sections, creating A-type granite with dark enclaves that suggest magma mixing with little evidence of tin mineralization. Full article
Show Figures

Figure 1

Back to TopTop