Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Laser Powder Bed Fusion Experimental Setup with High-Speed Camera
2.2. Deep Learning Algorithms for Image Analysis
2.2.1. Dataset Preparation and Labelling
2.2.2. Four Deep Learning (DL) Algorithms for Detection
- (1)
- Algorithm 1: YOLOv5
- (2)
- Algorithm 2: Fast R-CNN
- (3)
- Algorithm 3: RetinaNet
- (4)
- Algorithm 4: EfficientDet
2.2.3. Spatter and Melt Pool Tracking Mechanism
2.2.4. Post-Processing for Spatter and Melt Pool Information Extraction
3. Results and Discussion
3.1. Deep Learning Algorithms’ Performance in Detection and Tracking
3.2. Melt Pool and Spatter Tracking and Detection
3.3. Spatter Formation and Amount
3.4. Spatter Initial Ejection Angle
3.5. Spatter Initial Ejection Speed
3.6. Melt Pool Geometry and Stability
3.7. Correlation Between Melt Pool Stability and Spatters
4. Conclusions
- (1)
- The stability of the melt pool is quantified by the stability index based on the melt pool length change rate. A stable melt pool shows a high stability index, indicating small fluctuations, whereas an unstable melt pool is characterized by a small stability index, reflecting a great variability.
- (2)
- Melt pool stability significantly affects the spatter formation. More spatters are detected for the LPBF process with unstable melt pools, whereas stable melt pools generate fewer spatters.
- (3)
- Ejected spatters exhibit a broad range of sizes, and their initial ejection velocity is strongly influenced by this variation. Large spatters tend to be ejected slowly, while small ones are expelled from the melt pool rapidly.
- (4)
- The initial ejection angle of spatters is defined within a range of −180 to 180. Our results reveal that over 58% of all detected spatters are ejected within the specific range of 60° to 120°, indicating a highly susceptible region within the melt pool and a pronounced spatter initial ejection direction.
- (5)
- Among four deep learning algorithms, YOLOv5 offers the shortest training time with acceptable accuracy, while RetinaNet provides the highest accuracy at the cost of longer training time. Faster R-CNN and EfficientDet are less optimal.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, T.; DebRoy, T. Theory and Practice of Additive Manufacturing; John Wiley & Sons: Hoboken, NJ, USA, 2023; Available online: https://www.wiley.com/en-us/Theory+and+Practice+of+Additive+Manufacturing-p-9781394202270 (accessed on 23 June 2025).
- Tan, C.; Li, R.; Su, J.; Du, D.; Du, Y.; Attard, B.; Chew, Y.; Zhang, H.; Lavernia, E.J.; Fautrelle, Y.; et al. Review on field assisted metal additive manufacturing. Int. J. Mach. Tools Manuf. 2023, 189, 104032. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.D.; De, A.; Zhang, W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Grasso, M.; Colosimo, B.M. Process defects and in situ monitoring methods in metal powder bed fusion: A review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef]
- Young, Z.A.; Guo, Q.; Parab, N.D.; Zhao, C.; Qu, M.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Sun, T.; Chen, L. Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process. Addit. Manuf. 2020, 36, 101438. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Yin, J.; Li, Y.; Nie, Z.; Li, X.; You, D.; Guan, K.; Duan, W.; Cao, L.; et al. A review of spatter in laser powder bed fusion additive manufacturing: In situ detection, generation, effects, and countermeasures. Micromachines 2022, 13, 1366. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Martin, A.A.; Lee, J.R.; Guss, G.; Calta, N.P.; Hammons, J.A.; Nielsen, M.H.; Chaput, K.; Schwalbach, E.; Shah, M.N.; et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 2020, 368, 660–665. [Google Scholar] [CrossRef]
- Patel, S.; Chen, H.; Vlasea, M.; Zou, Y. The influence of beam focus during laser powder bed fusion of a high reflectivity aluminium alloy-AlSi10Mg. Addit. Manuf. 2022, 59, 103112. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.; Liao, W.; MacDonald, E.; Wei, H.; Zhang, C.; Chen, X.; Zhang, K. Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. J. Alloys Compd. 2020, 849, 156300. [Google Scholar] [CrossRef]
- Du, Y.; Pestka, S.A.; Elwany, A. Control of spatter due to liquid metal expulsion in additive manufacturing. Addit. Manuf. 2025, 104, 104773. [Google Scholar] [CrossRef]
- Gobert, C.; Diewald, E.; Beuth, J.L. Spatter detection and tracking in high-speed video observations of laser powder bed fusion. Rapid Prototyp. J. 2025, 31, 393–408. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H.; Lang, L.; Gong, S.; Ge, Y. Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing. J. Manuf. Process. 2018, 36, 60–67. [Google Scholar] [CrossRef]
- Repossini, G.; Laguzza, V.; Grasso, M.; Colosimo, B.M. On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion. Addit. Manuf. 2017, 16, 35–48. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Escano, L.I.; Young, Z.; Xiong, L.; Fezzaa, K.; Everhart, W.; Brown, B.; Sun, T.; Chen, L. Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Mater. 2018, 151, 169–180. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Z.; Yan, Z.; Su, N.; Li, K.; Shi, G.; Wei, B.; Yang, G. In-situ X-ray imaging reveals the effect of spatter on single melt track at high layer thickness during laser powder bed melting. Opt. Laser Technol. 2025, 187, 112717. [Google Scholar] [CrossRef]
- Yakout, M.; Phillips, I.; Elbestawi, M.A.; Fang, Q. In-situ monitoring and detection of spatter agglomeration and delamination during laser-based powder bed fusion of Invar 36. Opt. Laser Technol. 2021, 136, 106741. [Google Scholar] [CrossRef]
- Zhang, H.; Vallabh, C.K.P.; Zhao, X. Influence of spattering on in-process layer surface roughness during laser powder bed fusion. J. Manuf. Process. 2023, 104, 289–306. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Paoletti, P.; Sutcliffe, C.; Dardis, J.; Jones, N.; Green, P.L. Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. Prog. Addit. Manuf. 2022, 7, 143–160. [Google Scholar] [CrossRef]
- Taherkhani, K.; Sheydaeian, E.; Eischer, C.; Otto, M.; Toyserkani, E. Development of a defect-detection platform using photodiode signals collected from the melt pool of laser powder-bed fusion. Addit. Manuf. 2021, 46, 102152. [Google Scholar] [CrossRef]
- Yin, J.; Wang, D.; Yang, L.; Wei, H.; Dong, P.; Ke, L.; Wang, G.; Zhu, H.; Zeng, X. Correlation between forming quality and spatter dynamics in laser powder bed fusion. Addit. Manuf. 2020, 31, 100958. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps: Automation of Decision Making; Springer: Berlin/Heidelberg, Germany, 2017; pp. 323–350. [Google Scholar] [CrossRef]
- Du, Y.; Mukherjee, T.; DebRoy, T. Conditions for void formation in friction stir welding from machine learning. Npj Comput. Mater. 2019, 5, 68. [Google Scholar] [CrossRef]
- Scime, L.; Beuth, J. Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 2019, 25, 151–165. [Google Scholar] [CrossRef]
- Yuan, B.; Guss, G.M.; Wilson, A.C.; Hau-Riege, S.P.; DePond, P.J.; McMains, S.; Matthews, M.J.; Giera, B. Machine-learning-based monitoring of laser powder bed fusion. Adv. Mater. Technol. 2018, 3, 1800136. [Google Scholar] [CrossRef]
- Okaro, I.A.; Jayasinghe, S.; Sutcliffe, C.; Black, K.; Paoletti, P.; Green, P.L. Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning. Addit. Manuf. 2019, 27, 42–53. [Google Scholar] [CrossRef]
- Feng, S.; Chen, Z.; Bircher, B.; Ji, Z.; Nyborg, L.; Bigot, S. Predicting laser powder bed fusion defects through in-process monitoring data and machine learning. Mater. Des. 2022, 222, 111115. [Google Scholar] [CrossRef]
- Estalaki, S.M.; Lough, C.S.; Landers, R.G.; Kinzel, E.C.; Luo, T. Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning. Addit. Manuf. 2022, 58, 103008. [Google Scholar] [CrossRef]
- Du, Y.; Mukherjee, T.; DebRoy, T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Appl. Mater. Today 2021, 24, 101123. [Google Scholar] [CrossRef]
- Pandiyan, V.; Masinelli, G.; Claire, N.; Le-Quang, T.; Hamidi-Nasab, M.; de Formanoir, C.; Esmaeilzadeh, R.; Goel, S.; Marone, F.; Logé, R.; et al. Deep learning-based monitoring of laser powder bed fusion process on variable time-scales using heterogeneous sensing and operando X-ray radiography guidance. Addit. Manuf. 2022, 58, 103007. [Google Scholar] [CrossRef]
- Gaikwad, A.; Williams, R.J.; de Winton, H.; Bevans, B.D.; Smoqi, Z.; Rao, P.; Hooper, P.A. Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing. Mater. Des. 2022, 221, 110919. [Google Scholar] [CrossRef]
- Toorandaz, S.; Taherkhani, K.; Liravi, F.; Toyserkani, E. A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion. Addit. Manuf. 2024, 91, 104354. [Google Scholar] [CrossRef]
- Li, K.; Ma, R.; Qin, Y.; Gong, N.; Wu, J.; Wen, P.; Tan, S.; Zhang, D.Z.; Murr, L.E.; Luo, J. A review of the multi-dimensional application of machine learning to improve the integrated intelligence of laser powder bed fusion. J. Mater. Process. Technol. 2023, 318, 118032. [Google Scholar] [CrossRef]
- Taherkhani, K.; Ero, O.; Liravi, F.; Toorandaz, S.; Toyserkani, E. On the application of in-situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion: A review. J. Manuf. Process. 2023, 99, 848–897. [Google Scholar] [CrossRef]
- Tan, Z.; Fang, Q.; Li, H.; Liu, S.; Zhu, W.; Yang, D. Neural network based image segmentation for spatter extraction during laser-based powder bed fusion processing. Opt. Laser Technol. 2020, 130, 106347. [Google Scholar] [CrossRef]
- Mi, J.; Zhang, Y.; Li, H.; Shen, S.; Yang, Y.; Song, C.; Zhou, X.; Duan, Y.; Lu, J.; Mai, H. In-situ monitoring laser based directed energy deposition process with deep convolutional neural network. J. Intell. Manuf. 2023, 34, 683–693. [Google Scholar] [CrossRef]
- Chebil, G.; Bettebghor, D.; Renollet, Y.; Lapouge, P.; Davoine, C.; Thomas, M.; Favier, V.; Schneider, M. Deep learning object detection for optical monitoring of spatters in L-PBF. J. Mater. Process. Technol. 2023, 319, 118063. [Google Scholar] [CrossRef]
- Cai, W.; Shu, L.; Geng, S.; Zhou, Q.; Cao, L. Real-time tracking method for motion spatter in high-power laser welding of stainless steel plate based on a lightweight deep learning model. Expert Syst. Appl. 2024, 254, 124386. [Google Scholar] [CrossRef]
- Kim, J.; Yang, Z.; Ko, H.; Cho, H.; Lu, Y. Deep learning-based data registration of melt-pool-monitoring images for laser powder bed fusion additive manufacturing. J. Manuf. Syst. 2023, 68, 117–129. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Y.; Yeung, H.; Krishnamurty, S. Investigation of deep learning for real-time melt pool classification in additive manufacturing. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 640–647. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Zhang, S.; Xuan, F. Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring. J. Intell. Manuf. 2025, 36, 2079–2104. [Google Scholar] [CrossRef]
- Ma, H.; Mao, Z.; Feng, W.; Yang, Y.; Hao, C.; Zhou, J.; Liu, S.; Xie, H.; Guo, G.; Liu, Z. Online in-situ monitoring of melt pool characteristic based on a single high-speed camera in laser powder bed fusion process. Appl. Therm. Eng. 2022, 211, 118515. [Google Scholar] [CrossRef]
- Seede, R.; Shoukr, D.; Zhang, B.; Whitt, A.; Gibbons, S.; Flater, P.; Elwany, A.; Arroyave, R.; Karaman, I. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Mater. 2020, 186, 199–214. [Google Scholar] [CrossRef]
- Vaughan, M.W.; Elverud, M.; Ye, J.; Seede, R.; Gibbons, S.; Flater, P.; Gaskey, B.; Arroyave, R.; Elwany, A.; Karaman, I. Development of a process optimization framework for fabricating fully dense advanced high strength steels using laser directed energy deposition. Addit. Manuf. 2023, 67, 103489. [Google Scholar] [CrossRef]
- Kelleher, J.D. Deep Learning; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Parico, A.I.B.; Ahamed, T. Real time pear fruit detection and counting using YOLOv4 models and deep SORT. Sensors 2021, 21, 4803. [Google Scholar] [CrossRef]
- Yang, D.; Miao, C.; Liu, Y.; Wang, Y.; Zheng, Y. Improved foreign object tracking algorithm in coal for belt conveyor gangue selection robot with YOLOv7 and DeepSORT. Measurement 2024, 228, 114180. [Google Scholar] [CrossRef]
- Sun, H.; Liu, T.; Wang, J.; Zhai, D.; Yu, J. Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage. Pest Manag. Sci. 2024, 80, 2817–2826. [Google Scholar] [CrossRef]
- Gadde, D.; Elwany, A.; Du, Y. Spatter behavior and melt pool stability analysis for laser powder bed fusion additive manufacturing. In Proceedings of the ASME 2025 20th International Manufacturing Science and Engineering Conference, Greenville, SC, USA, 23–27 June 2025. MSEC2025-155670. [Google Scholar]
- Cen, W.; Liu, Y.; Yan, H.; Zhou, Z.; Zhou, Z.; Shang, X.; Chen, S.; Long, Y. Modeling and simulation of the effect of scan strategy on spatter movement in laser powder bed fusion. Int. J. Adv. Manuf. Tech. 2024, 132, 3567–3578. [Google Scholar] [CrossRef]
- Du, Y.; Mukherjee, T.; Finch, N.; De, A.; DebRoy, T. High-throughput screening of surface roughness during additive manufacturing. J. Manuf. Process. 2022, 81, 65–77. [Google Scholar] [CrossRef]
Test | Laser Power, W | Scanning Speed, | ||
---|---|---|---|---|
1 | 90 | 300 | 37 | 95 |
2 | 140 | 550 | 37 | 95 |
Test | Training Images | Testing Images | Total Images |
---|---|---|---|
1 | 1814 | 777 | 2591 |
2 | 1755 | 752 | 2507 |
Total | 3569 | 1529 | 5098 |
Algorithms | P | R | mAP at 0.5 | mAP at 0.5:0.95 | ||
---|---|---|---|---|---|---|
YOLOv5 | 0.81 | 0.85 | 0.86 | 0.75 | 2.5 | 3 |
Faster R-CNN | 0.80 | 0.82 | 0.81 | 0.71 | 3.5 | 5 |
RetinaNet | 0.92 | 0.84 | 0.96 | 0.91 | 3.5 | 3 |
EfficientDet | 0.86 | 0.77 | 0.86 | 0.71 | 4.5 | 5 |
Test 1 | Test 2 | |||
---|---|---|---|---|
(R-L) | (L-R) | (R-L) | (L-R) | |
YOLOv5 | 1.49 | 1.15 | 4.72 | 3.96 |
Faster R-CNN | 2.49 | 1.25 | 4.64 | 3.44 |
RetinaNet | 1.43 | 1.19 | 4.62 | 3.26 |
EfficientDet | 1.50 | 1.13 | 4.72 | 3.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadde, D.; Elwany, A.; Du, Y. Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing. Metals 2025, 15, 840. https://doi.org/10.3390/met15080840
Gadde D, Elwany A, Du Y. Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing. Metals. 2025; 15(8):840. https://doi.org/10.3390/met15080840
Chicago/Turabian StyleGadde, Deepak, Alaa Elwany, and Yang Du. 2025. "Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing" Metals 15, no. 8: 840. https://doi.org/10.3390/met15080840
APA StyleGadde, D., Elwany, A., & Du, Y. (2025). Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing. Metals, 15(8), 840. https://doi.org/10.3390/met15080840