Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = low-consumption vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

21 pages, 7362 KiB  
Article
Multi-Layer Path Planning for Complete Structural Inspection Using UAV
by Ho Wang Tong, Boyang Li, Hailong Huang and Chih-Yung Wen
Drones 2025, 9(8), 541; https://doi.org/10.3390/drones9080541 (registering DOI) - 31 Jul 2025
Viewed by 30
Abstract
This article addresses the path planning problem for complete structural inspection using an unmanned aerial vehicle (UAV). The proposed method emphasizes the scalability of the viewpoints and aims to provide practical solutions to different inspection distance requirements, eliminating the need for extra view-planning [...] Read more.
This article addresses the path planning problem for complete structural inspection using an unmanned aerial vehicle (UAV). The proposed method emphasizes the scalability of the viewpoints and aims to provide practical solutions to different inspection distance requirements, eliminating the need for extra view-planning procedures. First, the mixed-viewpoint generation is proposed. Then, the Multi-Layered Angle-Distance Traveling Salesman Problem (ML-ADTSP) is solved, which aims to reduce overall energy consumption and inspection path complexity. A two-step Genetic Algorithm (GA) is used to solve the combinatorial optimization problem. The performance of different crossover functions is also discussed. By solving the ML-ADTSP, the simulation results demonstrate that the mean accelerations of the UAV throughout the inspection path are flattened significantly, improving the overall path smoothness and reducing traversal difficulty. With minor low-level optimization, the proposed framework can be applied to inspect different structures. Full article
Show Figures

Figure 1

21 pages, 4738 KiB  
Article
Research on Computation Offloading and Resource Allocation Strategy Based on MADDPG for Integrated Space–Air–Marine Network
by Haixiang Gao
Entropy 2025, 27(8), 803; https://doi.org/10.3390/e27080803 - 28 Jul 2025
Viewed by 231
Abstract
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, [...] Read more.
This paper investigates the problem of computation offloading and resource allocation in an integrated space–air–sea network based on unmanned aerial vehicle (UAV) and low Earth orbit (LEO) satellites supporting Maritime Internet of Things (M-IoT) devices. Considering the complex, dynamic environment comprising M-IoT devices, UAVs and LEO satellites, traditional optimization methods encounter significant limitations due to non-convexity and the combinatorial explosion in possible solutions. A multi-agent deep deterministic policy gradient (MADDPG)-based optimization algorithm is proposed to address these challenges. This algorithm is designed to minimize the total system costs, balancing energy consumption and latency through partial task offloading within a cloud–edge-device collaborative mobile edge computing (MEC) system. A comprehensive system model is proposed, with the problem formulated as a partially observable Markov decision process (POMDP) that integrates association control, power control, computing resource allocation, and task distribution. Each M-IoT device and UAV acts as an intelligent agent, collaboratively learning the optimal offloading strategies through a centralized training and decentralized execution framework inherent in the MADDPG. The numerical simulations validate the effectiveness of the proposed MADDPG-based approach, which demonstrates rapid convergence and significantly outperforms baseline methods, and indicate that the proposed MADDPG-based algorithm reduces the total system cost by 15–60% specifically. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

28 pages, 2976 KiB  
Review
Catalytic Combustion Hydrogen Sensors for Vehicles: Hydrogen-Sensitive Performance Optimization Strategies and Key Technical Challenges
by Biyi Huang, Yi Wang, Chao Wang, Lijian Wang and Shubin Yan
Processes 2025, 13(8), 2384; https://doi.org/10.3390/pr13082384 - 27 Jul 2025
Viewed by 333
Abstract
As an efficient and low-carbon renewable energy source, hydrogen plays a strategic role in the global energy transition, particularly in the transportation sector. However, the flammable and explosive nature of hydrogen makes leakage risks in enclosed environments a core challenge for the safe [...] Read more.
As an efficient and low-carbon renewable energy source, hydrogen plays a strategic role in the global energy transition, particularly in the transportation sector. However, the flammable and explosive nature of hydrogen makes leakage risks in enclosed environments a core challenge for the safe promotion of hydrogen fuel cell vehicles. Catalytic combustion sensors are ideal choices due to their high sensitivity and long lifespan. Nevertheless, they face technical bottlenecks under vehicle operational conditions, such as high-power consumption caused by elevated working temperatures, slow response rates, weak anti-interference capabilities, and catalyst poisoning. This paper systematically reviews the research status of catalytic combustion hydrogen sensors for vehicle applications, summarizes technical difficulties and development strategies from the perspectives of hydrogen-sensitive material design and integration processes, and provides theoretical references and technical guidance for the development of catalytic combustion hydrogen sensors suitable for vehicle use. Full article
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators
by Lei Su, Wanli Feng, Cao Kan, Mingjiang Wei, Rui Su, Pan Yu and Ning Zhang
Sustainability 2025, 17(15), 6767; https://doi.org/10.3390/su17156767 - 25 Jul 2025
Viewed by 247
Abstract
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for [...] Read more.
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration. Full article
Show Figures

Figure 1

19 pages, 2016 KiB  
Article
A Robust and Energy-Efficient Control Policy for Autonomous Vehicles with Auxiliary Tasks
by Yabin Xu, Chenglin Yang and Xiaoxi Gong
Electronics 2025, 14(15), 2919; https://doi.org/10.3390/electronics14152919 - 22 Jul 2025
Viewed by 249
Abstract
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network [...] Read more.
We present a lightweight autonomous driving method that uses a low-cost camera, a simple end-to-end convolutional neural network architecture, and smoother driving techniques to achieve energy-efficient vehicle control. Instead of directly constructing a mapping from raw sensory input to the action, our network takes the frame-to-frame visual difference as one of the crucial inputs to produce control commands, including the steering angle and the speed value at each time step. This choice of input allows highlighting the most relevant parts on raw image pairs to decrease the unnecessary visual complexity caused by different road and weather conditions. Additionally, our network achieves the prediction of the vehicle’s upcoming control commands by incorporating a view synthesis component into the model. The view synthesis, as an auxiliary task, aims to infer a novel view for the future from the historical environment transformation cue. By combining both the current and upcoming control commands, our framework achieves driving smoothness, which is highly associated with energy efficiency. We perform experiments on benchmarks to evaluate the reliability under different driving conditions in terms of control accuracy. We deploy a mobile robot outdoors to evaluate the power consumption of different control policies. The quantitative results demonstrate that our method can achieve energy efficiency in the real world. Full article
(This article belongs to the Special Issue Simultaneous Localization and Mapping (SLAM) of Mobile Robots)
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 442
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 525
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 732 KiB  
Article
Accuracy-Aware MLLM Task Offloading and Resource Allocation in UAV-Assisted Satellite Edge Computing
by Huabing Yan, Hualong Huang, Zijia Zhao, Zhi Wang and Zitian Zhao
Drones 2025, 9(7), 500; https://doi.org/10.3390/drones9070500 - 16 Jul 2025
Viewed by 332
Abstract
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in [...] Read more.
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in remote areas. However, cloud computing dependency introduces latency, bandwidth, and privacy challenges, while IoT device limitations require efficient distributed computing solutions. SEC, utilizing low-earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs), extends mobile edge computing to provide ubiquitous computational resources for remote IoTDs. We formulate the joint optimization of MLLM task offloading and resource allocation as a mixed-integer nonlinear programming (MINLP) problem, minimizing latency and energy consumption while optimizing offloading decisions, power allocation, and UAV trajectories. To address the dynamic SEC environment characterized by satellite mobility, we propose an action-decoupled soft actor–critic (AD-SAC) algorithm with discrete–continuous hybrid action spaces. The simulation results demonstrate that our approach significantly outperforms conventional deep reinforcement learning methods in convergence and system cost reduction compared to baseline algorithms. Full article
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 226
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

18 pages, 5137 KiB  
Article
Comparative Analysis of Energy Efficiency and Position Stability of Sub-250 g Quadcopter and Bicopter with Similar Mass Under Varying Conditions
by Artur Kierzkowski, Mateusz Woźniak and Paweł Bury
Energies 2025, 18(14), 3728; https://doi.org/10.3390/en18143728 - 14 Jul 2025
Viewed by 316
Abstract
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory [...] Read more.
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory flexibility and application potential in constrained environments. A comparative methodology was adopted, involving the construction of both UAV types using identical components where possible, including motors, sensors, and power supply, differing only in propulsion configuration. Experimental tests were conducted in wind-free and wind-induced environments to assess power consumption and stability. The data were collected through onboard blackbox logging, and positional deviation was tracked via video analysis. Results show that while the quadcopter consistently demonstrated lower energy consumption (by 6–22%) and higher positional stability, the bicopter offered advantages in simplicity of frame design and reduced component count. However, the bicopter required extensive manual tuning of PID parameters due to the inherent instability introduced by servo-based control. The findings highlight the potential of bicopters in constrained applications, though they emphasize the need for precise control strategies and high-performance servos. The study fills a gap in empirical analysis of energy consumption in lightweight bicopter UAVs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

34 pages, 2697 KiB  
Article
Pricing and Emission Reduction Strategies of Heterogeneous Automakers Under the “Dual-Credit + Carbon Cap-and-Trade” Policy Scenario
by Chenxu Wu, Yuxiang Zhang, Junwei Zhao, Chao Wang and Weide Chun
Mathematics 2025, 13(14), 2262; https://doi.org/10.3390/math13142262 - 13 Jul 2025
Viewed by 267
Abstract
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit [...] Read more.
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit policy and the “dual-credit + carbon cap-and-trade” policy, revealing the nonlinear impacts of new energy vehicle (NEV) credit trading prices, carbon trading prices, and credit ratio requirements on manufacturers’ pricing, emission reduction effort levels, and profits. The results indicate the following: (1) Under the “carbon cap-and-trade + dual-credit” policy, manufacturers can balance emission reduction costs and NEV production via the carbon trading market to maximize profits, with lower emission reduction effort levels than under the single dual-credit policy. (2) A rise in credit trading prices prompts hybrid manufacturers (producing both fuel vehicles and NEVs) to increase NEV production and reduce fuel vehicle output; higher NEV credit ratio requirements raise fuel vehicle production costs and prices, suppressing consumer demand. (3) An increase in carbon trading prices raises production costs for both fuel vehicles and NEVs, leading to decreased market demand; hybrid manufacturers reduce emission reduction efforts, while others transfer costs through price hikes to boost profits. (4) Hybrid manufacturers face high carbon emission costs due to excessive actual fuel consumption, driving them to enhance emission reduction efforts and promote low-carbon technological innovation. Full article
Show Figures

Figure 1

23 pages, 5743 KiB  
Article
Impact of Low-Pressure in High-Altitude Area on the Aging Characteristics of NCM523/Graphite Pouch Cells
by Xiantao Chen, Zhi Wang, Jian Wang, Yichao Lin and Jian Li
Batteries 2025, 11(7), 261; https://doi.org/10.3390/batteries11070261 - 13 Jul 2025
Viewed by 348
Abstract
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, [...] Read more.
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, the influences and mechanisms of high-altitude and low-pressure environment (50 kPa) on the cycling performance of commercial pouch LIBs were systematically studied. The results showed that low air pressure caused a sharp decrease in battery capacity to 46.6% after 200 cycles, with a significant increase in charge transfer impedance by 70%, and the contribution rate of active lithium loss reached 74%. Low air pressure led to irreversible deformation of the battery, resulting in the expansion of the gap between the electrodes, poor electrolyte infiltration, and reduction of the effective lithium insertion area, which in turn induced multiple synergistic accelerated decay mechanisms, including obstructed lithium-ion transmission, reduced interfacial reaction efficiency, increased active lithium consumption, changes in heat generation structure, and a significant increase in heat generation. After applying external force, the deformation of the electrode was effectively suppressed, and the cycle capacity retention rate increased to 87.6%, which significantly alleviated the performance degradation of LIBs in low pressure environment. This work provides a key theoretical basis and engineering solutions for the design of power batteries in high-altitude areas. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

21 pages, 5148 KiB  
Article
Research on Buckwheat Weed Recognition in Multispectral UAV Images Based on MSU-Net
by Jinlong Wu, Xin Wu and Ronghui Miao
Agriculture 2025, 15(14), 1471; https://doi.org/10.3390/agriculture15141471 - 9 Jul 2025
Viewed by 273
Abstract
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition [...] Read more.
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition of minor grain based on unmanned aerial vehicles (UAVs), a semantic segmentation model for buckwheat weeds based on MSU-Net (multispectral U-shaped network) was proposed to explore the influence of different band optimizations on recognition accuracy. Five spectral features—red (R), blue (B), green (G), red edge (REdge), and near-infrared (NIR)—were collected in August when the weeds were more prominent. Based on the U-net image semantic segmentation model, the input module was improved to adaptively adjust the input bands. The neuron death caused by the original ReLU activation function may lead to misidentification, so it was replaced by the Swish function to improve the adaptability to complex inputs. Five single-band multispectral datasets and nine groups of multi-band combined data were, respectively, input into the improved MSU-Net model to verify the performance of our method. Experimental results show that in the single-band recognition results, the B band performs better than other bands, with mean pixel accuracy (mPA), mean intersection over union (mIoU), Dice, and F1 values of 0.75, 0.61, 0.87, and 0.80, respectively. In the multi-band recognition results, the R+G+B+NIR band performs better than other combined bands, with mPA, mIoU, Dice, and F1 values of 0.76, 0.65, 0.85, and 0.78, respectively. Compared with U-Net, DenseASPP, PSPNet, and DeepLabv3, our method achieved a preferable balance between model accuracy and resource consumption. These results indicate that our method can adapt to multispectral input bands and achieve good results in weed segmentation tasks. It can also provide reference for multispectral data analysis and semantic segmentation in the field of minor grain crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 484 KiB  
Article
Short-Term Forecasting of Total Aggregate Demand in Uncontrolled Residential Charging with Electric Vehicles Using Artificial Neural Networks
by Giovanni Panegossi Formaggio, Mauro de Souza Tonelli-Neto, Danieli Biagi Vilela and Anna Diva Plasencia Lotufo
Inventions 2025, 10(4), 54; https://doi.org/10.3390/inventions10040054 - 8 Jul 2025
Viewed by 231
Abstract
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has [...] Read more.
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has proven to be an efficient way of solving time series problems. This study employs a multilayer perceptron network with backpropagation training and Bayesian regularisation to enhance generalisation and minimise overfitting errors. The research aggregates real consumption data from 200 households and 348 electric vehicles. The developed method was validated using MAPE, which resulted in errors below 6%. Short-term forecasts were made across the four seasons, predicting the total aggregate demand of households and vehicles for the next 24 h. The methodology produced significant and relevant results for this problem using hybrid training, a few-neuron architecture, deep learning, fast convergence, and low computational cost, with potential for real-world application. The results support the electrical power system by optimising these loads, reducing costs and energy generation, and preparing a new scenario for EV penetration rates. Full article
Show Figures

Figure 1

Back to TopTop