Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,164)

Search Parameters:
Keywords = local erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9506 KB  
Article
An SBAS-InSAR Analysis and Assessment of Landslide Deformation in the Loess Plateau, China
by Yan Yang, Rongmei Liu, Liang Wu, Tao Wang and Shoutao Jiao
Remote Sens. 2026, 18(3), 411; https://doi.org/10.3390/rs18030411 - 26 Jan 2026
Abstract
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions [...] Read more.
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions in China due to frequent rains, strong topographical gradients and severe soil erosion. By constructing subsets of interferograms, SBAS-InSAR can mitigate the influence of decorrelation to a certain extent, making it a highly effective technique for monitoring regional surface deformation and identifying landslides. To overcome the limitations of the satellite’s one-dimensional Line-of-Sight (LOS) measurements and the challenge of distinguishing true landslide signals from noise, two optimization strategies were implemented. First, LOS velocities were projected onto the local steepest slope direction, assuming translational movement parallel to the slope. Second, a Z-score clustering algorithm was employed to aggregate measurement points with consistent kinematic signatures, enhancing identification robustness, with a slight trade-off in spatial completeness. Based on 205 Sentinel-1 Single-Look Complex (SLC) images acquired from 2014 to 2024, the integrated workflow identified 69 “active, very slow” and 63 “active, extremely slow” landslides. These results were validated through high-resolution historical optical imagery. Time series analysis reveals that creep deformation in this region is highly sensitive to seasonal rainfall patterns. This study demonstrates that the SBAS-InSAR post-processing framework provides a cost-effective, millimeter-scale solution for updating landslide inventories and supporting regional risk management and early warning systems in loess-covered terrains, with the exception of densely forested areas. Full article
Show Figures

Figure 1

31 pages, 8592 KB  
Review
Research Progress and the Prospect of Artificial Reef Preparation and Its Impact on the Marine Ecological Environment
by Hao-Tian Li, Ya-Jun Wang, Jian-Bao Zhang, Peng Yu, Yi-Tong Wang, Jun-Guo Li, Shu-Hao Zhang, Zi-Han Tang and Jie Yang
Materials 2026, 19(3), 447; https://doi.org/10.3390/ma19030447 - 23 Jan 2026
Viewed by 70
Abstract
Artificial reefs are an important tool for marine ecological restoration and fishery resource proliferation, and are widely used around the world. Among them, Japan, the United States, China, South Korea, Australia, and the Mediterranean coastal countries have particularly invested in scientific research and [...] Read more.
Artificial reefs are an important tool for marine ecological restoration and fishery resource proliferation, and are widely used around the world. Among them, Japan, the United States, China, South Korea, Australia, and the Mediterranean coastal countries have particularly invested in scientific research and practice in this field, and the reefs’ material selection, structural performance, and ecological benefits have attracted much attention. The purpose of this paper is to summarize the preparation methods, characterization methods (such as microstructure analysis and mechanical tests) and mechanical properties (such as compressive strength and durability) of new concrete materials (steel slag-blast furnace slag concrete, oyster shell concrete, sulfoaluminate cement concrete, recycled brick concrete, silica fume concrete, and banana peel filler concrete) that artificial reefs and ceramic artificial reefs developed in recent years, and to explore the resource utilization potential of different waste materials. At the same time, the biostatistical methods (such as species abundance and community diversity) of wood, shipwreck, steel, rock, waste tire, and ordinary concrete artificial reefs and their effects on the marine environment were compared and analyzed. In addition, the potential impact of artificial reef deployment on local fishermen’s income was also assessed. It is found that the use of steel slag, blast furnace slag, sulfoaluminate cement, and silica fume instead of traditional Portland cement can better improve the mechanical properties of concrete artificial reefs (compressive strength can be increased by up to 20%) and reduce the surface pH to neutral, which is more conducive to the adhesion and growth of marine organisms. The compressive strength of oyster shell concrete and banana peel filler concrete artificial reef is not as good as that of traditional Portland cement concrete artificial reef, but it still avoids the waste of a large amount of solid waste resources, provides necessary nutritional support for aquatic organisms, and also improves its chemical erosion resistance. The deployment of artificial reefs of timber, wrecks, steel, rock, waste tires, and ordinary concrete has significantly increased the species richness and biomass in the adjacent waters and effectively promoted the development of fisheries. Cases show that artificial reefs can significantly increase fishermen’s income (such as an increase of about EUR 13 in the value of a unit effort in a certain area), but the long-term benefits depend on effective supervision and community co-management mechanisms. This paper provides a scientific basis for the research and development of artificial reef materials and the optimization of ecological benefits, and promotes the sustainable development of marine ecological restoration technology and fishery economy. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

30 pages, 4217 KB  
Review
Overview of Platinum Group Minerals (PGM): A Statistical Perspective and Their Genetic Significance
by Federica Zaccarini, Giorgio Garuti, Maria Economou-Eliopoulos, John F. W. Bowles, Hannah S. R. Hughes, Jens C. Andersen and Saioa Suárez
Minerals 2026, 16(1), 108; https://doi.org/10.3390/min16010108 - 21 Jan 2026
Viewed by 78
Abstract
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are [...] Read more.
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are divided into the following: (1) the Ir subgroup (IPGE) = Os, Ir, and Ru and (2) the Pd subgroup (PPGE) = Rh, Pt, and Pd. The IPGE are more refractory and less chalcophile than the PPGE. High concentrations of PGE led, in rare cases, to the formation of mineral deposits. The PGE are carried in discrete phases, the platinum group minerals (PGM), and are included as trace elements into the structure of base metal sulphides (BM), such as pentlandite, chalcopyrite, pyrite, and pyrrhotite. Similarly to PGE, the PGM are also divided into two main groups, i.e., IPGM composed of Os, Ir, and Ru and PPGM containing Rh, Pt, and Pd. The PGM occur both in mafic and ultramafic rocks and are mainly hosted in stratiform reefs, sulphide-rich lenses, and placer deposits. Presently, there are only 169 valid PGM that represent about 2.7% of all 6176 minerals discovered so far. However, 496 PGM are listed among the valid species that have not yet been officially accepted, while a further 641 are considered as invalid or discredited species. The main reason for the incomplete characterization of PGM resides in their mode of occurrence, i.e., as grains in composite aggregates of a few microns in size, which makes it difficult to determine their crystallography. Among the PGM officially accepted by the IMA, only 13 (8%) were discovered before 1958, the year when the IMA was established. The highest number of PGM was discovered between 1970 and 1979, and 99 PGM have been accepted from 1980 until now. Of the 169 PGM accepted by the IMA, 44% are named in honour of a person, typically a scientist or geologist, and 31% are named after their discovery localities. The nomenclature of 25% of the PGM is based on their chemical composition and/or their physical properties. PGM have been discovered in 25 countries throughout the world, with 64 from Russia, 17 from Canada and South Africa (each), 15 from China, 12 from the USA, 8 from Brazil, 6 from Japan, 5 from Congo, 3 from Finland and Germany (each), 2 from the Dominican Republic, Greenland, Malaysia, and Papua New Guinea each, and only 1 from Argentine, Australia, Bulgaria, Colombia, Czech Republic, England, Ethiopia, Guyana, Mexico, Serbia, and Tanzania each. Most PGM phases contain Pd (82 phases, 48% of all accepted PGM), followed, in decreasing order of abundances, by those of Pt 35 phases (21%), Rh 23 phases (14%), Ir 18 phases (11%), Ru 7 phases (4%), and Os 4 phases (2%). The six PGE forming the PGM are bonded to other elements such as Fe, Ni, Cu, S, As, Te, Bi, Sb, Se, Sn, Hg, Ag, Zn, Si, Pb, Ge, In, Mo, and O. Thirty-two percent of the 169 valid PGM crystallize in the cubic system, 17% are orthorhombic, 16% hexagonal, 14% tetragonal, 11% trigonal, 3% monoclinic, and only 1% triclinic. Some PGM are members of a solid-solution series, which may be complete or contain a miscibility gap, providing information concerning the chemical and physical environment in which the mineral was formed. The refractory IPGM precipitate principally in primitive, high-temperature, mantle-hosted rocks such as podiform and layered chromitites. Being more chalcophile, PPGE are preferentially collected and concentrated in an immiscible sulphide liquid, and, under appropriate conditions, the PPGM can precipitate in a thermal range of about 900–300 °C in the presence of fluids and a progressive increase of oxygen fugacity (fO2). Thus, a great number of Pt and Pd minerals have been described in Ni-Cu sulphide deposits. Two main genetic models have been proposed for the formation of PGM nuggets: (1) Detrital PGM represent magmatic grains that were mechanically liberated from their primary source by weathering and erosion with or without minor alteration processes, and (2) PGM reprecipitated in the supergene environment through a complex process that comprises solubility, the leaching of PGE from the primary PGM, and variation in Eh-pH and microbial activity. These two models do not exclude each other, and alluvial deposits may contain contributions from both processes. Full article
Show Figures

Figure 1

20 pages, 6334 KB  
Article
Local Erosion–Deposition Changes and Their Relationships with the Hydro-Sedimentary Environment in the Nearshore Radial Sand-Ridge Area off Dongtai, Northern Jiangsu
by Ning Zhuang, Liwen Yan, Yanxia Liu, Xiaohui Wang, Jingyuan Cao and Jiyang Jiang
J. Mar. Sci. Eng. 2026, 14(2), 205; https://doi.org/10.3390/jmse14020205 - 20 Jan 2026
Viewed by 174
Abstract
The radial sand-ridge field off the Jiangsu coast is a distinctive landform in a strongly tide-dominated environment, where sediment supply and geomorphic patterns have been profoundly altered by Yellow River course changes, reduced Yangtze-derived sediment, and large-scale reclamation. Focusing on a typical nearshore [...] Read more.
The radial sand-ridge field off the Jiangsu coast is a distinctive landform in a strongly tide-dominated environment, where sediment supply and geomorphic patterns have been profoundly altered by Yellow River course changes, reduced Yangtze-derived sediment, and large-scale reclamation. Focusing on a typical nearshore sector off Dongtai, this study integrates multi-source data from 1979 to 2025, including historical nautical charts, high-precision engineering bathymetry, full-tide hydro-sediment observations, and surficial sediment samples, to quantify seabed erosion–deposition over 46 years and clarify linkages among tidal currents, suspended-sediment transport, and surface grain-size patterns. Surficial sediments from Maozhusha to Jiangjiasha channel systematically fine from north to south: sand-ridge crests are dominated by sandy silt, whereas tidal channels and transition zones are characterized by silty sand and clayey silt. From 1979 to 2025, Zhugensha and its outer flank underwent multi-meter accretion and a marked accretion belt formed between Gaoni and Tiaozini, while the Jiangjiasha channel and adjacent deep troughs experienced persistent scour (local mean rates up to ~0.25 m/a), forming a striped “ridge accretion–trough erosion” pattern. Residual and potential maximum currents in the main channels enhance scour and offshore export of fines, whereas relatively strong depth-averaged flow and near-bed shear on inner sand-ridge flanks favor frequent mobilization and short-range trapping of coarser particles. Suspended-sediment concentration and median grain size are generally positively correlated, with suspension coarsening in high-energy channels but dominated by fine grains on nearshore flats and in deep troughs. These findings refine understanding of muddy-coast geomorphology under strong tides and may inform offshore wind-farm foundation design, navigation-channel maintenance, and coastal-zone management. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

27 pages, 4509 KB  
Article
Determinants and Characteristics of Socio-Demographically Fragile Rural and Urban Areas in the Trascău Mountains, Romania
by Elena Bogan, Andreea-Loreta Cercleux and Elena Grigore
Sustainability 2026, 18(2), 954; https://doi.org/10.3390/su18020954 - 16 Jan 2026
Viewed by 249
Abstract
Recent studies in the Romanian Western Carpathians have revealed increasing socio-demographic fragility in rural areas and small towns, driven by depopulation, population aging, and declining living standards. These trends stem from the legacy of forced collectivization and industrialization (1950–1990) and the post-1990 transition, [...] Read more.
Recent studies in the Romanian Western Carpathians have revealed increasing socio-demographic fragility in rural areas and small towns, driven by depopulation, population aging, and declining living standards. These trends stem from the legacy of forced collectivization and industrialization (1950–1990) and the post-1990 transition, which triggered extensive out-migration and the erosion of local socio-economic structures. This study examines the fragility of human communities in the Trascău Mountains in order to evaluate spatial, demographic, and economic recovery dynamics and to assess settlement vulnerability as a major obstacle to sustainable regional development. Fragility was measured using indicators of population density and change, age structure, accessibility, and socio-demographic dynamics, based on comparative data for the interval of 1977–2021. These variables were integrated into a composite development index (Id), derived from twelve indicators covering demography, economy, infrastructure, and living standards, enabling the hierarchical classification of settlements by degree of vulnerability. The methodological framework combines empirical and analytical methods, statistical, cartographic, bibliographic, and field-based analyses within evolutionary, structural–functional, and typological perspectives. The results identify the main drivers of decline, quantify their impacts, and outline development prospects and policy directions for reducing territorial disparities. Overall, fragile settlements emerge as critical pressure points that undermine sustainability, intensify regional instability, and increase risks related to migration and social cohesion. Full article
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Viewed by 323
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

18 pages, 250 KB  
Article
Sustaining Social Integration After Development-Induced Resettlement: A Longitudinal Study of Three Gorges Migrants in Rural China
by Jingwei He and Dengcai Yan
Sustainability 2026, 18(2), 882; https://doi.org/10.3390/su18020882 - 15 Jan 2026
Viewed by 134
Abstract
Social sustainability has become a central concern in development-induced resettlement, yet little is known about how social integration and community relations are sustained over long time horizons. Drawing on a retrospective longitudinal ethnographic reconstruction spanning 21 years (2004–2025) of Three Gorges Dam resettlers [...] Read more.
Social sustainability has become a central concern in development-induced resettlement, yet little is known about how social integration and community relations are sustained over long time horizons. Drawing on a retrospective longitudinal ethnographic reconstruction spanning 21 years (2004–2025) of Three Gorges Dam resettlers relocated to rural Anhui, China, this paper examines the co-evolution of group boundaries, interaction strategies, and social networks between migrants and local residents. Using group boundary theory, we identify three sequential phases of interaction: initial boundary demarcation and social distancing, subsequent bridge-building through economic cooperation and relational ingratiation, and a later stage of pragmatic, transactional engagement. We show that the gradual erosion of migrant–local boundaries is driven by economic interdependence, cultural adaptation, individualization, and rural out-migration. Rather than resulting in deep social fusion, long-term integration stabilizes in a form of “thin integration,” characterized by low-density but sustainable social ties, institutionalized conflict resolution, and routine coexistence. This study conceptualizes social integration as a dynamic process of social sustainability, demonstrating how resettled communities maintain social order and functional cohesion amid structural change. The findings contribute to debates on sustainable rural development, forced migration, and the long-term governance of resettlement communities. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
29 pages, 8571 KB  
Article
Response Surface Methodology for Wear Optimization of Irrigation Centrifugal Pumps in High-Sediment Water Conditions of Southern Xinjiang: Design and Experimental Validation
by Haoran Chen, Zhuo Shi, Shunjun Hong and Xiaozhou Hu
Agriculture 2026, 16(2), 177; https://doi.org/10.3390/agriculture16020177 - 9 Jan 2026
Viewed by 239
Abstract
This study investigates the wear characteristics and optimization of a centrifugal pump (Q = 25 m3/h, H = 50 m, n = 2900 r/min) applied in sediment-laden waters of Southern Xinjiang irrigation systems. A numerical framework integrating the Realizable [...] Read more.
This study investigates the wear characteristics and optimization of a centrifugal pump (Q = 25 m3/h, H = 50 m, n = 2900 r/min) applied in sediment-laden waters of Southern Xinjiang irrigation systems. A numerical framework integrating the Realizable kε turbulence model, Discrete Phase Model (DPM), and Oka erosion model was established to analyze wear patterns under varying parameters (particle size, density, and mass flow rate). Results indicate that the average erosion rate peaks at 0.92 kg/s mass flow rate. Subsequently, a Response Surface Methodology (RSM)-based optimization was implemented: (1) Plackett–Burman (PB) screening identified the inlet placement angle (A), inlet diameter (C), and outlet width (E) as dominant factors; (2) Full factorial design (FFD) revealed significant interactions (e.g., A × C, C × E); (3) Box–Behnken Design (BBD) generated quadratic regression models for head, efficiency, shaft power, and wear rate (R2 > 0.94). Optimization reduced the average erosion rate by 31.35% (from 1.550 × 10−4 to 1.064 × 10−4 kg·m−2·s−1). Experimental validation confirmed the numerical model’s accuracy in predicting wear localization (e.g., impeller outlet). This work provides a robust methodology for enhancing the wear resistance of centrifugal pumps for agricultural irrigation in water with high fine sediment concentration environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 13539 KB  
Article
Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events
by Candela Marco-Peretó, Ruth Durán, Gonzalo Simarro and Jorge Guillén
Geosciences 2026, 16(1), 27; https://doi.org/10.3390/geosciences16010027 - 4 Jan 2026
Viewed by 442
Abstract
Morphological variability on Mediterranean embayed sandy beaches is largely driven by wave storms and episodic sediment inputs from local streams during intense rainfall. While storm impacts are well documented, the combined influence of stream discharge, wave forcing and morphological response remains poorly understood. [...] Read more.
Morphological variability on Mediterranean embayed sandy beaches is largely driven by wave storms and episodic sediment inputs from local streams during intense rainfall. While storm impacts are well documented, the combined influence of stream discharge, wave forcing and morphological response remains poorly understood. This study examines these interactions at Castell beach, one of the few non-urbanised, stream-fed embayed beaches on the northwestern Mediterranean, during two high-energy storms with heavy rainfall: December 2019 and January 2020 (Storm Gloria). Morphological changes in the subaerial and submerged beach, and stream dynamics were assessed using repeated RTK–GNSS surveys, orthophotos and echo-sounder bathymetry. Results show the stream mouth shifted along the beach (east, central or west) during heavy rainfall episodes depending on wave direction and pre-existing topography, tending toward more wave-sheltered zones. The storms induced contrasting responses: the first caused slight subaerial accretion, whereas Storm Gloria produced subaerial erosion and nearshore sediment deposition from both beach and stream sources. This material was subsequently reworked and reincorporated into the subaerial beach under calmer conditions, with full recovery by February 2022. These findings highlight the role of stream–wave interactions in sediment dynamics and the capacity of highly protected embayed beaches to adapt to extreme events. Full article
(This article belongs to the Topic Recent Advances in Iberian Coastal Geomorphology)
Show Figures

Graphical abstract

13 pages, 2547 KB  
Article
Variability Survey at Different Genetic Markers as Effective Tools for the Management of the Endangered Breeds: The Case of the Sicilian Native Donkeys
by Morena Carlentini, Serena Tumino, Giorgio Chessari, Aurora Antoci, Andrea Criscione, Donata Marletta, Salvatore Mastrangelo and Salvatore Bordonaro
Animals 2026, 16(1), 90; https://doi.org/10.3390/ani16010090 - 28 Dec 2025
Viewed by 292
Abstract
Domestic donkeys (Equus africanus asinus) are an important livestock genetic resource that is currently considered at risk. The number of donkey breeds worldwide is declining due to their loss of function as working animals in rural communities. Local breeds with small [...] Read more.
Domestic donkeys (Equus africanus asinus) are an important livestock genetic resource that is currently considered at risk. The number of donkey breeds worldwide is declining due to their loss of function as working animals in rural communities. Local breeds with small populations, which are threatened by genetic erosion and are at risk of extinction, require urgent action to characterize and preserve their genetic diversity. As microarrays containing thousands of single-nucleotide polymorphisms (SNPs) are not yet available for these species, traditional molecular markers such as microsatellites and mitochondrial DNA (mtDNA) remain valuable tools for genetic monitoring and management. This study uses different molecular markers to assess and manage genetic variability in endangered Sicilian donkey breeds. This information can support breeding plans and mating schemes, as well as in situ and ex situ conservation programs. The practical application of molecular information in the conservation strategies for these breeds is briefly discussed, and the proposed approach is considered transferable to other threatened breeds. Full article
Show Figures

Figure 1

30 pages, 10565 KB  
Article
Influence Mechanism of Particle Diameter and Volume Fraction on the Solid–Liquid Two-Phase Flow Performance of Semi-Open Impeller Sewage Pumps
by Hongliang Wang, Ang Li, Chuan Wang, Shuai Liu, Yansheng Shi, Hao Yu, Xi Wang and Xuanwen Jia
Water 2026, 18(1), 74; https://doi.org/10.3390/w18010074 - 26 Dec 2025
Viewed by 556
Abstract
Semi-open impeller sewage pumps are widely used in fields such as municipal wastewater treatment. However, they often face performance degradation and operational instability when conveying solid–liquid two-phase flows containing solid particles. This study aims to systematically elucidate the influence mechanisms of particle diameter [...] Read more.
Semi-open impeller sewage pumps are widely used in fields such as municipal wastewater treatment. However, they often face performance degradation and operational instability when conveying solid–liquid two-phase flows containing solid particles. This study aims to systematically elucidate the influence mechanisms of particle diameter (0.5–3.0 mm) and volume fraction (1–20%) on the external characteristics and internal flow field of semi-open impeller sewage pumps, providing a theoretical basis for optimizing their design and operational stability. Using an 80WQ4QG-type sewage pump as the research subject, this study employed a combination of numerical simulation and experimental research. The standard k-ε turbulence model coupled with the Discrete Phase (Particle) approach was adopted for multi-condition solid–liquid two-phase flow simulations. Furthermore, two-way analysis of variance (two-way ANOVA) was utilized to quantify the main effects and interaction effects of the parameters. The results indicate that the pump head and efficiency generally exhibit a decreasing trend with increasing particle diameter or volume fraction, with particle diameter exerting a more pronounced effect (p < 0.01). When the particle diameter increased to 3.0 mm, the head decreased by 5.66%; when the volume fraction rose to 20%, the head decreased by 4.17%. It is noteworthy that the combination of a 0.5 mm particle diameter and a 20% volume fraction resulted in an abnormal increase in head, suggesting a possible flow pattern optimization under specific conditions. Analysis of the internal flow field reveals that coarse particles (≥1.5 mm) intensify the pressure gradient disparity between the front and rear shroud cavities of the impeller, thereby increasing the axial thrust. A high volume fraction (≥10%) promotes pronounced flow separation in the volute tongue region and exacerbates the risk of localized erosion at the outlet. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

21 pages, 11034 KB  
Article
Refinement Assessment of Soil Conservation Service and Analysis of Its Trade-Off/Synergy with Other Key Services in the Guizhou Plateau Based on Satellite-UAV-Ground Systems
by Linan Niu, Quanqin Shao and Meiqi Chen
Remote Sens. 2026, 18(1), 93; https://doi.org/10.3390/rs18010093 - 26 Dec 2025
Viewed by 209
Abstract
The Guizhou Plateau, with the most extensive and representative karst landforms worldwide, is characterized by severe soil erosion and a highly fragile ecological environment. However, large-scale assessments of soil conservation services in this region remain limited. A key challenge lies in identifying appropriate [...] Read more.
The Guizhou Plateau, with the most extensive and representative karst landforms worldwide, is characterized by severe soil erosion and a highly fragile ecological environment. However, large-scale assessments of soil conservation services in this region remain limited. A key challenge lies in identifying appropriate datasets and methodologies for regional-scale soil conservation service evaluations, particularly under conditions of data scarcity or limited data accuracy. In this study, Unmanned Aerial Vehicle imagery, runoff plot observations, ground survey data, and multi-source satellite remote sensing data were integrated to refine LS and C in the Revised Universal Soil Loss Equation (RUSLE), thereby establishing a parameterized and localized soil erosion model. This improvement provided a methodological foundation for soil conservation service research in the region. Subsequently, the spatiotemporal variations in soil conservation services in the Guizhou Plateau over the past two decades were assessed. Furthermore, the relationships between soil conservation services and other key ecosystem services, including water conservation and carbon sequestration, were quantitatively examined, and the driving factors were analyzed. Soil conservation on the Guizhou Plateau exhibited an improving trend from 2000 to 2020. In karst areas, the relationship between soil conservation and water conservation was primarily influenced by temperature, altitude, and vegetation coverage, whereas in non-karst areas, it was regulated by rainfall and slope. Ecological restoration projects have enhanced the synergy between soil conservation and carbon sequestration by promoting vegetation cover. These findings could contribute to the next stage of ecological engineering initiatives and ecological policy implementation in Guizhou. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

24 pages, 2308 KB  
Article
Integrating Trend Monitoring and Change Point Detection for Wind Turbine Blade Diagnostics: A Physics-Driven Evaluation of Erosion and Twist Faults
by Abu Al Hassan, Nasir Hussain Razvi Syed, Debela Alema Teklemariyem and Phong Ba Dao
Energies 2026, 19(1), 112; https://doi.org/10.3390/en19010112 - 25 Dec 2025
Viewed by 318
Abstract
Robust condition monitoring of wind turbine blades is essential for reducing downtime and maintenance costs, particularly under variable operating conditions. While recent studies suggest that combining trend monitoring (TM) with change point detection (CPD) can improve diagnostic performance, it remains unclear whether such [...] Read more.
Robust condition monitoring of wind turbine blades is essential for reducing downtime and maintenance costs, particularly under variable operating conditions. While recent studies suggest that combining trend monitoring (TM) with change point detection (CPD) can improve diagnostic performance, it remains unclear whether such integration is beneficial for all fault types. This study experimentally evaluates the integration of TM and CPD using vibration data from a laboratory-scale wind turbine for two representative blade faults: leading-edge erosion and twist misalignment. For the erosion case, discrete wavelet transform (DWT) energy features exhibit a clear and persistent increase in mid-frequency content, with energy deviations of approximately 34–45% relative to the healthy state. However, Bayesian Online Change Point Detection (BOCPD) does not reveal distinct change points, indicating that CPD provides limited additional value for gradual, steady-state degradation. In contrast, for twist misalignment, the short-time Fast Fourier Transform (FFT) features reveal dynamic spectral redistribution, and CPD applied to spectral centroid trends produces a sharp, localized detection signature. These results demonstrate that integrating TM with CPD significantly enhances fault detectability for dynamic, instability-driven faults, while TM alone is sufficient for smooth, steady-state degradation. This study provides an evidence-based guideline for selectively integrating CPD into wind turbine blade condition monitoring systems based on fault physics. Full article
(This article belongs to the Special Issue Trends and Innovations in Wind Power Systems: 2nd Edition)
Show Figures

Figure 1

22 pages, 9932 KB  
Article
Grinding-Electrode-Assisted Short Electric Arc Machining of GH4099: A Composite Approach to Surface Integrity
by Bingbing Wang, Shengwei Ding, Jianping Zhou, Jiangtao Hu, Tianyu Sun and Lei Sha
Materials 2026, 19(1), 61; https://doi.org/10.3390/ma19010061 - 23 Dec 2025
Viewed by 317
Abstract
This study introduces a composite method that integrates a diamond-coated tubular grinding electrode with short electric arc machining (SEAM) for GH4099. Mechanical micro-grinding and arc erosion act concurrently within the inter-electrode gap, enabling an in situ “erode–dress” coupling in which the grinding action [...] Read more.
This study introduces a composite method that integrates a diamond-coated tubular grinding electrode with short electric arc machining (SEAM) for GH4099. Mechanical micro-grinding and arc erosion act concurrently within the inter-electrode gap, enabling an in situ “erode–dress” coupling in which the grinding action levels nascent craters and promotes debris evacuation while SEAM supplies localized thermal–electrical energy for removal. A design-of-experiment scheme probes discharge and grinding factors, and performance is evaluated by material removal behavior, electrode wear, and surface integrity. Within a robust window (12–24 V; 500–2000 r/min), the composite process sustains stable discharges without catastrophic melting at 24 V and yields dense, uniform textures. Representative surfaces show controllable areal roughness (Sa ≈ 14–27 µm across 80#–600#), reflecting a practical finishing–efficiency trade-off. Multi-scale characterization (3D topography, cross-sectional metallography, SEM) evidences suppression of recast steps, macro-protrusions, and irregular pits, with more evenly distributed, shallower grinding traces compared to those with single-mode SEAM. The comparative analyses clarify discharge stabilization and recast-layer mitigation mechanisms, establishing a feasible pathway to high-quality, high-efficiency composite SEAM of GH4099 without resorting to overly aggressive electrical conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

15 pages, 5269 KB  
Article
Study on the Influence Mechanism of Load on the Mechanical Properties of Concrete Under Stress–Seepage–Chemical Coupling
by Qixian Wu, Guanghao Zhang, Zhihao Zhao, Yuan Liu and Fujian Yang
Buildings 2026, 16(1), 55; https://doi.org/10.3390/buildings16010055 - 23 Dec 2025
Viewed by 296
Abstract
The durability of concrete in immersed tunnels is critically influenced by the coupled effects of stress, seepage, and chemical erosion, particularly in inland water environments. However, the spatio-temporal evolution of mechanical property degradation under such multi-field coupling remains insufficiently quantified. Unlike previous studies [...] Read more.
The durability of concrete in immersed tunnels is critically influenced by the coupled effects of stress, seepage, and chemical erosion, particularly in inland water environments. However, the spatio-temporal evolution of mechanical property degradation under such multi-field coupling remains insufficiently quantified. Unlike previous studies focused on “load-ion” or “hydraulic pressure-ion” dual coupling, this work introduces a complete stress–seepage–chemical tri-coupling that incorporates the critical seepage effect, representing a fundamental expansion of the experimental scope to better simulate real-world conditions. This study investigates the degradation mechanisms of concrete in the Shunde Lungui Road inland immersed tunnel subjected to such coupled erosion. A novel aspect of our approach is the application of the micro-indentation technique to quantitatively characterize the spatio-temporal evolution of the local elastic modulus at an unprecedented spatial resolution (0.5 mm intervals), a dimension of analysis not achievable by conventional macro-scale testing. Key findings reveal that the mechanical properties of concrete exhibit an initial enhancement followed by deterioration. This behavior is attributed to the filling of pores by reaction products (gypsum, ettringite, and Friedel’s salt) in the short term, which subsequently induces microcracking as the volume of products exceeds the pore capacity. Furthermore, increasing hydro-mechanical loading significantly accelerates the erosion process. When the load increases from 1.596 kN to 3.718 kN, the influence range of elastic modulus variation expands by 9.2% (from 5.186 mm to 5.661 mm). To quantitatively describe this acceleration effect, a novel load-acceleration erosion coefficient is proposed. The erosion rate increases from 0.0688 mm/d to 0.0778 mm/d, yielding acceleration coefficients between 1.100 and 1.165, quantifying a 10–16.5% acceleration effect beyond what is typically captured in dual-coupling models. These quantitative results provide critical parameters for employing laboratory accelerated tests to evaluate the ionic erosion durability of concrete structures under various loading conditions, thereby contributing to more accurate service life predictions for engineering structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop