Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events
Abstract
1. Introduction
2. Study Site
3. Data Sets and Methods
3.1. Storm and Rainfall Events
3.2. Morphological Data
- Sentinel-2 satellite imagery: Orthorectified satellite images with a spatial resolution of 10 m, spanning from 2015 to 2024. The images used were filtered based on a cloud coverage threshold to ensure data quality.
- Orthophotos: High-resolution aerial orthophotos provided by ICGC, available annually throughout the study period. Additionally, orthophotos acquired just after storm events (e.g., 24 January 2017, 7 December 2019, and 27 January 2020) were also employed.
3.3. Morphological Analysis
4. Results
4.1. Forcing Conditions
4.2. Morphological Changes in the Subaerial Beach
4.3. Morphological Changes in the Shoreface
5. Discussion
5.1. Modes of Stream Delivery
5.2. Coastal Sediment Balance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallop, S.L.; Kennedy, D.M.; Loureiro, C.; Naylor, L.A.; Muñoz-Pérez, J.J.; Jackson, D.W.T.; Fellowes, T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification. Sci. Total Environ. 2020, 731, 139123. [Google Scholar] [CrossRef] [PubMed]
- Pranzini, E.; Rosas, V.; Jackson, N.L.; Nordstrom, K.F. Beach changes from sediment delivered by streams to pocket beaches during a major flood. Geomorphology 2013, 199, 36–47. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Woodroffe, C.D. Coastal compartments: The role of sediment supply and morphodynamics in a beach management context. J. Coast. Conserv. 2023, 27, 58. [Google Scholar] [CrossRef]
- Cipriani, L.; Pranzini, E.; Rosas, V.; L., W. Landuse changes and erosion of pocket beaches in Elba Island (Tuscany, Italy). J. Coast. Res. 2011, 1774–1778. [Google Scholar]
- Marco-Peretó, C.; Durán, R.; Toomey, T.; Guillén, J. Controls on the morphological evolution of embayed beaches: Morphometry versus external forcing. Earth Surf. Process. Landf. 2024, 49, 1289–1302. [Google Scholar] [CrossRef]
- Ranasinghe, R.; McLoughlin, R.; Short, A.; Symonds, G. The Southern Oscillation Index, wave climate, and beach rotation. Mar. Geol. 2004, 204, 273–287. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Short, A.D. New insights into embayed beach rotation: The importance of wave exposure and cross-shore processes. J. Geophys. Res. Earth Surf. 2015, 120, 1470–1484. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, Ó. 24—Mechanisms and timescales of beach rotation. In Sandy Beach Morphodynamics; Jackson, D.W.T., Short, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 593–614. [Google Scholar] [CrossRef]
- Usai, A.; Simeone, S.; Trogu, D.; Porta, M.; De Muro, S. A morphometric analysis of embayed beaches: Southern Sardinia Island. Geomorphology 2025, 483, 109838. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Kinsela, M.A.; Middleton, J.H.; Mumford, P.J.; Splinter, K.D.; Phillips, M.S.; Simmons, J.A.; Hanslow, D.J.; Short, A.D. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Sci. Rep. 2017, 7, 6033. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.; Rosas, V.; Pranzini, E. Pocket beaches of Elba Island (Italy)—Planview geometry, depth of closure and sediment dispersal. Estuar. Coast. Shelf Sci. 2014, 138, 37–46. [Google Scholar] [CrossRef]
- Barnard, P.L.; Warrick, J.A. Dramatic beach and nearshore morphological changes due to extreme flooding at a wave-dominated river mouth. Mar. Geol. 2010, 271, 131–148. [Google Scholar] [CrossRef]
- Cooper, J.A.G. The role of extreme floods in estuary-coastal behaviour: Contrasts between river- and tide-dominated microtidal estuaries. Sediment. Geol. 2002, 150, 123–137. [Google Scholar] [CrossRef]
- Pranzini, E.; Rosas, V. Pocket beach response to high magnitude–low frequency floods (Elba Island, Italy). J. Coast. Res. 2007, 50, 969–977. [Google Scholar] [CrossRef]
- Basterretxea, G.; Orfila, A.; Jordi, A.; Casas, B.; Lynett, P.; Liu, P.L.F.; Duarte, C.M.; Tintoré, J. Seasonal Dynamics of a Microtidal Pocket Beach with Posidonia oceanica Seabeds (Mallorca, Spain). J. Coast. Res. 2004, 20, 1155–1164. [Google Scholar] [CrossRef]
- Durán, R.; Guillén, J.; Ruiz, A.; Jiménez, J.A.; Sagristà, E. Morphological changes, beach inundation and overwash caused by an extreme storm on a low-lying embayed beach bounded by a dune system (NW Mediterranean). Geomorphology 2016, 274, 129–142. [Google Scholar] [CrossRef]
- Simeone, S.; Palombo, L.; Molinaroli, E.; Brambilla, W.; Conforti, A.; De Falco, G. Shoreline Response to Wave Forcing and Sea Level Rise along a Geomorphological Complex Coastline (Western Sardinia, Mediterranean Sea). Appl. Sci. 2021, 11, 4009. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Pintó, J.; Garcia-Lozano, C.; Roig-Munar, F.X. Itinerario Geomorfológico y Paisajístico por la Costa Brava: Bahía de Pals y Playa de Castell (Palamós); CSIC—Instituto de Ciencias del Mar (ICM): Barcelona, Sapin, 2019. [Google Scholar]
- Generalitat de Catalunya. Decret 23/2003, de 21 de gener, pel qual s’inclou l’espai Castell-Cap Roig en el Pla d’espais d’interès natural, aprovat pel Decret 328/1992, de 14 de desembre, i es modifiquen els límits de l’espai Muntanyes de Begur. D. Of. General. Catalunya 2003, 3810, 1637–1638. Available online: https://portaljuridic.gencat.cat/eli/es-ct/d/2003/01/21/23 (accessed on 5 April 2025).
- Bolaños, R.; Jorda, G.; Cateura, J.; Lopez, J.; Puigdefabregas, J.; Gomez, J.; Espino, M. The XIOM: 20 years of a regional coastal observatory in the Spanish Catalan coast. J. Mar. Syst. 2009, 77, 237–260. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef]
- Carrion-Bertran, N.; Falqués, A.; Ribas, F.; Calvete, D.; de Swart, R.; Durán, R.; Marco-Peretó, C.; Marcos, M.; Amores, A.; Toomey, T.; et al. Role of the forcing sources in morphodynamic modelling of an embayed beach. Earth Surf. Dyn. 2024, 12, 819–839. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Sancho-García, A.; Bosom, E.; Valdemoro, H.I.; Guillén, J. Storm-induced damages along the Catalan coast (NW Mediterranean) during the period 1958–2008. Geomorphology 2012, 143–144, 24–33. [Google Scholar] [CrossRef]
- Amores, A.; Marcos, M.; Carrió, D.S.; Gómez-Pujol, L. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 2020, 20, 1955–1968. [Google Scholar] [CrossRef]
- Sancho-García, A.; Guillén, J.; Gracia, V.; Rodríguez-Gómez, A.C.; Rubio-Nicolás, B. The Use of News Information Published in Newspapers to Estimate the Impact of Coastal Storms at a Regional Scale. J. Mar. Sci. Eng. 2021, 9, 497. [Google Scholar] [CrossRef]
- Berdalet, E.; Marrasé, C.; Pelegrí, J.L. Resumen sobre la Formación y Consecuencias de la Borrasca Gloria (19–24 Enero 2020); CSIC—Instituto de Ciencias del Mar (ICM): Barcelona, Spain, 2020. [Google Scholar] [CrossRef]
- de Alfonso, M.; Lin-Ye, J.; García-Valdecasas, J.M.; Pérez-Rubio, S.; Luna, M.Y.; Santos-Muñoz, D.; Ruiz, M.I.; Pérez-Gómez, B.; Álvarez Fanjul, E. Storm Gloria: Sea State Evolution Based on in situ Measurements and Modeled Data and Its Impact on Extreme Values. Front. Mar. Sci. 2021, 8, 646873. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jiménez, J.A. Regional vulnerability analysis of Catalan beaches to storms. Proc. Inst. Civ. Eng.-Eng. 2009, 162, 127–135. [Google Scholar] [CrossRef]
- Dolan, R.; Davis, R.E. An Intensity Scale for Atlantic Coast Northeast Storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H.; Holman, R.A.; Howd, P.A. A simple model for the spatially-variable coastal response to hurricanes. Mar. Geol. 2007, 238, 1–20. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Viñes, M.; Sánchez-Arcilla, A.; Epelde, I.; Mösso, C.; Franco, J.; Sospedra, J.; Abalia, A.; Líria, P.; Grifoll, M.; Ojanguren, A.; et al. Morphodynamic predictions based on Machine Learning. Performance and limits for pocket beaches near the Bilbao port. Front. Environ. Sci. 2025, 13, 1600473. [Google Scholar] [CrossRef]
- Meslard, F.; Balouin, Y.; Robin, N.; Bourrin, F. Assessing the Role of Extreme Mediterranean Events on Coastal River Outlet Dynamics. Water 2022, 14, 2463. [Google Scholar] [CrossRef]
- Zăinescu, F.; Vespremeanu-Stroe, A.; Anthony, E.; Tătui, F.; Preoteasa, L.; Mateescu, R. Flood deposition and storm removal of sediments in front of a deltaic wave-influenced river mouth. Mar. Geol. 2019, 417, 106015. [Google Scholar] [CrossRef]
- Guillén, J.; Bourrin, F.; Palanques, A.; Durrieu de Madron, X.; Puig, P.; Buscail, R. Sediment dynamics during wet and dry storm events on the Têt inner shelf (SW Gulf of Lions). Mar. Geol. 2006, 234, 129–142. [Google Scholar] [CrossRef]
- Scott, T.; Masselink, G.; O’Hare, T.; Saulter, A.; Poate, T.; Russell, P.; Davidson, M.; Conley, D. The extreme 2013/2014 winter storms: Beach recovery along the southwest coast of England. Mar. Geol. 2016, 382, 224–241. [Google Scholar] [CrossRef]
- Cooper, J.a.G.; Jackson, D.W.T. Coasts in Peril? A Shoreline Health Perspective. Front. Earth Sci. 2019, 7, 260. [Google Scholar] [CrossRef]
- Crameri, F. Scientific colour maps. Zenodo 2018. [Google Scholar] [CrossRef]
- Planet Labs PBC. PlanetScope Imagery © 2023. Available online: https://www.planet.com/ (accessed on 18 June 2025).







| Survey | Methods | ||
|---|---|---|---|
| n∘ | Date (dd Month yyyy) | Subaerial Beach | Shoreface |
| 1 | 29 November 2019 | RTK–GNSS system | Single beam bathymetry |
| Event I: 3 December 2019 | |||
| 2 | 11–12 December 2019 | RTK–GNSS system | – |
| Event II: 19 January 2020 | |||
| 3 | 29–30 January 2020 | RTK–GNSS system | Multi beam bathymetry |
| 4 | 8 July 2020 | RTK–GNSS system | Multi beam bathymetry |
| 5 | 14 October 2020 | RTK–GNSS system | – |
| 6 | 21 June 2021 | RTK–GNSS system | – |
| 7 | 18 February 2022 | RTK–GNSS system | – |
| Event | Initial Date | Dur. | Wave Direction | Precip. | Storm Power | ||||
|---|---|---|---|---|---|---|---|---|---|
| (dd Month yyyy) | (m) | (s) | (m) | (h) | (mm) | () | (m) | ||
| I | 3 December 2019 | 3.2 | 11.0 | 5.0 | 57 | ENE | 69.3 | 649 | |
| II | 19 January 2020 | 4.2 | 12.1 | 6.8 | 109 | E | 110.0 | 2246 |
| Survey | Date | Volume | Surface | Survey | Volume Change | Surface Change | ||
|---|---|---|---|---|---|---|---|---|
| (dd Month yyyy) | () | () | () | (%) | () | (%) | ||
| 1 | 29 November 2019 | 27.6 * | 185.1 | |||||
| Event I: 3 December 2019 | ||||||||
| 2 | 11 December 2019 | 29.62 */34.45 | 189.12 | 2−1 | 2.02 * | 7.32 | 4.02 | 2.17 |
| Event II: 19 January 2020 | ||||||||
| 3 | 29 January 2020 | 26.77 | 181.22 | 3−2 | −7.68 | −22.3 | −7.90 | −4.18 |
| 4 | 08 July 2020 | 28.27 | 183.15 | 4−3 | 1.50 | 5.63 | 1.93 | 1.07 |
| 5 | 14 October 2020 | 27.52 | 178.01 | 5−4 | −0.76 | −2.68 | −5.14 | −2.80 |
| 6 | 21 June 2021 | 31.27 | 182.45 | 6−5 | 3.75 | 14.02 | 4.43 | 2.49 |
| 7 | 18 February 2022 | 32.94 | 182.21 | 7−6 | 1.67 | 5.34 | −2.38 | −0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Marco-Peretó, C.; Durán, R.; Simarro, G.; Guillén, J. Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events. Geosciences 2026, 16, 27. https://doi.org/10.3390/geosciences16010027
Marco-Peretó C, Durán R, Simarro G, Guillén J. Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events. Geosciences. 2026; 16(1):27. https://doi.org/10.3390/geosciences16010027
Chicago/Turabian StyleMarco-Peretó, Candela, Ruth Durán, Gonzalo Simarro, and Jorge Guillén. 2026. "Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events" Geosciences 16, no. 1: 27. https://doi.org/10.3390/geosciences16010027
APA StyleMarco-Peretó, C., Durán, R., Simarro, G., & Guillén, J. (2026). Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events. Geosciences, 16(1), 27. https://doi.org/10.3390/geosciences16010027

