Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (787)

Search Parameters:
Keywords = length-to-width ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10184 KB  
Article
Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading
by Zhanhong Guo, Zhaoyang Wang, Weiguang Fan, Hailong Yu and Meng Zou
Fractal Fract. 2025, 9(9), 566; https://doi.org/10.3390/fractalfract9090566 - 28 Aug 2025
Abstract
Inspired by the self-organizing optimization mechanisms in nature, the leaf venation of the royal water lily exhibits a hierarchically branched fractal network that combines excellent mechanical performance with lightweight characteristics. In this study, a structural bionic approach was adopted to systematically investigate the [...] Read more.
Inspired by the self-organizing optimization mechanisms in nature, the leaf venation of the royal water lily exhibits a hierarchically branched fractal network that combines excellent mechanical performance with lightweight characteristics. In this study, a structural bionic approach was adopted to systematically investigate the venation architecture through macroscopic morphological observation, experimental testing, 3D scanning-based reverse reconstruction, and finite element simulation. The influence of key fractal geometric parameters under vertical loading on the mechanical behavior and energy absorption capacity was analyzed. The results demonstrate that the leaf venation of the royal water lily exhibits a core-to-margin gradient fractal pattern, with vein thickness linearly decreasing along the radial direction. At each hierarchical bifurcation, the vein width is reduced to 65–75% of the preceding level, while the bifurcation angle progressively increases with branching order. During leaf development, the fractal dimension initially decreases and then increases, indicating a coordinated functional adaptation between the stiff central trunk and the compliant peripheral branches. The veins primarily follow curved trajectories and form a multidirectional interwoven network, effectively extending the energy dissipation path. Finite element simulations reveal that the fractal venation structure of the royal water lily exhibits pronounced nonlinear stiffness behavior. A smaller bifurcation angle and higher fractal branching level contribute to enhanced specific energy absorption and average load-bearing capacity. Moreover, a moderate branching length ratio enables a favorable balance between yield stiffness, ultimate strength, and energy dissipation. These findings highlight the synergistic optimization between energy absorption characteristics and fractal geometry, offering both theoretical insights and bioinspired strategies for the design of impact-resistant structures. Full article
(This article belongs to the Special Issue Fractal Mechanics of Engineering Materials, 2nd Edition)
19 pages, 886 KB  
Article
Evaluating NT-proBNP-to-Albumin (NTAR) and RDW-to-eGFR (RGR) Ratios as Biomarkers for Predicting Hospitalization Duration and Mortality in Pulmonary Arterial Hypertension (PAH) and Chronic Thromboembolic Pulmonary Hypertension (CTEPH)
by Dragos Gabriel Iancu, Liviu Cristescu, Razvan Gheorghita Mares, Andreea Varga and Ioan Tilea
Diagnostics 2025, 15(17), 2126; https://doi.org/10.3390/diagnostics15172126 - 22 Aug 2025
Viewed by 245
Abstract
Background/Objectives: Prognostic biomarkers are essential for guiding the clinical management of pulmonary hypertension (PH). This study aimed to assess both established and novel biomarkers—specifically, the red cell distribution width-to-estimated glomerular filtration rate ratio (RGR) and the NT-proBNP-to-albumin ratio (NTAR)—for their ability to [...] Read more.
Background/Objectives: Prognostic biomarkers are essential for guiding the clinical management of pulmonary hypertension (PH). This study aimed to assess both established and novel biomarkers—specifically, the red cell distribution width-to-estimated glomerular filtration rate ratio (RGR) and the NT-proBNP-to-albumin ratio (NTAR)—for their ability to predict length of hospital stay (LOS), prolonged LOS (ELOS), in-hospital mortality, and 3-month all-cause mortality in patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Methods: A retrospective analysis was conducted on 275 PH-related hospital regular admissions (148 PAH; 127 CTEPH). Established biomarkers—including serum albumin, neutrophil-to-lymphocyte ratio (NLR), Log NT-proBNP, red cell distribution width (RDW), and estimated glomerular filtration rate (eGFR)—as well as novel indices (RGR, and NTAR) were examined for their relationships with LOS, ELOS, in-hospital mortality, and 3-month all-cause mortality. Spearman correlation, univariate logistic regression, and ROC analyses evaluated biomarker relationships and predictive performance. Results: Serum albumin independently predicted in-hospital and 3-month mortality in PAH, while in CTEPH, it inversely correlated with LOS and strongly predicted prolonged hospitalization and mortality (AUC = 0.833). NLR had limited correlation with LOS but predicted mortality across both groups. RDW correlated weakly with LOS, significantly predicting prolonged hospitalization (threshold > 52.1 fL) in PAH but not in CTEPH. Preserved renal function (eGFR > 60 mL/min/1.73 m2) was inversely associated with LOS in CTEPH patients, suggesting a protective effect. Additionally, reduced eGFR significantly predicted mortality in both PAH (AUC = 0.701; optimal cut-off ≤ 97.4 mL/min/1.73 m2) and CTEPH (AUC = 0.793; optimal cut-off ≤ 59.2 mL/min/1.73 m2) groups. NTAR (AUC = 0.817) outperformed Log NT-proBNP alone in predicting extended hospitalization and mortality, whereas RGR correlated with LOS and predicted in-hospital mortality. Phenotype-specific analysis demonstrated that inflammatory and renal biomarkers had a stronger prognostic impact in CTEPH. Conclusions: Stratification by PH phenotype highlighted the greater prognostic significance of inflammatory and renal indices, particularly in patients with CTEPH. Incorporating NTAR and RGR into clinical workflows may enhance risk stratification and enable more precisely targeted interventions to improve outcomes in pulmonary hypertension. Full article
(This article belongs to the Special Issue Diagnosis, Classification, and Monitoring of Pulmonary Diseases)
Show Figures

Figure 1

20 pages, 7883 KB  
Article
Mechanical Response of Two-Way Reinforced Concrete Slabs Under Combined Horizontal and Vertical Loads in Fire
by Xing Feng, Yingting Wang, Xiangheng Zha, Binhui Jiang, Qingyuan Xu, Wenjun Wang and Faxing Ding
Materials 2025, 18(16), 3880; https://doi.org/10.3390/ma18163880 - 19 Aug 2025
Viewed by 336
Abstract
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. [...] Read more.
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. Therefore, solid finite-element models were established using ABAQUS 6.14 software to simulate the behavior of two-way RC slabs under combined horizontal and vertical loads in fire. The models considered two different support conditions: four edges simply supported (FSS) and adjacent edges simply supported and adjacent edges quasi-fixed (ASSAQF). Based on experimental model verification, mechanical and parametric analyses were performed to further investigate the deflection, stress variation characteristics, and mechanical response of a concrete slab and reinforcements. The results show that (1) The stress redistribution process of two-way RC slabs under combined horizontal and vertical loads with these two support conditions (FSS and ASSAQF) during fire undergoes four stages: elastic, elastic–plastic, plastic, and tensile cracking. (2) Increasing the horizontal load, vertical load level, and length–width ratio and decreasing the slab thickness all shorten the fire resistance to a certain extent. (3) Compared to slabs with FSS, the stronger support condition of slabs with ASSAQF significantly prolongs the duration of the inverted arch effect stage, resulting in a superior fire resistance, with the fire resistance performance improved by 11–59%. Full article
Show Figures

Figure 1

16 pages, 3100 KB  
Article
Reproductive Ecology of the Freshwater Snail, Pila globosa, Considering Environmental Factors in a Tropical Freshwater Swamp Forest
by Suhel Das, Mohammad Amzad Hossain, Gourab Chowdhury, Monayem Hussain, Debasish Pandit, Mrityunjoy Kunda, Petra Schneider and Mohammed Mahbub Iqbal
Conservation 2025, 5(3), 43; https://doi.org/10.3390/conservation5030043 - 18 Aug 2025
Viewed by 280
Abstract
The apple snail Pila globosa is a widely distributed mollusc in tropical freshwater ecosystems, where it plays a crucial ecological role. This study examined the morphometric features, condition indices, and reproductive traits of P. globosa to gain insights into its population structure in [...] Read more.
The apple snail Pila globosa is a widely distributed mollusc in tropical freshwater ecosystems, where it plays a crucial ecological role. This study examined the morphometric features, condition indices, and reproductive traits of P. globosa to gain insights into its population structure in the Ratargul Freshwater Swamp Forest, Bangladesh. Water quality parameters were recorded, and various morphometric measurements were analysed, including their correlations and seasonal variations. The mean values for shell length, shell weight, shell width, spiral length, base length, aperture length, aperture width, and soft tissue wet weight were 4.64 ± 0.97 cm, 38.29 ± 15.27 g, 3.56 ± 0.74 cm, 2.32 ± 0.51 cm, 3.33 ± 0.74 cm, 3.46 ± 0.64 cm, 2.01 ± 0.45 cm, and 18.05 ± 11.39 g, respectively. Linear regression analyses revealed strong correlations among length–length and length–weight parameters, indicating consistent growth patterns. Monthly frequency distributions showed distinct variations in shell size and form. The sex ratio was 1:1.23 (male–female), not significantly different from parity. Histological analysis during the rainy season revealed reproductive activity, including mature ova, previtellogenic and vitellogenic oocytes, and spermatogonia and spermatids. These findings enhance understanding of the species’ biology and its interaction with environmental conditions, offering valuable data for the conservation and management of freshwater mollusc populations in wetland ecosystems. Full article
(This article belongs to the Special Issue Conservation and Ecology of Polymorphic Animal Populations)
Show Figures

Figure 1

16 pages, 3710 KB  
Article
How Many Acerola (Malpighia emarginata DC.) Fruit Are Required for Reliable Postharvest Quality Assessment?
by João Claudio Vilvert, Cristiane Martins Veloso, Flávio de França Souza and Sérgio Tonetto de Freitas
Horticulturae 2025, 11(8), 941; https://doi.org/10.3390/horticulturae11080941 - 9 Aug 2025
Viewed by 335
Abstract
Acerola (Malpighia emarginata DC.) is a tropical fruit known for its high vitamin C (ascorbic acid) content. This study aimed to determine the optimal sample size (OSS) required to reliably estimate postharvest quality traits in acerola. A total of 50 red-ripe fruit [...] Read more.
Acerola (Malpighia emarginata DC.) is a tropical fruit known for its high vitamin C (ascorbic acid) content. This study aimed to determine the optimal sample size (OSS) required to reliably estimate postharvest quality traits in acerola. A total of 50 red-ripe fruit from four cultivars (BRS Rubra, Cabocla, Costa Rica, and Junko) were evaluated individually for their physical (weight, diameter, length, color, and firmness) and chemical (soluble solids content [SSC], titratable acidity [TA], SSC/TA ratio, and vitamin C) attributes. Bootstrap resampling and nonlinear power models were used to model the relationships between sample sizes and the width of 95% confidence intervals (CI95%). Three methods were applied to determine the maximum curvature point (MCP): general, perpendicular distance (PD), and linear response plateau (LRP). The PD and LRP methods led to consistent and conservative OSS estimates, which ranged from 12 to 28 fruit depending on the trait and cultivar. A sample size of 20 fruit was identified as a practical and reliable reference. Chemical traits showed greater variability and required larger samples. Cultivar comparisons indicated that ‘BRS Rubra’, ‘Cabocla’, and ‘Costa Rica’ are suitable for fresh consumption, while ‘Junko’ is ideal for vitamin C extraction. These results provide statistical support for experimental planning in acerola postharvest research. Full article
(This article belongs to the Special Issue Postharvest Physiology and Quality Improvement of Fruit Crops)
Show Figures

Graphical abstract

24 pages, 59662 KB  
Article
Numerical Analysis of Composite Stiffened NiTiNOL-Steel Wire Ropes and Panels Undergoing Nonlinear Vibrations
by Teguh Putranto, Totok Yulianto, Septia Hardy Sujiatanti, Dony Setyawan, Ahmad Fauzan Zakki, Muhammad Zubair Muis Alie and Wibowo Wibowo
Modelling 2025, 6(3), 77; https://doi.org/10.3390/modelling6030077 - 4 Aug 2025
Viewed by 240
Abstract
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation [...] Read more.
This research explores the application of NiTiNOL-steel (NiTi–ST) wire ropes as nonlinear damping devices for mitigating vibrations in composite stiffened panels. A dynamic model is formulated by coupling the composite panel with a modified Bouc–Wen hysteresis representation and employing the first-order shear deformation theory (FSDT), based on Hamilton’s principle. Using the Galerkin truncation method (GTM), the model is converted into a system of nonlinear ordinary differential equations. The dynamic response to axial harmonic excitations is analyzed, emphasizing the vibration reduction provided by the embedded NiTi–ST ropes. Finite element analysis (FEA) validates the model by comparing natural frequencies and force responses with and without ropes. A newly developed experimental apparatus demonstrates that NiTi–ST cables provide outstanding vibration damping while barely affecting the system’s inherent frequency. The N3a configuration of NiTi–ST ropes demonstrates optimal vibration reduction, influenced by excitation frequency, amplitude, length-to-width ratio, and composite layering. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

17 pages, 2112 KB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 427
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

15 pages, 8138 KB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 212
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

20 pages, 8446 KB  
Article
Extraction of Corrosion Damage Features of Serviced Cable Based on Three-Dimensional Point Cloud Technology
by Tong Zhu, Shoushan Cheng, Haifang He, Kun Feng and Jinran Zhu
Materials 2025, 18(15), 3611; https://doi.org/10.3390/ma18153611 - 31 Jul 2025
Viewed by 243
Abstract
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using [...] Read more.
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse. Key pit parameters—including length, width, depth, aspect ratio, and a defect parameter—were statistically analyzed. Results of the Kolmogorov–Smirnov (K–S) test at a 95% confidence level indicated that the directional angle component (θ) did not conform to any known probability distribution. In contrast, the pit width (b) and defect parameter (Φ) followed a generalized extreme value distribution, the aspect ratio (b/a) matched a Beta distribution, and both the pit length (a) and depth (d) were best described by a Gaussian mixture model. The obtained results provide valuable reference for assessing the stress state, in-service performance, and predicted remaining service life of operational stay cables. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 1940 KB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 411
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

10 pages, 2022 KB  
Article
Geometric Effect of the Photo Responsivity of Organic Phototransistors
by Chengtai Li and Xiaochen Ren
Materials 2025, 18(14), 3349; https://doi.org/10.3390/ma18143349 - 17 Jul 2025
Viewed by 241
Abstract
Organic phototransistors exhibit considerably higher photoresponsivity than diode-like photodetectors owing to gate-field-effect amplification. However, the conventional definition of photoresponsivity (R) fails to accurately capture the photoresponsivity trends of transistor-based photodetectors. This study systematically investigates the impact of device geometry—specifically the width-to-length [...] Read more.
Organic phototransistors exhibit considerably higher photoresponsivity than diode-like photodetectors owing to gate-field-effect amplification. However, the conventional definition of photoresponsivity (R) fails to accurately capture the photoresponsivity trends of transistor-based photodetectors. This study systematically investigates the impact of device geometry—specifically the width-to-length (W/L) ratio and photosensitive area—on the responsivity and photocurrent of organic phototransistors. The experimental results reveal that increasing the W/L ratio or decreasing the device area substantially enhances responsivity. A detailed analysis based on the definition of responsivity is presented herein. Finally, we introduce a channel-width-normalized responsivity to compensate for geometric effects, enabling a more accurate evaluation of device performance across different device structures. Overall, our results indicate the potential for optimizing organic phototransistors by tuning their geometric parameters. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

21 pages, 4916 KB  
Article
Fracture Competitive Propagation and Fluid Dynamic Diversion During Horizontal Well Staged Hydraulic Fracturing
by Yujie Yan, Yanling Wang, Hui Li, Qianren Wang and Bo Wang
Processes 2025, 13(7), 2252; https://doi.org/10.3390/pr13072252 - 15 Jul 2025
Viewed by 328
Abstract
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model [...] Read more.
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model was developed to enable real-time interaction computation of flow distribution and fracture propagation. Focusing on the Xinjiang X Block reservoir, this research systematically investigates the influence mechanisms of reservoir properties, engineering parameters (fracture spacing, number of perforation clusters, perforation friction), and temporary plugging parameters on fracture propagation morphology and fluid allocation. Our key findings include the following. (1) Increasing fracture spacing from 10 m to 20 m enhances intermediate fracture length by 38.2% and improves fracture width uniformity by 21.5%; (2) temporary plugging reduces the fluid intake heterogeneity coefficient by 76% and increases stimulated reservoir volume (SRV) by 32%; (3) high perforation friction (7.5 MPa) significantly optimizes fracture uniformity compared to low-friction (2.5 MPa) scenarios, balancing flow allocation ratios between edge and central fractures. The proposed dynamic flow diversion control criteria and quantified temporary plugging design standards provide critical theoretical foundations and operational guidelines for optimizing unconventional reservoir fracturing. Full article
(This article belongs to the Special Issue Complex Fluid Dynamics Modeling and Simulation, 2nd Edition)
Show Figures

Figure 1

19 pages, 7940 KB  
Article
High-Salinity Fluid Downslope Flow on Regolith Layer Examined by Laboratory Experiment: Implications for Recurring Slope Lineae on Martian Surfaces
by Yoshiki Tabuchi, Arata Kioka, Takeshi Tsuji and Yasuhiro Yamada
Fluids 2025, 10(7), 183; https://doi.org/10.3390/fluids10070183 - 12 Jul 2025
Viewed by 412
Abstract
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material [...] Read more.
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material column to investigate how they vary with the granular material column, liquid and its flow rate, and inclination. While pure water produced low aspect ratios (<1.0) on the Martian regolith simulant column, high-salinity fluid (CaCl2(aq)) traces exhibited significantly higher aspect ratios (>4.0), suggesting that pure water alone is insufficient to explain RSL formulation. Furthermore, the aspect ratios of high-salinity fluid traces on Martian regolith simulants were among the highest observed across all studied granular materials with similar particle sizes, aligning closely with actual RSL observed on Martian slopes. The results further suggest that variable ARs of actual RSL at the given slope can partly be explained by variable flow rates of high-salinity flow as well as salinity (i.e., viscosity) of flow. The results can be attributed to the unique granular properties of Martian regolith, characterized by the lowest permeability and Beavers–Joseph slip coefficient among the studied granular materials. This distinctive microstructure surface promotes surface flow over Darcy flow within the regolith column, leading to a narrow and long-distance feature with high aspect ratios observed in Martian RSL. Thus, our findings support that high-salinity flows are the primary driver behind RSL formation on Mars. Our study suggests the presence of salts on the Martian surface and paves the way for further investigation into RSL formulation processes. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

19 pages, 7489 KB  
Article
Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’
by Yun Pan, Daoyuan Chen, Yan Deng, Shunshun Wang, Feng Chen, Fei Wang, Luyu Xue, Yanru Duan, Yunxiao Guan, Jinliao Chen, Xiaotong Ji and Donghui Peng
Plants 2025, 14(14), 2092; https://doi.org/10.3390/plants14142092 - 8 Jul 2025
Viewed by 570
Abstract
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly [...] Read more.
Phalaenopsis is a widely cultivated ornamental plant of considerable economic value worldwide. However, traditional growing medium, sphagnum moss, is limited and non-renewable. It also decomposes slowly and is prone to environmental issues. Therefore, there is an urgent need to identify more environmentally friendly and efficient alternatives. Biochar, a sustainable material with excellent physical and chemical properties, has been recognized as an effective promoter of plant growth. In this study, we investigated the influence of biochar derived from three raw materials (corn straw, bamboo, and walnut) mixed1 with coconut shell at ratios of 1:2, 1:10, and 4:1, on the growth of Phalaenopsis ‘Big Chili’. Over a 150-day controlled experiment, we evaluated multiple growth parameters, including plant height, crown width, total root length, total projected area, total surface area, and root volume. Compared to the traditional growing medium, the optimal biochar-coconut shell mixture (maize straw biochar: coconut shell = 1:2) increased plant height and crown width by 7.55% and 6.68%, respectively. Root metrics improved substantially, with total root length increasing by 10.96%, total projected area by 22.82%, total surface area by 22.14%, and root volume by 38.49%. Root biomass in the optimal treatment group increased by 42.47%, while aboveground and belowground dry weights increased by 6.16% and 77.11%, respectively. These improvements were closely associated with favorable substrate characteristics, including low bulk density, high total and water-holding porosity, moderate aeration, and adequate nutrient availability. These findings demonstrate that substrate characteristics critically influence plant performance and that biochar–coconut shell mixtures, particularly at a 1:2 ratio, represent a viable and sustainable alternative to sphagnum moss for commercial cultivation of Phalaenopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 1791 KB  
Article
Electroosmotic Slip Flow of Powell–Eyring Fluid in a Parallel-Plate Microchannel
by Yuting Jiang
Symmetry 2025, 17(7), 1071; https://doi.org/10.3390/sym17071071 - 5 Jul 2025
Viewed by 2336
Abstract
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s [...] Read more.
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s approximate solution is derived via the homotopy perturbation technique (HPM). Optimized initial guesses enable accurate second-order approximations, dramatically lowering computational complexity. The numerical solution is acquired via the modified spectral local linearization method (SLLM), exhibiting both high accuracy and computational efficiency. Visualizations reveal how the pressure gradient/electric field, the electric double layer (EDL) width, and slip length affect velocity. The ratio of pressure gradient to electric field exhibits a nonlinear modulating effect on the velocity. The EDL is a nanoscale charge layer at solid–liquid interfaces. A thinner EDL thickness diminishes the slip flow phenomenon. The shear-thinning characteristics of the Powell–Eyring fluid are particularly pronounced in the central region under high pressure gradients and in the boundary layer region when wall slip is present. These findings establish a theoretical base for the development of microfluidic devices and the improvement of pharmaceutical carrier strategies. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop