Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Human Serum Samples
2.3. Cells and Virus Samples
2.4. Mosquito Samples
2.5. Gold Nanorods Synthesis
2.6. GNRs Characterization
2.7. Surface Modifications of GNRs and Bioconjugation with Antibodies
2.8. Biosensor Validation
2.9. Methodology Flowchart for Orthoflavivirus Detection Using Functionalized Gold Nanorods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DENV | Orthoflavivirus dengue |
ZIKV | Orthoflavivirus zikaense |
GNPs | Gold Nanoparticles |
GNRs | Gold Nanorods |
LSPR | Localized Surface Plasmon Resonance |
AR | Aspect Ratio |
FBS | Fetal Bovine Serum |
PEI | Polyethyleneimine |
CTAB | Cetyltrimethylammonium Bromide |
HAuCl4 | Chloroauric acid |
AgNO3 | Silver nitrate |
EDAC | N-(3-dimethylaminopropyl)-N′ethylcarbodiimide hydrochloride |
NHS | N-hydroxysuccinimide |
NaBH4 | Sodium borohydride |
MAYV | Alphavirus mayaro |
PDI | Polydispersity index |
DLS | Dynamic Light Scattering |
TEM | Transmission Electron Microscopy |
SPR | Surface Plasmon Resonance |
PFU | Plaque Forming Units |
References
- Cook, S.; Moureau, G.; Kitchen, A.; Gould, E.A.; de Lamballerie, X.; Holmes, E.C.; Harbach, R.E. Molecular Evolution of the Insect-specific Flaviviruses. J. Gen. Virol. 2012, 93, 223–234. [Google Scholar] [CrossRef]
- Hale, G.L. Flaviviruses and the Traveler: Around the World and to Your Stage. A Review of West Nile, Yellow Fever, Dengue, and Zika Viruses for the Practicing Pathologist. Mod. Pathol. 2023, 36, 100188. [Google Scholar] [CrossRef]
- PAHO/WHO. Zika—Epidemiological. 2017, pp. 1–5. Available online: https://www.paho.org/sites/default/files/2017-mar-9-phe-epi-update-zika-virus.pdf (accessed on 16 May 2025).
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes Management for the Control of Aedes-borne Diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006845. [Google Scholar] [CrossRef]
- Tang, K.F.; Ooi, E.E. Diagnosis of Ddengue: An Update. Expert Rev. Anti Infect. Ther. 2012, 10, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Cucunawangsih; Lugito, N.P.H. Trends of Dengue Disease Epidemiology. Virology 2017, 8, 1178122X17695836. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-López, R.; Suaza-Vasco, J.; Rúa-Uribe, G.; Uribe, S.; Gallego-Gómez, J.C. Molecular Detection of Flaviviruses and Alphaviruses in Mosquitoes (Diptera: Culicidae) from Coastal Ecosystems in the Colombian Caribbean. Mem. Inst. Oswaldo Cruz 2016, 111, 625–634. [Google Scholar] [CrossRef]
- Carabali, M.; Lim, J.K.; Velez, D.C.; Trujillo, A.; Egurrola, J.; Lee, K.S.; Kaufman, J.S.; DaSilva, L.J.; Velez, I.D.; Osorio, J.E. Dengue Virus Serological Prevalence and Seroconversion Rates in Children and Adults in Medellin, Colombia: Implications for Vaccine Introduction. Int. J. Infect. Dis. 2017, 58, 27–36. [Google Scholar] [CrossRef]
- Houghton-Trivino, N.; Montaña, D.; Castellanos, J.E. Dengue-yellow Fever Sera Cross-reactivity; Challenges for Diagnosis. Rev. Salud Publica 2008, 10, 299–307. [Google Scholar] [CrossRef]
- Chan, K.R.; Ismail, A.A.; Thergarajan, G.; Raju, C.S.; Yam, H.C.; Rishya, M.; Sekaran, S.D. Serological Cross-reactivity Among Common Flaviviruses. Front. Cell. Infect. Microbiol. 2022, 12, 975398. [Google Scholar] [CrossRef]
- Bona, A.C.D.; Twerdochlib, A.L.; Navarro-Silva, M.A. Detecção do vírus da dengue em populações naturais de mosquitos. Bol. Mal. Salud Amb. 2011, 51, 107–116. [Google Scholar]
- Campos, E.V.R.; de Oliveira, J.L.; Abrantes, D.C.; Rogério, C.B.; Bueno, C.; Miranda, V.R.; Monteiro, R.A.; Fraceto, L.F. Recent Developments in Nanotechnology for Detection and Control of Aedes aegypti-Borne Diseases. Front. Bioeng. Biotechnol. 2020, 8, 102. [Google Scholar] [CrossRef]
- Sene, N.M.; Mavridis, K.; Ndiaye, E.H.; Diagne, C.T.; Gaye, A.; Ngom, E.H.M.; Ba, Y.; Diallo, D.; Vontas, J.; Dia, I.; et al. Insecticide Resistance Status and Mechanisms in Aedes aegypti Populations from Senegal. PLoS Negl. Trop. Dis. 2021, 15, e0009393. [Google Scholar] [CrossRef]
- Krokovsky, L.; Paiva, M.H.S.; Guedes, D.R.D.; Barbosa, R.M.R.; de Oliveira, A.L.S.; Anastácio, D.B.; Pontes, C.R.; Ayres, C.F.J. Arbovirus Surveillance in Field-collected Mosquitoes from Pernambuco-Brazil, During the Triple Dengue, Zika and Chikungunya Outbreak of 2015–2017. Front. Trop. Dis. 2022, 3, 875031. [Google Scholar] [CrossRef]
- Dutta, S.K.; Langenburg, T.A. Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses 2023, 15, 860. [Google Scholar] [CrossRef]
- Rachmawati, Y.; Ekawardhani, S.; Fauziah, N.; Faridah, L.; Watanabe, K. Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review. Trop. Med. Infect. Dis. 2024, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.R.; Tozato, C.C.; Crulhas, B.P.; Castro, G.R.; Junior, J.P.A.; Pedrosa, V.A. An Easy Way to Detect Dengue Virus Using Nanoparticle-antibody Conjugates. Virology 2018, 513, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Baylis, S.A.; Ma, L.; Padley, D.J.; Heath, A.B.; Yu, M.W.; Collaborative Study Group. Collaborative Study to Establish a World Health Organization International Genotype Panel for Parvovirus B19 DNA Nucleic Acid Amplification Technology (NAT)—Based Assays. Vox Sang. 2012, 102, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Heydari-Bafrooei, E.; Ensafi, A.A. Nanomaterials-based Biosensing Strategies for Biomarkers Diagnosis, A Review. Biosens. Bioelectron. 2023, 13, 100245. [Google Scholar] [CrossRef]
- Wang, J.; Drelich, A.J.; Hopkins, C.M.; Mecozzi, S.; Li, L.; Kwon, G.; Hong, S. Gold Nanoparticles in Virus Detection: Recent Advances and Potential Considerations for SARS-CoV-2 Testing Development. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1754. [Google Scholar] [CrossRef]
- Roberts, A.; Mahari, S.; Gandhi, S. Signal Enhancing Gold Nanorods (Gnr) and Antibody Modified Electrochemical Nanosensor for Ultrasensitive Detection of Japanese Encephalitis Virus (Jev) Secretory Non-Structural 1 (Ns1) Biomarker. J. Electroanal. Chem. 2022, 919, 116563. [Google Scholar] [CrossRef]
- Draz, M.S.; Shafiee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Yozon, C.R.; Haes, A.J.; Van Duyne, R.P. Localized Surface Plasmon Resonance Biosensors. Nanomedicine 2006, 1, 219–228. [Google Scholar] [CrossRef]
- Alekseeva, A.V.; Bogatyrev, V.A.; Khlebtsov, B.N.; Mel’nikov, A.G.; Dykman, L.A.; Khlebtsov, N.G. Gold Nanorods: Synthesis and Optical Properties. Colloid J. 2006, 68, 661–678. [Google Scholar] [CrossRef]
- Cao, J.; Sun, T.; Grattan, K.T.V. Gold Nanorod-Based Localized Surface Plasmon Resonance Biosensors: A review. Sens. Actuators B Chem. 2014, 195, 332–351. [Google Scholar] [CrossRef]
- Link, S.; Mohamed, M.B.; El-Sayed, M.A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103, 3073–3077. [Google Scholar] [CrossRef]
- Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir 2008, 24, 5233–5237. [Google Scholar] [CrossRef] [PubMed]
- Pellas, V.; Hu, D.; Mazouzi, Y.; Mimoun, Y.; Blanchard, J.; Guibert, C.; Salmain, M.; Boujday, S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. Biosensors 2020, 10, 146. [Google Scholar] [CrossRef]
- Bang, J.; Park, H.; Choi, W.I.; Sung, D.; Lee, J.H.; Lee, K.Y.; Kim, S. Sensitive Detection of Dengue Virus NS1 by Highly Stable Affibody-Functionalized Gold Nanoparticles. New J. Chem. 2018, 42, 12607–12614. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (NRS) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Brioude, A.; Jiang, X.C.; Pileni, M.P. Optical Properties of Gold Nanorods: DDA Simulations Supported by Experiments. J. Phys. Chem. B 2005, 109, 13138–13142. [Google Scholar] [CrossRef]
- Eustis, S.; El-Sayed, M.A. Determination of the Aspect Ratio Statistical Distribution of Gold Nanorods in Solution from a Theoretical Fit of the Observed Inhomogeneously Broadened Longitudinal Plasmon Resonance Absorption Spectrum. J. Appl. Phys. 2006, 100, 044324. [Google Scholar] [CrossRef]
- Zapp, E.; Westphal, E.; Gallardo, H.; de Souza, B.; Cruz Vieira, I. Liquid Crystal and Gold Nanoparticles Applied to Electrochemical Immunosensor for Cardiac Biomarker. Biosens. Bioelectron. 2014, 59, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Vigderman, L.; Zubarev, E.R. High-Yield Synthesis of Gold Nanorods with Longitudinal SPR Peak Greater than 1200 nm Using Hydroquinone as a Reducing Agent. Chem. Mater. 2013, 25, 1450–1457. [Google Scholar] [CrossRef]
- Marinakos, S.M.; Chen, S.; Chilkoti, A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal. Chem. 2007, 79, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
- Versiani, A.F.; Martins, E.M.N.; Andrade, L.M.; Cox, L.; Pereira, G.C.; Barbosa-Stancioli, E.F.; Nogueira, M.L.; Ladeira, L.O.; da Fonseca, F.G. Nanosensors Based on LSPR are Able to Serologically Differentiate Dengue from Zika Infections. Sci. Rep. 2020, 10, 11302. [Google Scholar] [CrossRef]
- Casas, J.; Venkataramasubramani, M.; Wang, Y.; Tang, L. Replacement of Cetyltrimethylammoniumbromide Bilayer on Gold Nanorod by Alkanethiol Crosslinker for Enhanced Plasmon Resonance Sensitivity. Biosens. Bioelectron. 2013, 49, 525–530. [Google Scholar] [CrossRef]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue Viremia Titer, Antibody Response Pattern, and Virus Serotype Correlate with Disease Severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef]
- Medina, F.A.; Torres, G.; Acevedo, J.; Fonseca, S.; Casiano, L.; De León-Rodríguez, C.M.; Santiago, G.A.; Doyle, K.; Sharp, T.M.; Alvarado, L.I.; et al. Duration of the Presence of Infectious Zika Virus in Semen and Serum. J. Infect. Dis. 2019, 219, 31–40. [Google Scholar] [CrossRef]
- Choy, M.M.; Sessions, O.; Gubler, D.J.; Ooi, E.E. Production of Infectious Dengue Virus in Aedes Aegypti is Dependent on the Ubiquitin Proteasome Pathway. PLoS Negl. Trop. Dis. 2015, 9, e0004227. [Google Scholar] [CrossRef]
- Sarkar, T.; Dutta, N.; Dutta, G. A New Biosensing Platform Based on L-Cysteine-Capped Fe3o4 Nanoparticles Embedded in Chitosan-Mwcnt Matrix: Electrochemical Kinetic and Sensing Studies. Biosens. Bioelectron. 2023, 15, 100412. [Google Scholar] [CrossRef]
- Naidoo, L.; Uwaya, G.E.; Meier, F.; Bisetty, K. A Novel Mb-Tagged Aptasensor for Aflatoxin B1 Detection in Food Using Fe3o4 Nanoparticles Substantiated with In Silico Modelling. Biosens. Bioelectron. 2023, 15, 100416. [Google Scholar] [CrossRef]
- Argondizzo, A.P.C.; Silva, D.; Missailidis, S. Application of Aptamer-Based Assays to the Diagnosis of Arboviruses Important for Public Health in Brazil. Int. J. Mol. Sci. 2021, 22, 159. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Chik, C.E.N.; Mahdi, M.A. Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein. Sens. Bio-Sensing Res. 2018, 20, 16–21. [Google Scholar] [CrossRef]
- André, P.; Caro, V.; Njamkepo, E.; Wendelboe, A.M.; Van Rie, A.; Guiso, N. Comparison of Serological and Real-Time PCR Assays To Diagnose Bordetella pertussis Infection in 2007. J. Clin. Microbiol. 2008, 46, 1672–1677. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, H.; Fu, Q.; Peng, J.; Wang, Y.; Du, J.; Zhou, Y.; Zhan, L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 2010, 26, 404–410. [Google Scholar] [CrossRef]
- Singh, K.P.; Mishra, G.; Jain, P.; Pandey, N.; Nagar, R.; Sharma, S.; Gupta, G.; Kumar, R.; Dhiman, R.C.; Tuli, N.R. Co-positivity of anti-dengue virus and anti-Japanese encephalitis virus IgM in endemic area: Co-infection or cross reactivity? Asian Pac. J. Trop. Med. 2014, 7, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Vanroye, F.; Van Bossche, D.; Brosius, I.; Tack, B.; Esbroeck, M.V.; Jacobs, J. COVID-19 antibody detecting rapid diagnostic tests show high cross-reactivity when challenged with pre-pandemic malaria, schistosomiasis and dengue samples. Diagnostics 2021, 11, 1163. [Google Scholar] [CrossRef] [PubMed]
- Valenstein, P. Laboratory turnaround time. Am. J. Clin. Pathol. 1996, 105, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Tabak, Y.P.; Vankeepuram, L.; Ye, G.; Jeffers, K.; Gupta, V.; Murray, P.R. Blood culture turnaround time in US acute care hospitals and implications for laboratory process optimization. J. Clin. Microbiol. 2018, 56, e00500–e00518. [Google Scholar] [CrossRef]
- Steindel, S.J.; Jones, B.A. Routine outpatient laboratory test turnaround times and practice patterns: A College of American Pathologists Q-Probes study. Arch. Pathol. Lab. Med. 2002, 126, 11–18. [Google Scholar] [CrossRef]
- Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends Anal. Chem. 2017, 91, 26–41. [Google Scholar] [CrossRef]
- Bissonnette, L.; Bergeron, M.G. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev. Mol. Diagn. 2017, 17, 471–494. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, J. Construction of plasmonic nano-biosensor-based devices for point-of-care testing. Small Methods 2017, 1, 1700197. [Google Scholar] [CrossRef]
- Petralia, S.; Conoci, S. PCR technologies for point of care testing: Progress and perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Kadja, T.; Liu, C.; Sun, Y.; Chodavarapu, V.P. Low-cost, real-time polymerase chain reaction system for point-of-care medical diagnosis. Sensors 2022, 22, 2320. [Google Scholar] [CrossRef] [PubMed]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Chen, P.; Chung, M.T.; McHugh, W.; Nidetz, R.; Li, Y.; Fu, J.; Cornell, T.T.; Shanley, T.P.; Kurabayashi, K. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 2015, 9, 4173–4181. [Google Scholar] [CrossRef]
- Ruemmele, J.A.; Hall, W.P.; Ruvuna, L.K.; Van Duyne, R.P. A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 2013, 85, 4560–4566. [Google Scholar] [CrossRef]
- Dutta, D.; Ghosh, A.; Dutta, C.; Sukla, S.; Biswas, S. Cross-reactivity of SARS-CoV-2 with other pathogens, especially dengue virus: A historical perspective. J. Med. Virol. 2023, 95, e28557. [Google Scholar] [CrossRef]
- Hall, W.P.; Ngatia, S.N.; Van Duyne, R.P. LSPR biosensor signal enhancement using nanoparticle—Antibody conjugates. J. Phys. Chem. C 2011, 115, 1410–1414. [Google Scholar] [CrossRef]
- Guo, L.; Kim, D.H. LSPR biomolecular assay with high sensitivity induced by aptamer-antigen-antibody sandwich complex. Biosens. Bioelectron. 2012, 31, 567–570. [Google Scholar] [CrossRef]
- Shu, T.; Hunter, H.; Zhou, Z.; Sun, Y.; Cheng, X.; Ma, J.; Hao, N.; Su, L. Portable point-of-care diagnostic devices: An updated review. Anal. Methods 2021, 13, 4998–5019. [Google Scholar] [CrossRef]
- Rampazzi, S.; Danese, G.; Leporati, F.; Marabelli, F. A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection. IEEE Trans. Instrum. Meas. 2015, 65, 317–327. [Google Scholar] [CrossRef]
- Huang, C.; Slater, B.; Campbell, W.; Howard, J.; White, D. Detection of arboviral RNA directly from mosquito homogenates by reverse-transcription–polymerase chain reaction. J. Virol. Methods 2001, 94, 121–128. [Google Scholar] [CrossRef]
- Almeida, P.R.; Eisen, A.K.A.; Demoliner, M.; Spilki, F.R. RT-dPCR in mosquito samples for ZIKV detection: Effects of RNA extraction and reverse transcription in target concentration. Viruses 2020, 12, 827. [Google Scholar] [CrossRef]
- Avramov, M.; Gallo, V.; Gross, A.; Lapen, D.R.; Ludwig, A.; Iranpour, M.; Ogden, N.H.; Kotwa, J.D.; Dibernardo, A.; Drebot, M.A. A cost-effective RNA extraction and RT-qPCR approach to detect California serogroup viruses from pooled mosquito samples. Sci. Rep. 2024, 14, 2534. [Google Scholar] [CrossRef]
Feature | Traditional Methods (PCR/Serology) | Gold Nanorod Plasmon Resonance (GNR-LSPR) | References |
---|---|---|---|
Sensitivity | High (PCR), Moderate (Serology) | High (especially with specific functionalized antibodies) | [25,45,46] |
Specificity | High (PCR), Variable (Serology, prone to cross-reactivity) | Depends on antibody specificity; high when using well-characterized antibodies | [25,45,47,48] |
Time to Result | Several hours to days | Rapid (typically minutes to a few hours) | [49,50,51] |
Infrastructure Requirement | Requires advanced lab equipment and trained personnel | Minimal equipment; potentially portable systems | [52,53,54] |
Cost per Test | High (especially PCR) | Moderate to low (after nanoparticle preparation) | [55,56] |
Multiplexing Capability | Limited (PCR can multiplex with design; serology is usually single target) | Limited, but can be enhanced with sensor array design | [57,58,59] |
Cross-reactivity Risk | High for serology (especially in co-endemic regions) | Low if antibody selection is optimal | [47,48,60] |
Reusability of Components | Generally single-use | Sensors may be reusable depending on design | [61,62] |
Field Applicability | Limited | High potential for point-of-care or field use | [63,64] |
Detection in Mosquito Samples | Possible but labor-intensive (RNA extraction + PCR) | Direct detection possible with simple sample preparation | [65,66,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, E.M.d.C.; Dias, B.d.P.; Ferreira, C.S.; Santos, S.M.S.A.d.; Gopalsamy, R.G.; Martins, E.M.d.N.; Magalhães, C.L.d.B.; Fonseca, F.G.d.; Coelho, L.F.L.; Fantini, C.; et al. Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance. Sensors 2025, 25, 4775. https://doi.org/10.3390/s25154775
Ribeiro EMdC, Dias BdP, Ferreira CS, Santos SMSAd, Gopalsamy RG, Martins EMdN, Magalhães CLdB, Fonseca FGd, Coelho LFL, Fantini C, et al. Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance. Sensors. 2025; 25(15):4775. https://doi.org/10.3390/s25154775
Chicago/Turabian StyleRibeiro, Erica Milena de Castro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, and et al. 2025. "Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance" Sensors 25, no. 15: 4775. https://doi.org/10.3390/s25154775
APA StyleRibeiro, E. M. d. C., Dias, B. d. P., Ferreira, C. S., Santos, S. M. S. A. d., Gopalsamy, R. G., Martins, E. M. d. N., Magalhães, C. L. d. B., Fonseca, F. G. d., Coelho, L. F. L., Fantini, C., Ladeira, L. O., Borges, L. P., & Silva, B. d. M. (2025). Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance. Sensors, 25(15), 4775. https://doi.org/10.3390/s25154775