Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’
Abstract
1. Introduction
2. Results
2.1. Physical and Chemical Properties of the Substrate
2.2. Morphological Traits of the Aboveground Part of Phalaenopsis
2.3. Morphological Traits of the Belowground Part of Phalaenopsis ‘Big Chili’
2.4. Biomass Parameters of Phalaenopsis ‘Big Chili’
2.5. Phalaenopsis ‘Big Chili’ Physiological Parameters
2.6. Phalaenopsis ‘Big Chili’ Photosynthetic Pigments
2.7. Relationship Between the Physicochemical Properties of Substrate and the Characteristics of Phalaenopsis
2.8. Comprehensive Evaluation of Media Suitability for Phalaenopsis ‘Big Chili’ Cultivation
3. Discussion
3.1. Influence of Substrate Physicochemical Properties on Morphological Traits of Phalaenopsis
3.2. Effects on Physiological Responses and Integrated Performance of Phalaenopsis
4. Materials and Methods
4.1. Materials and Growing Medium Preparation
4.2. Experimental Design
4.3. Analysis of the Properties of Growing Media
4.4. Measurements of Plant Growth Parameters
4.5. Measurement of Root Parameters
4.6. Measuring Plant Biomass
4.7. Measurement of Plant Physiological Parameters
4.8. Measurement of Photosynthetic Pigments
4.9. Calculations and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartati, S. Phalaenopsis Orchid Hybrid Diversity based on Flower and Leaves Morphology. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1327–1333. [Google Scholar] [CrossRef]
- Iiyama, C.M.; Vilcherrez-Atoche, J.A.; Germanà, M.A.; Vendrame, W.A.; Cardoso, J.C. Breeding of ornamental orchids with focus on Phalaenopsis: Current approaches, tools, and challenges for this century. Heredity 2024, 132, 163–178. [Google Scholar] [CrossRef]
- Tiwari, P.; Sharma, A.; Bose, S.K.; Park, K.-I. Advances in orchid biology: Biotechnological achievements, translational success, and commercial outcomes. Horticulturae 2024, 10, 152. [Google Scholar] [CrossRef]
- Caron, J.; Rochefort, L. Use of peat in growing media: State of the art on industrial and scientific efforts envisioning sustainability. In Proceedings of the International Symposium on Responsible Peatland Management and Growing Media Production, Québec City, QC, Canada, 13–17 June 2011; pp. 15–22. [Google Scholar]
- Sergeevna, P.A. Chemical composition and sorption characteristics of moss and peat. Carbon 2025, 50, 53. [Google Scholar]
- Glatzel, S.; Rochefort, L. Growing Sphagnum: Foreword. Mires Peat 2017, 20, 1–4. [Google Scholar]
- Ma, X.Y.; Xu, H.; Cao, Z.Y.; Shu, L.; Zhu, R.L. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Glob. Change Biol. 2022, 28, 6419–6432. [Google Scholar] [CrossRef]
- Santelmann, M.V.; Gorham, E.; Casper, K. Growth and productivity of the moss Sphagnum fuscum in bogs of northeastern North America. Botany 2025, 103, 1–16. [Google Scholar] [CrossRef]
- Kumar, S. Sphagnum moss as a growing media constituent: Some effects of harvesting, processing and storage. Mires Peat 2017, 20, 7. [Google Scholar]
- Li, S.; Tasnady, D. Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C-J. Carbon Res. 2023, 9, 67. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a key player in sustainable agriculture and human health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T. The potential of biochar as a microbial carrier for agricultural and environmental applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Soja, G.; Bárta, J.; Chen, W.-H.; Amirahmadi, E. How do different feedstocks and pyrolysis conditions effectively change biochar modification scenarios? A critical analysis of engineered biochars under H2O2 oxidation. Energy Convers. Manag. 2024, 300, 117924. [Google Scholar] [CrossRef]
- Hernandez-Mena, L.E.; Pécoraa, A.; Beraldob, A.L. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. Trans. 2014, 37, 115–120. [Google Scholar]
- Niu, M.; Chen, X.; Pan, Y.; Wang, S.; Xue, L.; Duan, Y.; Ahmad, S.; Zhou, Y.; Zhao, K.; Peng, D. Biochar effectively promoted growth of Ardisia crenata by affecting the soil physicochemical properties. Plants 2024, 13, 1736. [Google Scholar] [CrossRef]
- Okebalama, C.B.; Marschner, B. Reapplication of biochar, sewage waste water, and NPK fertilizers affects soil fertility, aggregate stability, and carbon and nitrogen in dry-stable aggregates of semi-arid soil. Sci. Total Environ. 2023, 866, 161203. [Google Scholar] [CrossRef]
- Rasool, M.; Akhter, A.; Soja, G.; Haider, M.S. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 2021, 11, 6092. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Tuckeldoe, R.B.; Maluleke, M.K.; Adriaanse, P. The effect of coconut coir substrate on the yield and nutritional quality of sweet peppers (Capsicum annuum) varieties. Sci. Rep. 2023, 13, 2742. [Google Scholar] [CrossRef]
- Shanmugam, N.; RAZALI, N.F.B. The Study on the Growth Rate and Peat Characteristics of Chilli Plantation Utilising Coconut Husk and Peanut Shell as Sustainable Alternative to Soil Cultivation. Prog. Eng. Appl. Technol. 2023, 4, 1009–1021. [Google Scholar]
- Dissanayaka, D.; Nuwarapaksha, T.; Udumann, S.; Dissanayake, D.; Atapattu, A.J. A sustainable way of increasing productivity of coconut cultivation using cover crops: A review. Circ. Agric. Syst. 2022, 2, 7. [Google Scholar] [CrossRef]
- Sarki, J.; Hassan, S.; Aigbodion, V.; Oghenevweta, J. Potential of using coconut shell particle fillers in eco-composite materials. J. Alloys Compd. 2011, 509, 2381–2385. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Z.; Wang, F.; Wang, J.; Zhou, X.; Cui, K.; Yu, Z.; Zhang, K.; Jiang, Y.; Salin, K.R. Suitability of coconut bran and biochar as a composite substrate for lettuce cultivation in aquaponic systems. Heliyon 2024, 10, e35515. [Google Scholar]
- Zandoná, A.; de Faria, R.; Lone, A.; Hoshino, R. Alternative substrates to the Sphagnum moss in the acclimatization of Arundina graminifolia “alba” (Orchidaceae). Rev. Bras. Hortic. Ornam. 2014, 20, 7–11. [Google Scholar]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Nehela, Y.; Mazrou, Y.S.; Alshaal, T.; Rady, A.M.; El-Sherif, A.M.; Omara, A.E.-D.; Abd El-Monem, A.M.; Hafez, E.M. The integrated amendment of sodic-saline soils using biochar and plant growth-promoting rhizobacteria enhances maize (Zea mays L.) resilience to water salinity. Plants 2021, 10, 1960. [Google Scholar] [CrossRef]
- Hwang, S.J.; Jeong, B.R. Growth of Phalaenopsis plants in five different potting media. J. Jpn. Soc. Hortic. Sci. 2007, 76, 319–326. [Google Scholar] [CrossRef]
- de Faria, R.T.; Stegani, V.; Bertoncelli, D.; Alves, G.A.C.; de Assis, A.M. Substrates for the cultivation of epiphytic orchids. Semin. Ciências Agrárias 2018, 39, 2851–2866. [Google Scholar]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Younis, A.; Ahsan, M.; Akram, A.; Lim, K.-B.; Zulfiqar, F.; Tariq, U. Use of organic substrates in sustainable horticulture. In Biostimulants for Crop Production and Sustainable Agriculture; Hasanuzzaman, M., Hawrylak Nowak, B., Islam, T., Fujita, M., Eds.; CAB International: Oxford, UK; Boston, MA, USA, 2022; pp. 122–138. [Google Scholar]
- Ketsa, S.; Warrington, I.J. The Dendrobium orchid: Botany, horticulture, and utilization. Crop Sci. 2023, 63, 1829–1888. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Geng, S.; Zhang, X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front. Plant Sci. 2025, 16, 1545912. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Zhang, S.; Liu, Q.; Li, H. Effects of nitrogen level and soil moisture on sweet potato root distribution and soil chemical properties. J. Soil Sci. Plant Nutr. 2021, 21, 536–546. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Kumar, N.; Haldar, S.; Saikia, R. Root exudation as a strategy for plants to deal with salt stress: An updated review. Environ. Exp. Bot. 2023, 216, 105518. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, N.D.H.; Abadía, J.; Germ, M.; Gholami, R.; Abdelrahman, M. Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers. Agric. Water Manag. 2022, 261, 107357. [Google Scholar] [CrossRef]
- Shahid, S.; Ali, Q.; Ali, S.; Al-Misned, F.A.; Maqbool, S. Water deficit stress tolerance potential of newly developed wheat genotypes for better yield based on agronomic traits and stress tolerance indices: Physio-biochemical responses, lipid peroxidation and antioxidative defense mechanism. Plants 2022, 11, 466. [Google Scholar] [CrossRef]
- Rathinapriya, P.; Maharajan, T.; Jothi, R.; Prabakaran, M.; Lee, I.-B.; Yi, P.-H.; Jeong, S.T. Unlocking biochar impacts on abiotic stress dynamics: A systematic review of soil quality and crop improvement. Front. Plant Sci. 2025, 15, 1479925. [Google Scholar] [CrossRef] [PubMed]
- Trelka, T.; Breś, W.; Jóźwiak, A.; Kozłowska, A. Phalaenopsis cultivation in different media. Part II. Nutrients and chlorophyll concentration in leaves and roots. Acta Sci. Pol. Hortorum Cultus 2010, 9, 95–104. [Google Scholar]
- Schafer, G.; Lerner, B.L. Physical and chemical characteristics and analysis of plant substrate. Ornam. Hortic. 2022, 28, 181–192. [Google Scholar] [CrossRef]
- Gruda, N.S. Advances in soilless culture and growing media in today’s horticulture—An editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd_Allah, E.F.; et al. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants 2024, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Poornachandhra, C.; Jayabalakrishnan, R.M.; Balasubramanian, G.; Lakshmanan, A.; Selvakumar, S.; Maheswari, M.; John, J.E. Coconut husk fiber: A low-cost bioresource for the synthesis of high-value nanocellulose. Biointerface Res. Appl. Chem. 2023, 13, 504. [Google Scholar]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef] [PubMed]
- Shamrikova, E.; Vanchikova, E.; Lu-Lyan-Min, E.; Kubik, O.; Zhangurov, E. Which method to choose for measurement of oranic and inorganic carbon content in carbonate-rich soils? Advantages and disadvantages of dry and wet chemistry. Catena 2023, 228, 107151. [Google Scholar] [CrossRef]
- Liang, Z.; Li, J.; Cao, X.; Tang, Y.; Mo, F.; Nangia, V.; Liu, Y. Responses of wheat nitrogen uptake and utilization, rhizosphere bacterial composition and nitrogen-cycling functional genes to nitrogen application rate, planting density and their interactions. Appl. Soil Ecol. 2024, 193, 105143. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Q.; Li, W.; Liao, F.; Wang, J.; Zhang, H.; Yang, Y. Changes in soil phosphorus forms affect soil zinc availability in distinct paddy rice soil textures under long-term phosphate fertilization. Eur. J. Agron. 2025, 168, 127615. [Google Scholar] [CrossRef]
- Ullah, R.; Abbas, Z.; Bilal, M.; Habib, F.; Iqbal, J.; Bashir, F.; Noor, S.; Qazi, M.A.; Niaz, A.; Baig, K.S. Method development and validation for the determination of potassium (K2O) in fertilizer samples by flame photometry technique. J. King Saud Univ.-Sci. 2022, 34, 102070. [Google Scholar] [CrossRef]
- Aljuaifari, W.A.R.; Al-fadhal, F.A.; Kadum, H.; Hadi, W.H.; Center, R.S. Study physiology of roots growth for soybean by WinRhizo pro-software with Vam3 genes. In Proceedings of the International Conference on Promotion of Scientific & Regional Cooperation on Food and Agricultural Sciences, Mashhad, Iran, 24 August 2018. [Google Scholar]
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef]
- Zhang, W.e.; Pan, X.; Zhao, Q.; Zhao, T. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides. Hortic. Plant J. 2021, 7, 256–266. [Google Scholar] [CrossRef]
- Bahrololomi, S.M.J.; Raeini Sarjaz, M.; Pirdashti, H. The effect of drought stress on the activity of antioxidant enzymes, malondialdehyde, soluble protein and leaf total nitrogen contents of soybean (Glycine max L.). Environmental Stresses in Crop Sciences 2019, 12, 17–28. [Google Scholar]
- Vendruscolo, R.G.; Fernandes, A.S.; Fagundes, M.B.; Zepka, L.Q.; de Menezes, C.R.; Jacob-Lopes, E.; Wagner, R. Development of a new method for simultaneous extraction of chlorophylls and carotenoids from microalgal biomass. J. Appl. Phycol. 2021, 33, 1987–1997. [Google Scholar] [CrossRef]
Trait | CK | C | BC1 | BC2 | BC3 | BZ1 | BZ2 | BZ3 | BW1 | BW2 | BW3 |
---|---|---|---|---|---|---|---|---|---|---|---|
PH | 0.736 | 0.188 | 1.000 | 0.864 | 0.538 | 0.141 | 0.070 | 0.000 | 0.658 | 0.725 | 0.392 |
CW | 0.725 | 0.174 | 1.000 | 0.848 | 0.671 | 0.378 | 0.333 | 0.000 | 0.501 | 0.563 | 0.391 |
LL | 0.859 | 0.000 | 1.000 | 0.580 | 0.156 | 0.491 | 0.278 | 0.081 | 0.223 | 0.802 | 0.137 |
LW | 0.968 | 0.152 | 1.000 | 0.863 | 0.559 | 0.250 | 0.289 | 0.000 | 0.306 | 0.867 | 0.196 |
LT | 0.897 | 0.437 | 0.960 | 1.000 | 0.643 | 0.162 | 0.119 | 0.000 | 0.683 | 0.885 | 0.481 |
SD | 0.993 | 0.293 | 0.998 | 1.000 | 0.702 | 0.179 | 0.162 | 0.000 | 0.378 | 0.544 | 0.212 |
AFW | 0.956 | 0.322 | 1.000 | 0.984 | 0.643 | 0.302 | 0.227 | 0.000 | 0.376 | 0.823 | 0.379 |
BFW | 0.617 | 0.428 | 1.000 | 0.791 | 0.204 | 0.308 | 0.483 | 0.000 | 0.498 | 0.756 | 0.431 |
ADW | 0.712 | 0.116 | 0.794 | 1.000 | 0.496 | 0.107 | 0.078 | 0.000 | 0.236 | 0.667 | 0.223 |
BDW | 0.150 | 0.006 | 1.000 | 0.984 | 0.110 | 0.065 | 0.264 | 0.000 | 0.503 | 0.680 | 0.194 |
TRL | 0.436 | 0.561 | 0.606 | 0.929 | 0.000 | 0.692 | 1.000 | 0.118 | 0.651 | 0.882 | 0.400 |
TPA | 0.629 | 0.506 | 0.963 | 1.000 | 0.079 | 0.437 | 0.768 | 0.000 | 0.649 | 0.960 | 0.464 |
TSA | 0.638 | 0.514 | 0.963 | 1.000 | 0.079 | 0.437 | 0.768 | 0.000 | 0.649 | 0.972 | 0.464 |
AD | 0.660 | 0.332 | 1.000 | 0.587 | 0.378 | 0.074 | 0.227 | 0.000 | 0.437 | 0.545 | 0.494 |
RV | 0.606 | 0.384 | 1.000 | 0.821 | 0.142 | 0.247 | 0.484 | 0.000 | 0.511 | 0.763 | 0.409 |
Chla | 1.000 | 0.000 | 0.866 | 0.539 | 0.872 | 0.427 | 0.463 | 0.595 | 0.178 | 0.934 | 0.378 |
Chlb | 0.382 | 0.786 | 0.392 | 0.609 | 0.031 | 0.000 | 0.278 | 0.131 | 1.000 | 0.184 | 0.682 |
Car | 0.426 | 0.026 | 0.051 | 0.350 | 1.000 | 0.000 | 0.537 | 0.281 | 0.137 | 0.138 | 0.027 |
Chl(a + b) | 0.941 | 0.614 | 0.847 | 0.735 | 0.438 | 0.000 | 0.398 | 0.333 | 1.000 | 0.661 | 0.794 |
SS | 0.672 | 0.516 | 0.891 | 1.000 | 0.216 | 0.000 | 0.594 | 0.187 | 0.926 | 0.767 | 0.452 |
SP | 0.645 | 0.368 | 0.706 | 1.000 | 0.000 | 0.584 | 0.628 | 0.286 | 0.550 | 0.645 | 0.532 |
REC | 0.304 | 1.000 | 1.000 | 0.916 | 0.350 | 0.922 | 0.874 | 0.524 | 0.373 | 0.920 | 0.376 |
MDA | 0.458 | 0.782 | 0.979 | 0.769 | 0.530 | 0.305 | 0.900 | 0.000 | 0.889 | 1.000 | 0.699 |
SOD | 0.976 | 0.750 | 1.000 | 0.976 | 0.000 | 0.441 | 0.471 | 0.275 | 0.823 | 0.939 | 0.396 |
(Xᵢ) | 0.683 | 0.386 | 0.876 | 0.839 | 0.368 | 0.290 | 0.446 | 0.117 | 0.547 | 0.734 | 0.400 |
Rank | 4 | 8 | 1 | 2 | 9 | 10 | 6 | 11 | 5 | 3 | 7 |
Treatment | Substrates |
---|---|
CK | Sphagnum moss |
C | Coconut shell |
BC1 | Maize straw biochar:Coconut shell = 1:2 |
BC2 | Maize straw biochar:Coconut shell = 1:10 |
BC3 | Maize straw biochar:Coconut shell = 4:1 |
BZ1 | Bamboo biochar:Coconut shell = 1:2 |
BZ2 | Bamboo biochar:Coconut shell = 1:10 |
BZ3 | Bamboo biochar:Coconut shell = 4:1 |
BW1 | Walnut shell biochar:Coconut shell = 1:2 |
BW2 | Walnut shell biochar:Coconut shell = 1:10 |
BW3 | Walnut shell biochar:Coconut shell = 4:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Chen, D.; Deng, Y.; Wang, S.; Chen, F.; Wang, F.; Xue, L.; Duan, Y.; Guan, Y.; Chen, J.; et al. Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’. Plants 2025, 14, 2092. https://doi.org/10.3390/plants14142092
Pan Y, Chen D, Deng Y, Wang S, Chen F, Wang F, Xue L, Duan Y, Guan Y, Chen J, et al. Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’. Plants. 2025; 14(14):2092. https://doi.org/10.3390/plants14142092
Chicago/Turabian StylePan, Yun, Daoyuan Chen, Yan Deng, Shunshun Wang, Feng Chen, Fei Wang, Luyu Xue, Yanru Duan, Yunxiao Guan, Jinliao Chen, and et al. 2025. "Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’" Plants 14, no. 14: 2092. https://doi.org/10.3390/plants14142092
APA StylePan, Y., Chen, D., Deng, Y., Wang, S., Chen, F., Wang, F., Xue, L., Duan, Y., Guan, Y., Chen, J., Ji, X., & Peng, D. (2025). Biochar-Coconut Shell Mixtures as Substrates for Phalaenopsis ‘Big Chili’. Plants, 14(14), 2092. https://doi.org/10.3390/plants14142092