Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Measurement
2.2. Three-Dimensional Scanning of the Royal Water Lily Leaf Veins
2.3. Three-Dimensional Reconstruction of the Royal Water Lily Leaf Vein Model
2.3.1. Compressive Performance of the Royal Water Lily Leaf Vein
2.3.2. Reverse Engineering and 3D Modeling of Leaf Veins
2.4. Validation and Parameters of the Simulation Model
2.4.1. Quasi-Static Compression Test
2.4.2. Simulation Parameters and Conditions
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Macrostructural Analysis of Leaf Venation
3.1.1. Thickness and Width Analysis of Midrib Cross-Sections
3.1.2. Analysis of Vein Bifurcation Angles
3.1.3. Fractal Dimension Analysis of Leaf Veins
3.1.4. Morphological Analysis of Intercostal Veins in the Royal Water Lily
3.1.5. Vein Length Analysis
3.2. Simulation Results Analysis
3.2.1. Mechanical Performance of the Overall Vein Structure
3.2.2. Analysis of Fractal Parameters Influencing the Energy Absorption Characteristics of Leaf Veins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B-Eng. 2018, 142, 221–240. [Google Scholar] [CrossRef]
- Tarlochan, F. Sandwich Structures for Energy Absorption Applications: A Review. Materials 2021, 14, 4731. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Z.H.; Yu, T.L.; Xin, D.B. Mechanical properties and energy absorption capabilities of aluminium foam sandwich structure subjected to low-velocity impact. Constr. Build. Mater. 2021, 273, 121996. [Google Scholar] [CrossRef]
- Yang, L.H.; Sui, L.; Dong, Y.L.; Li, X.Y.; Zi, F.; Zhang, Z.X.; Yang, S.J.; Yang, J.S.; Wu, L.Z. Quasi-static and dynamic behavior of sandwich panels with multilayer gradient lattice cores. Compos. Struct. 2021, 255, 112970. [Google Scholar] [CrossRef]
- Liu, J.A.; Dong, Z.Q.; Zhu, X.Y.; Sun, W.B.; Huang, Z.Q. Flexural properties of lightweight carbon fiber/epoxy resin composite sandwiches with different fiber directions. Mater. Res. Express 2022, 9, 026506. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Q.; Liufu, K.; Deng, Y.C.; Fang, J.G.; Li, Q. Design of bionic-bamboo thin-walled structures for energy absorption. Thin-Walled Struct. 2019, 135, 400–413. [Google Scholar] [CrossRef]
- Liu, J.L.; Liu, J.H.; Gao, K.; Mohagheghian, I.; Fan, W.; Yang, J.; Wu, Z.M. A bioinspired gradient curved auxetic honeycombs with enhanced energy absorption. Int. J. Mech. Sci. 2025, 291–292, 110189. [Google Scholar] [CrossRef]
- Tian, W.J.; Li, X.; Wu, X.L.; Kong, L.H.; Wang, N.J.; Cao, S.S. Study on the Vibration Isolation Mechanism of Loofah Sponge. Biomimetics 2025, 10, 5. [Google Scholar] [CrossRef]
- Onche, E.O.; Azeko, S.T.; Obayemi, J.D.; Oyewole, O.K.; Ekwe, N.B.; Rahbar, N.; Soboyejo, W.O. Compressive deformation of Bambusa Vulgaris-Schrad in the transverse and longitudinal orientations. J. Mech. Behav. Biomed. Mater. 2020, 108, 103750. [Google Scholar] [CrossRef]
- Liu, K.; Jing, L.; Li, Q. Dynamic crushing failure and energy absorption of natural bamboo-culms under axial low-velocity impact. Int. J. Impact Eng. 2024, 193, 105056. [Google Scholar] [CrossRef]
- Ha, N.S.; Lu, G.X.; Shu, D.W.; Yu, T.X. Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). J. Mech. Behav. Biomed. Mater. 2020, 104, 103603. [Google Scholar] [CrossRef]
- Li, G.Y.; Cui, X.H. Mechanical and structural optimisation of transverse and radial load bearing characteristics of reed straw based on finite elements. Lat. Am. J. Solids Struct. 2025, 22, e8385. [Google Scholar] [CrossRef]
- Fischer, S.F.; Thielen, M.; Loprang, R.R.; Seidel, R.; Fleck, C.; Speck, T.; Bührig-Polaczek, A. Pummelos as Concept Generators for Biomimetically Inspired Low Weight Structures with Excellent Damping Properties. Adv. Eng. Mater. 2010, 12, B658–B663. [Google Scholar] [CrossRef]
- Kadam, V.; Chattopadhyay, S.K.; Bharimalla, A.; Venugopal, B. Mechanical Characterization of Brown and Green Coconut Husk. J. Nat. Fibers 2014, 11, 322–332. [Google Scholar] [CrossRef]
- Sonego, M.; Sciuti, V.F.; Vargas, R.; Canto, R.B.; Pessan, L.A. Composite design bioinspired by the mesocarp of Brazil nut (Bertholletia excelsa). Bioinspir. Biomim. 2022, 17, 046011. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, D.H.T.; Solaimani, M.; Fathollahi, M.R. Wavefunction engineering using Mandelbrot, multicorn, and Koch’s snowflake fractal quantum rings to control the persistent current. Chaos Solitons Fractals 2024, 189, 115706. [Google Scholar] [CrossRef]
- Al-Raeei, M. Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 2021, 150, 111209. [Google Scholar] [CrossRef]
- Bevilacqua, L.; Barros, M.M. The inverse problem for fractal curves solved with the dynamical approach method. Chaos Solitons Fractals 2023, 168, 113113. [Google Scholar] [CrossRef]
- Kenner, H. Self-Similarity, Fractals, Cantos + Pound, Ezra. Elh-Engl. Lit. Hist. 1988, 55, 721–730. [Google Scholar]
- Gallos, L.K.; Song, C.M.; Makse, H.A. A review of fractality and self-similarity in complex networks. Phys. A Stat. Mech. Its Appl. 2007, 386, 686–691. [Google Scholar] [CrossRef]
- Ajdari, A.; Jahromi, B.H.; Papadopoulos, J.; Nayeb-Hashemi, H.; Vaziri, A. Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 2012, 49, 1413–1419. [Google Scholar] [CrossRef]
- Zhang, D.H.; Fei, Q.G.; Jiang, D.; Li, Y.B. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Compos. Struct. 2018, 192, 289–299. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; He, N.; Wang, C.H. Crashworthiness behavior of Koch fractal structures. Mater. Des. 2018, 144, 229–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, C.H.; Zeng, Y.; Chen, T.T. Crashworthiness of bionic fractal hierarchical structures. Mater. Des. 2018, 158, 147–159. [Google Scholar] [CrossRef]
- Zhang, H.K.; Zhou, J.Y.; Fang, W.; Zhao, H.C.; Zhao, Z.L.; Chen, X.D.; Zhao, H.P.; Feng, X.Q. Multi-functional topology optimization of Victoria cruziana veins. J. R. Soc. Interface 2022, 19, 20220298. [Google Scholar] [CrossRef]
- Lv, Y.; Li, C.B.; Jin, Y.; He, J.X.; Li, J. Energy saving design of the spindle of CNC lathe by structural optimization. Int. J. Adv. Manuf. Technol. 2021, 114, 541–562. [Google Scholar] [CrossRef]
- Zhang, W.; Dai, N.; Guo, C.; Yu, Y.; Gong, S. Stiffness Enhancement Method for Complex Thin-walled Parts Driven by the Principal Stress Field. J. Phys. Conf. Ser. 2020, 1678, 012019. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yabugaki, Y.; Horikawa, K. 617 Vein Structure and Mechanical Properties of a Leaf of Santa Cruz Water Lily (Victoria cruziana). Proc. Bioeng. Conf. Annu. Meet. BED/JSME 2009, 21, 265–266. [Google Scholar]
- Liu, S.T.; Tong, Z.Q.; Tang, Z.L.; Liu, Y.; Zhang, Z.H. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin-Walled Struct. 2015, 88, 70–81. [Google Scholar] [CrossRef]
- Hussein, R.D.; Ruan, D.; Lu, G.X. An analytical model of square CFRP tubes subjected to axial compression. Compos. Sci. Technol. 2018, 168, 170–178. [Google Scholar] [CrossRef]
- Mohammadiha, O.; Beheshti, H.; Aboutalebi, F.H. Multi-objective optimisation of functionally graded honeycomb filled crash boxes under oblique impact loading. Int. J. Crashworthiness 2015, 20, 44–59. [Google Scholar] [CrossRef]
- Xu, P.; Xing, J.; Yao, S.G.; Yang, C.X.; Chen, K.; Li, B.H. Energy distribution analysis and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles. Thin-Walled Struct. 2017, 115, 255–263. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wheeler, J.A. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. Fractal Dimension of Color Fractal Images. IEEE Trans. Image Process. 2011, 20, 227–235. [Google Scholar] [CrossRef]
- Karmakar, A. Fractal antennas and arrays: A review and recent developments. Int. J. Microw. Wirel. Technol. 2021, 13, 173–197. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zou, M.; Qi, Y.C.; Chen, L.N.; Wang, Z.Y.; Song, J.F.; He, L.B. Bionic design of thin-walled bilinear tubes with excellent crashworthiness inspired by glass sponge structures. Bioinspir. Biomim. 2024, 19, 046018. [Google Scholar] [CrossRef] [PubMed]
Specimen Length/mm | Specimen Width/mm | Mass (g) | Young’s Modulus (MPa) | Poisson’s Ratio | Density (t/mm3) | |
---|---|---|---|---|---|---|
Experiment | 100 | Upper: 9.67 Lower: 10.89 | 6.48 | — | — | — |
Simulation | 100 | Upper: 9.35 Lower: 11.44 | 5.73 | Knob: 12.5 Epidermis: 9.66 | 0.3 | 5.092 × 10−10 |
Error | — | Upper: 3.42% Lower: 5.05% | 13.08% | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Wang, Z.; Fan, W.; Yu, H.; Zou, M. Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading. Fractal Fract. 2025, 9, 566. https://doi.org/10.3390/fractalfract9090566
Guo Z, Wang Z, Fan W, Yu H, Zou M. Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading. Fractal and Fractional. 2025; 9(9):566. https://doi.org/10.3390/fractalfract9090566
Chicago/Turabian StyleGuo, Zhanhong, Zhaoyang Wang, Weiguang Fan, Hailong Yu, and Meng Zou. 2025. "Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading" Fractal and Fractional 9, no. 9: 566. https://doi.org/10.3390/fractalfract9090566
APA StyleGuo, Z., Wang, Z., Fan, W., Yu, H., & Zou, M. (2025). Mechanical Properties and Energy Absorption Characteristics of the Fractal Structure of the Royal Water Lily Leaf Under Quasi-Static Axial Loading. Fractal and Fractional, 9(9), 566. https://doi.org/10.3390/fractalfract9090566