Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,221)

Search Parameters:
Keywords = laser fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1246 KiB  
Article
Simultaneous Determination of Reducing Sugars in Honey by Capillary Zone Electrophoresis with LIF Detection Using Low-Toxicity 2-Picoline Borane and APTS for Pre-Capillary Derivatization
by Joanna Bulesowska, Michał Pieckowski, Piotr Kowalski, Tomasz Bączek and Ilona Olędzka
Int. J. Mol. Sci. 2025, 26(15), 7569; https://doi.org/10.3390/ijms26157569 (registering DOI) - 5 Aug 2025
Abstract
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. [...] Read more.
This study aimed to develop a reliable method for profiling reducing sugars in honey using capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). Reducing sugars were derivatized with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in the presence of 2-picoline borane, a safer alternative to sodium cyanoborohydride. Key parameters influencing the derivatization efficiency—temperature, pH, incubation time, and reagent concentrations—were systematically optimized. The highest labeling efficiency for glucose, mannose, and maltose was achieved at 50 °C in 0.5 M citric acid with 0.1 M APTS, while fructose showed low reactivity due to its ketose structure. To reduce the background signal from excess reagents, three cleanup strategies were evaluated. Liquid–liquid extraction with ethyl acetate effectively removed unreacted APTS without significant analyte loss, whereas solid-phase extraction and microextraction caused substantial losses of hydrophilic sugars. The method showed good linearity (0.5–10 mM, R2 > 0.994), precision (RSD 0.81–13.73%), and accuracy (recoveries 93.47–119.75%). Stability studies indicated that sugar standards should be stored at –20 °C. The method was successfully applied to the analysis of four nectar honeys—rapeseed, acacia, phacelia, and dandelion—revealing differences in glucose and fructose content related to botanical origin. The results confirm the suitability of CZE-LIF for sensitive and selective carbohydrate analyses in complex food matrices. Full article
Show Figures

Figure 1

17 pages, 4241 KiB  
Article
Evaluation of the Synthesis and Skin Penetration Pathway of Folate-Conjugated Polymeric Micelles for the Dermal Delivery of Irinotecan and Alpha-Mangostin
by Thanchanok Sirirak and Thirapit Subongkot
Pharmaceutics 2025, 17(8), 1014; https://doi.org/10.3390/pharmaceutics17081014 - 5 Aug 2025
Abstract
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: [...] Read more.
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: Poloxamer 188 and poloxamer 184 were synthesized with folate by esterification. The in vitro skin penetration enhancement of irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles was evaluated. The skin penetration pathway of folate-conjugated polymeric micelles was investigated by colocalization of multiple fluorescently labeled particles using confocal laser scanning microscopy (CLSM). Results: Folate-conjugated poloxamer 188 and poloxamer 184 were successfully synthesized. The prepared irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles from poloxamer 188 and poloxamer 184 had particle sizes of approximately 180 and 150 nm, respectively, indicating a positive charge with a narrow size distribution which could be easily taken up into cells. An in vitro skin penetration study revealed that folate-conjugated polymeric micelles from poloxamer 184 significantly enhanced the skin penetration of irinotecan and alpha-mangostin to a greater extent than the solution. CLSM visualization revealed that folate-conjugated polymeric micelles penetrated through the skin by the transfollicular pathway as the major penetration pathway, whereas penetration by the intercluster pathway, transcellular pathway and intercellular pathway constituted a minor pathway. Conclusions: Folate-conjugated poloxamer 184 polymeric micelles are promising candidates for the dermal delivery of anticancer drugs by the transfollicular pathway as the major skin penetration pathway. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

22 pages, 6376 KiB  
Article
Components for an Inexpensive CW-ODMR NV-Based Magnetometer
by André Bülau, Daniela Walter and Karl-Peter Fritz
Magnetism 2025, 5(3), 18; https://doi.org/10.3390/magnetism5030018 - 1 Aug 2025
Viewed by 181
Abstract
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and [...] Read more.
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and expensive detectors, such as Avalanche photodiodes or single photon detectors, overall, leading to custom and expensive setups. In order to provide an inexpensive NV-based magnetometer setup for educational use in schools, to teach the three topics, fluorescence, optically detected magnetic resonance, and Zeeman splitting, inexpensive, miniaturized, off-the-shelf components with high reliability have to be used. The cheaper such a setup, the more setups a school can afford. Hence, in this work, we investigated LEDs as light sources, considered different diamonds for our setup, tested different color filters, proposed an inexpensive microwave resonator, and used a cheap photodiode with an appropriate transimpedance amplifier as the basis for our quantum magnetometer. As a result, we identified cheap and functional components and present a setup and show that it can demonstrate the three topics mentioned at a hardware cost <EUR 100. Full article
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots
by Yana Cui, Xuelian Liu, Bo Xiao, Yajie Wu and Chunyang Wang
Nanomaterials 2025, 15(15), 1182; https://doi.org/10.3390/nano15151182 - 31 Jul 2025
Viewed by 105
Abstract
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. [...] Read more.
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications. Full article
Show Figures

Figure 1

37 pages, 13718 KiB  
Review
Photothermal and Photodynamic Strategies for Diagnosis and Therapy of Alzheimer’s Disease by Modulating Amyloid-β Aggregation
by Fengli Gao, Yupeng Hou, Yaru Wang, Linyuan Liu, Xinyao Yi and Ning Xia
Biosensors 2025, 15(8), 480; https://doi.org/10.3390/bios15080480 - 24 Jul 2025
Viewed by 484
Abstract
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical [...] Read more.
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical treatment and radiotherapy, phototherapy has the advantages, including short response time, significant efficacy, and minimal side effects in disease diagnosis and treatment. Recent studies have shown that local thermal energy or singlet oxygen generated by irradiating certain organic molecules or nanomaterials with specific laser wavelengths can effectively degrade Aβ aggregates and depress the generation of ROS, promoting progress in AD diagnosis and therapy. Herein, we outline the development of photothermal therapy (PTT) and photodynamic therapy (PDT) strategies for the diagnosis and therapy of AD by modulating Aβ aggregation. The materials mainly include organic photothermal agents or photosensitizers, polymer materials, metal nanoparticles, quantum dots, carbon-based nanomaterials, etc. In addition, compared to traditional fluorescent dyes, aggregation-induced emission (AIE) molecules have the advantages of good stability, low background signals, and strong resistance to photobleaching for bioimaging. Some AIE-based materials exhibit excellent photothermal and photodynamic effects, showing broad application prospects in the diagnosis and therapy of AD. We further summarize the advances in the detection of Aβ aggregates and phototherapy of AD using AIE-based materials. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Viewed by 337
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

23 pages, 4192 KiB  
Article
Efficacy of Various Complexing Agents for Displacing Biologically Important Ligands from Eu(III) and Cm(III) Complexes in Artificial Body Fluids—An In Vitro Decorporation Study
by Sebastian Friedrich, Antoine Barberon, Ahmadabdurahman Shamoun, Björn Drobot, Katharina Müller, Thorsten Stumpf, Jerome Kretzschmar and Astrid Barkleit
Int. J. Mol. Sci. 2025, 26(15), 7112; https://doi.org/10.3390/ijms26157112 - 23 Jul 2025
Cited by 1 | Viewed by 328
Abstract
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids [...] Read more.
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids by various complexing agents, i.e., ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), and spermine-based hydroxypyridonate chelator 3,4,3-LI(1,2-HOPO) (HOPO). Utilizing a modified unified bioaccessibility method (UBM) to simulate gastrointestinal conditions, we conducted concentration-dependent displacement experiments at both room and body temperatures. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) supported by 2H nuclear magnetic resonance (NMR) spectroscopy and thermodynamic modelling revealed the complexation efficacy of the agents under physiological conditions. Results demonstrate that high affinity, governed by complex stability constants and ligand pKa values, is critical to overcome cation and anion competition and leads to effective decorporation. Additionally, there is evidence that cyclic ligands are inferior to linear ligands for this application. HOPO and DTPA exhibited superior displacement efficacy, particularly in the complete gastrointestinal tract simulation. This study highlights the utility of in vitro workflows for evaluating decorporation agents and emphasizes the need for ligands with optimal binding characteristics for enhanced chelation therapies. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

16 pages, 4298 KiB  
Article
Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure
by Wenyu Wang, Runfan Zhu, Siyu Liu, Yong He, Wubin Weng, Shixing Wang, William L. Roberts and Zhihua Wang
Energies 2025, 18(15), 3923; https://doi.org/10.3390/en18153923 - 23 Jul 2025
Viewed by 282
Abstract
Swirl spray combustion has attracted significant attention due to its common usage in gas turbines. However, the high pressure in many practical applications remains a major obstacle to the deep understanding of flame stability and pollutant formation. To address this concern, this study [...] Read more.
Swirl spray combustion has attracted significant attention due to its common usage in gas turbines. However, the high pressure in many practical applications remains a major obstacle to the deep understanding of flame stability and pollutant formation. To address this concern, this study investigated a swirl spray flame fueled with n-decane at elevated pressure. Planar laser-induced fluorescence (PLIF) of OH and polycyclic aromatic hydrocarbons (PAHs) were used simultaneously, enabling the distinction of the locations of OH, PAHs, and mixtures of them, providing detailed information on flame structure and evolution of PAHs. The effects of swirl number and ambient pressure on reaction zone characteristics and PAHs’ formation were studied, with the swirl number ranging from 0.30 to 1.18 and the pressure ranging from 1 to 3 bar. The data suggest that the swirl number changes the flame structure from V-shaped to crown-shaped, as observed at both atmospheric and elevated pressures. Additionally, varying swirl numbers lead to the initiation of flame divergence at distinct pressure levels. Moreover, PAHs of different molecular sizes exhibit significant overlap, with larger PAHs able to further extend downstream. The relative concentration of PAH increased with pressure, and the promoting effect of pressure on producing larger PAHs was significant. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 247
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

16 pages, 4472 KiB  
Article
Effect of Low-Level Laser Therapy on Periodontal Host Cells and a Seven-Species Periodontitis Model Biofilm
by Selma Dervisbegovic, Susanne Bloch, Vera Maierhofer, Christian Behm, Xiaohui Rausch-Fan, Andreas Moritz, Christina Schäffer and Oleh Andrukhov
Int. J. Mol. Sci. 2025, 26(14), 6803; https://doi.org/10.3390/ijms26146803 - 16 Jul 2025
Viewed by 312
Abstract
Low-level laser therapy (LLLT) is gaining attention as an effective adjunct to non-surgical periodontal treatment. This study evaluates the potential of LLLT to reduce bacterial load in a clinically relevant in vitro subgingival biofilm model and its impact on the inflammatory response. A [...] Read more.
Low-level laser therapy (LLLT) is gaining attention as an effective adjunct to non-surgical periodontal treatment. This study evaluates the potential of LLLT to reduce bacterial load in a clinically relevant in vitro subgingival biofilm model and its impact on the inflammatory response. A subgingival biofilm model consisting of seven bacterial species was established. Primary human gingival fibroblasts (GFs) and periodontal ligament cells (PDLs) were cultured. Both biofilms and host cells were treated with the DenLase Diode Laser (980 nm) under various clinically relevant settings. The composition and structure of the seven-species biofilms were evaluated using quantitative PCR and fluorescence microscopy, respectively. The inflammatory response in host cells was analyzed by measuring the gene and protein expression levels of various inflammatory mediators. Laser treatment at power outputs ranging from 0.3 to 2 W had no significant effect on biofilm composition or architecture. LLLT, particularly at higher power settings, reduced the viability in both GFs and PDLs up to 70%. Gene expression levels of inflammatory mediators were only minimally influenced by laser treatment. However, LLLT significantly decreased the secretion of all examined cytokines. These findings suggest that LLLT with a 980 nm diode laser, under clinically relevant conditions, exerts anti-inflammatory rather than antimicrobial effects. Full article
Show Figures

Figure 1

14 pages, 1953 KiB  
Article
Laser-Induced Solid-Phase UV Fluorescence Spectroscopy for Rapid Detection of Polycyclic Aromatic Hydrocarbons in the Land Snail Bioindicator, Cantareus aspersus
by Maxime Louzon, Thomas Bertoncini, Noah Casañas, Yves Perrette, Gaël Plassart, Marine Quiers, Tanguy Wallet, Mohamed Kamel and Lotfi Aleya
Biosensors 2025, 15(7), 450; https://doi.org/10.3390/bios15070450 - 14 Jul 2025
Viewed by 410
Abstract
In ecotoxicological risk assessment, current methods for measuring the transfer and bioavailability of organic pollutants like polycyclic aromatic hydrocarbons (PAHs) in bioindicators are often destructive and environmentally unfriendly. These limitations are especially problematic when only small amounts of biological material are available. Here, [...] Read more.
In ecotoxicological risk assessment, current methods for measuring the transfer and bioavailability of organic pollutants like polycyclic aromatic hydrocarbons (PAHs) in bioindicators are often destructive and environmentally unfriendly. These limitations are especially problematic when only small amounts of biological material are available. Here, we present a novel, high-throughput method combining laser-induced UV fluorescence spectroscopy (UV-LIF) and solid-phase spectroscopy (SPS) for rapid, in situ quantification of PAHs in land snails—a key bioindicator species. Using dual excitation wavelengths (266 nm and 355 nm), our method reliably detected pyrene and fluoranthene in snails exposed to varying concentrations, demonstrating clear dose-responses and inter-individual differences in bioaccumulation. The analysis time per sample was under four minutes. This approach allows simultaneous measurement of internal contaminant levels and health biomarkers in individual organisms and aligns with green chemistry principles. These findings establish a new, scalable tool for routine assessment of PAH transfer and bioavailability in diverse ecosystems. Full article
Show Figures

Figure 1

12 pages, 600 KiB  
Article
Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
by Sunao Tanaka, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser and Hideki Furuya
Diagnostics 2025, 15(14), 1749; https://doi.org/10.3390/diagnostics15141749 - 10 Jul 2025
Viewed by 421
Abstract
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, [...] Read more.
Background/Objectives: The clinically validated multiplex Oncuria bladder cancer (BC) assay quickly and noninvasively identifies disease risk and tracks treatment success by simultaneously profiling 10 protein biomarkers in voided urine samples. Oncuria uses paramagnetic bead-based fluorescence multiplex technology (xMAP®; Luminex, Austin, TX, USA) to simultaneously measure 10 protein analytes in urine [angiogenin, apolipoprotein E, carbonic anhydrase IX (CA9), interleukin-8, matrix metalloproteinase-9 and -10, alpha-1 anti-trypsin, plasminogen activator inhibitor-1, syndecan-1, and vascular endothelial growth factor]. Methods: In a pilot study (N = 36 subjects; 18 with BC), Oncuria performed essentially identically across three different common analyzers (the laser/flow-based FlexMap 3D and 200 systems, and the LED/image-based MagPix system; Luminex). The current study compared Oncuria performance across instrumentation platforms using a larger study population (N = 181 subjects; 51 with BC). Results: All three analyzers assessed all 10 analytes in identical samples with excellent concordance. The percent coefficient of variation (%CV) in protein concentrations across systems was ≤2.3% for 9/10 analytes, with only CA9 having %CVs > 2.3%. In pairwise correlation plot comparisons between instruments for all 10 biomarkers, R2 values were 0.999 for 15/30 comparisons and R2 ≥ 0.995 for 27/30 comparisons; CA9 showed the greatest variability (R2 = 0.948–0.970). Standard curve slopes were statistically indistinguishable for all 10 biomarkers across analyzers. Conclusions: The Oncuria BC assay generates comprehensive urinary protein signatures useful for assisting BC diagnosis, predicting treatment response, and tracking disease progression and recurrence. The equivalent performance of the multiplex BC assay using three popular analyzers rationalizes test adoption by CLIA (Clinical Laboratory Improvement Amendments) clinical and research laboratories. Full article
(This article belongs to the Special Issue Diagnostic Markers of Genitourinary Tumors)
Show Figures

Figure 1

16 pages, 3764 KiB  
Article
Luminescence of Carbon Dots Induced by MeV Protons
by Mariapompea Cutroneo, Vladimir Havranek, Vaclav Holy, Petr Malinsky, Petr Slepicka, Selena Cutroneo and Lorenzo Torrisi
Chemosensors 2025, 13(7), 245; https://doi.org/10.3390/chemosensors13070245 - 9 Jul 2025
Viewed by 349
Abstract
In this study, we describe the preparation of carbon dots (CDs) from natural charcoal by laser ablation in a liquid. A continuum wave (CW) laser diode operating at a wavelength of 450 nm, hitting a solid carbon target placed into a biocompatible liquid, [...] Read more.
In this study, we describe the preparation of carbon dots (CDs) from natural charcoal by laser ablation in a liquid. A continuum wave (CW) laser diode operating at a wavelength of 450 nm, hitting a solid carbon target placed into a biocompatible liquid, constituted of a phosphate-buffered saline (PBS) solution and distilled water, was used for the generation of the CDs suspension. Exploring the practical applications of carbon dots, it was observed that the luminescence of the produced CDs can be used as bioimaging in living organisms, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, and others. The CDs’ luminescence can be induced by UV irradiation and, as demonstrated in this study, by energetic MeV proton beams. The fluorescence was revealed mainly at 480 nm when UV illuminated the CDs, and also in the region at 514–642 nm when the CDs were irradiated by energetic proton ions. Atomic force microscopy (AFM) of the CD films revealed their spherical shape with a size of about 10 nm. The significance of the manuscript lies in the use of CDs produced by laser ablation exhibiting luminescence under irradiation of an energetic proton beam. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

10 pages, 1891 KiB  
Article
Alternative Methods to Enhance the Axial Resolution of Total Internal Reflection Fluorescence–Structured Illumination Microscopy
by Xiu Zheng, Xiaomian Cai, Wenjie Liu, Youhua Chen and Cuifang Kuang
Photonics 2025, 12(7), 652; https://doi.org/10.3390/photonics12070652 - 27 Jun 2025
Viewed by 327
Abstract
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular [...] Read more.
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular structures. In this paper, we present an alternative TIRF-SIM axial resolution enhancement method by exploiting quantitative information regarding the distance between fluorophores and the surface within the evanescent field. Combining the lateral super-resolution information of TIRF-SIM with reconstructed axial information, a 3D super-resolution image with a 25 nm axial resolution is achieved without attaching special optical components or high-power lasers. The reconstruction results of cell samples demonstrate that the axial resolution enhancement method for TIRF-SIM can effectively resolve the axial depth of densely structured regions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3832 KiB  
Article
Research on Total Internal Reflection Detection Technology for Subsurface Defects of Optical Elements Based on Spectral Confocal Principles
by Rongcai Bao, Kaige Qu, Lu Wu, Shijian Zhang and Anyu Sun
Sensors 2025, 25(13), 3969; https://doi.org/10.3390/s25133969 - 26 Jun 2025
Viewed by 313
Abstract
During the manufacturing of precision optical elements, subsurface defects seriously affect the performance of the elements, leading to the enhancement of light fields, an increase in laser absorption and an decrease in mechanical properties. It has become a key technology to realize the [...] Read more.
During the manufacturing of precision optical elements, subsurface defects seriously affect the performance of the elements, leading to the enhancement of light fields, an increase in laser absorption and an decrease in mechanical properties. It has become a key technology to realize the high-precision quantitative automatic detection of subsurface defects of optical elements. This paper presents a method of subsurface defect detection based on spectral confocal scattering measurement, the system adopts a dispersive lens group with the working band of 480–670 nm, and combines the spectral confocal technology and total internal reflection technology to effectively suppress the interference of scattered light on the surface, and can realize high-precision nondestructive detection without fluorescent substances. The axial resolution of this method is 0.8 μm and the measuring depth range is 0.94 mm. By building a measurement system and carrying out experimental verification, the results show that this method can accurately measure the depth and location of subsurface defects and confirm its feasibility and effectiveness. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop