Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Urine Samples
2.2. Oncuria Assay
2.3. xMAP Instrumentation
2.4. Sample Treatment
2.5. Data Analysis
3. Results
3.1. Analyte Detection Ranges
3.2. Subject Characteristics
3.3. Signal Strength by Instrument
3.4. Biomarker Quantification by Instrument
3.5. Correlation Between Concentration Measurements from Different Analyzers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A1AT | Alpha 1 anti-trypsin |
ANG | Angiogenin |
ApoE | Apolipoprotein E |
AUROC | Area under receiver operating curve |
BC | Bladder cancer |
BCG | Bacillus Calmette–Guerin |
BTA | Bladder tumor antigen |
CA9 | Carbonic anhydrase IX |
CIS | Carcinoma in situ |
IL-8 | CXCL8/interleukin-8 |
MCM5 | Mini chromosome maintenance-5 protein |
MFI | Median fluorescence intensity |
MIBC | Muscle-invasive bladder cancer |
MMP | Matrix metalloproteinase |
NMIBC | Non-muscle-invasive bladder cancer |
NMP-22 | Nuclear matrix protein-22 |
NPV | Negative predictive value |
PAI-1 | Serpin E1/plasminogen activator inhibitor-1 |
SDC-1 | CD138/syndecan-1 |
VEGF | Vascular endothelial growth factor |
xMAP | Multi-Analyte Profiling |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Comperat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Becher, E.; Steinberg, G.D. Update on the guideline of guidelines: Non-muscle-invasive bladder cancer. BJU Int. 2020, 125, 197–205. [Google Scholar] [CrossRef]
- Flaig, T.W.; Spiess, P.E.; Abern, M.; Agarwal, N.; Bangs, R.; Buyyounouski, M.K.; Chan, K.; Chang, S.S.; Chang, P.; Friedlander, T.; et al. NCCN Guidelines(R) Insights: Bladder Cancer, Version 3.2024. J. Natl. Compr. Cancer Netw. 2024, 22, 216–225. [Google Scholar] [CrossRef]
- Tian, W.; Shore, K.T.; Shah, R.B. Significant reduction of indeterminate (atypical) diagnosis after implementation of The Paris System for Reporting Urinary Cytology: A single-institution study of more than 27,000 cases. Cancer Cytopathol. 2021, 129, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, P.R.; Theodorescu, D.; Rosser, C.J.; Ahdoot, M. Identifying novel biomarkers associated with bladder cancer treatment outcomes. Front. Oncol. 2023, 13, 1114203. [Google Scholar] [CrossRef] [PubMed]
- Malinaric, R.; Mantica, G.; Lo Monaco, L.; Mariano, F.; Leonardi, R.; Simonato, A.; Van der Merwe, A.; Terrone, C. The Role of Novel Bladder Cancer Diagnostic and Surveillance Biomarkers-What Should a Urologist Really Know? Int. J. Environ. Res. Public Health 2022, 19, 9648. [Google Scholar] [CrossRef]
- Laukhtina, E.; Shim, S.R.; Mori, K.; D’Andrea, D.; Soria, F.; Rajwa, P.; Mostafaei, H.; Comperat, E.; Cimadamore, A.; Moschini, M.; et al. Diagnostic Accuracy of Novel Urinary Biomarker Tests in Non-muscle-invasive Bladder Cancer: A Systematic Review and Network Meta-analysis. Eur. Urol. Oncol. 2021, 4, 927–942. [Google Scholar] [CrossRef]
- Maas, M.; Todenhofer, T.; Black, P.C. Urine biomarkers in bladder cancer—Current status and future perspectives. Nat. Rev. Urol. 2023, 20, 597–614. [Google Scholar] [CrossRef]
- Tang, X.; Cao, Y.; Liu, J.; Wang, S.; Yang, Y.; Du, P. The diagnostic and prognostic value of nuclear matrix protein 22 in bladder cancer. Transl. Cancer Res. 2020, 9, 7174–7182. [Google Scholar] [CrossRef]
- Miyake, M.; Goodison, S.; Rizwani, W.; Ross, S.; Bart Grossman, H.; Rosser, C.J. Urinary BTA: Indicator of bladder cancer or of hematuria. World J. Urol. 2012, 30, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, Y.; Pagano, I.; Chen, R.; Sun, Y.; Dai, Y.; Gupta, A.; Tikhonenkov, S.; Goodison, S.; Rosser, C.J.; Furuya, H. Diagnostic performance of Oncuria, a urinalysis test for bladder cancer. J. Transl. Med. 2021, 19, 141. [Google Scholar] [CrossRef]
- Murakami, K.; Kamat, A.M.; Dai, Y.; Pagano, I.; Chen, R.; Sun, Y.; Gupta, A.; Goodison, S.; Rosser, C.J.; Furuya, H. Application of a multiplex urinalysis test for the prediction of intravesical BCG treatment response: A pilot study. Cancer Biomark. 2021, 33, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H.; Tabula, L.; Lee, R.; Kralovec, P.; Ramsden, M.; Wong, R.; Rosser, C.J. Analytical validation of ONCURIA a multiplex bead-based immunoassay for the non-invasive bladder cancer detection. Pract. Lab. Med. 2020, 22, e00189. [Google Scholar] [CrossRef]
- Murakami, K.; Pagano, I.; Furuya, H.; Daskivich, T.; Mori, D.; Rosser, C.J. Clinical Utility of Oncuria, a Multiplexed Liquid Biopsy for the Non-Invasive Detection of Bladder Cancer-A Pilot Study. Diagnostics 2022, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Nonagen Bioscience Corp.: Nonagen Bioscience Granted FDA Breakthrough Device Designation. Available online: https://www.prnewswire.com/news-releases/nonagen-bioscience-granted-fda-breakthrough-device-designation-301385100.html (accessed on 17 March 2025).
- Diacarta Incorporated: DiaCarta Announces That the Oncuria® Bladder Cancer Tests Receive Medicare Coverage Effective January 1, 2024. Available online: https://www.prnewswire.com/news-releases/diacarta-announces-that-the-oncuria-bladder-cancer-tests-receive-medicare-coverage-effective-january-1-2024-302077696.html (accessed on 17 March 2025).
- Furuya, H.; Sakatani, T.; Tanaka, S.; Murakami, K.; Waldron, R.T.; Hogrefe, W.; Rosser, C.J. Bladder cancer risk stratification with the Oncuria 10-plex bead-based urinalysis assay using three different Luminex xMAP instrumentation platforms. J. Transl. Med. 2024, 22, 8. [Google Scholar] [CrossRef]
- Hojvat, S.; Kondratovic, M.U.S.; Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. Assay Migration Studies for in Vitro Diagnostic Devices; Guidance for Industry and FDA Staff. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/assay-migration-studies-in-vitro-diagnostic-devices (accessed on 23 June 2025).
- Pepe, M.S.; Feng, Z.; Janes, H.; Bossuyt, P.M.; Potter, J.D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: Standards for study design. J. Natl. Cancer Inst. 2008, 100, 1432–1438. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Clinical Trial Registration: A Novel Multiplex ELISA Assay for Evaluating Patients with Gross Hematuria for Bladder Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03193528 (accessed on 3 March 2025).
- U.S. National Library of Medicine. Clinical Trial Registration: A Novel Multiplex ELISA Assay for Evaluating Patients with Microscopic Hematuria for Bladder Cancer. Available online: https://clinicaltrials.gov/study/NCT03193541 (accessed on 3 March 2025).
- U.S. National Library of Medicine. Clinical Trial Registration: Predicting BCG Response. Available online: https://clinicaltrials.gov/ct2/show/NCT04564781 (accessed on 3 March 2025).
- U.S. National Library of Medicine. Clinical Trial Registration: A Novel Multiplex ELISA Assay for Surveilling Patients with History of Bladder Cancer. Available online: https://clinicaltrials.gov/study/NCT03193515 (accessed on 17 March 2025).
- Luminex Corporation. xMAP Technology: Instruments. Available online: https://www.luminexcorp.com/xmap-technology/#instruments (accessed on 17 March 2025).
- Sharma, G.; Sharma, A.; Krishna, M.; Ahluwalia, P.; Gautam, G. Diagnostic performance of minichromosome maintenance 5 (MCM5) in bladder cancer: A systematic review and meta-analysis. Urol. Oncol. 2022, 40, 235–242. [Google Scholar] [CrossRef]
- Borhani, S.; Borhani, R.; Kajdacsy-Balla, A. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction. Crit. Rev. Oncol. Hematol. 2022, 171, 103601. [Google Scholar] [CrossRef]
- Elshal, M.F.; McCoy, J.P. Multiplex bead array assays: Performance evaluation and comparison of sensitivity to ELISA. Methods 2006, 38, 317–323. [Google Scholar] [CrossRef]
- Fan, Z.; Shi, H.; Luo, J.; Guo, X.; Wang, B.; Liu, Y.; Yu, J. Diagnostic and therapeutic effects of fluorescence cystoscopy and narrow-band imaging in bladder cancer: A systematic review and network meta-analysis. Int. J. Surg. 2023, 109, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.; Kotecha, P.; Thurairaja, R.; Nair, R.; Malde, S.; Kumar, P.; Khan, M.S. Endoscopic surveillance for bladder cancer: A systematic review of contemporary worldwide practices. Transl. Androl. Urol. 2021, 10, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Han, D.S.; Lynch, K.E.; Chang, J.W.; Sirovich, B.; Robertson, D.J.; Swanton, A.R.; Seigne, J.D.; Goodney, P.P.; Schroeck, F.R. Overuse of Cystoscopic Surveillance Among Patients With Low-risk Non-Muscle-invasive Bladder Cancer—A National Study of Patient, Provider, and Facility Factors. Urology 2019, 131, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.E.; Lynch, K.E.; Li, Z.; MacKenzie, T.A.; Seigne, J.D.; Robertson, D.J.; Sirovich, B.; Goodney, P.P.; Schroeck, F.R. The impact of low- versus high-intensity surveillance cystoscopy on surgical care and cancer outcomes in patients with high-risk non-muscle-invasive bladder cancer (NMIBC). PLoS ONE 2020, 15, e0230417. [Google Scholar] [CrossRef]
- Schroeck, F.R.; Lynch, K.E.; Li, Z.; MacKenzie, T.A.; Han, D.S.; Seigne, J.D.; Robertson, D.J.; Sirovich, B.; Goodney, P.P. The impact of frequent cystoscopy on surgical care and cancer outcomes among patients with low-risk, non-muscle-invasive bladder cancer. Cancer 2019, 125, 3147–3154. [Google Scholar] [CrossRef]
- Cornel, A.M.; van der Burght, C.A.J.; Nierkens, S.; van Velzen, J.F. FACSCanto II and LSRFortessa flow cytometer instruments can be synchronized utilizing single-fluorochrome-conjugated surface-dyed beads for standardized immunophenotyping. J. Clin. Lab. Anal. 2020, 34, e23361. [Google Scholar] [CrossRef]
Biomarker | Lowest Standard, pg/mL | Upper Standard, pg/mL |
---|---|---|
A1AT | 611 | 445,620 |
ANG | 4.8 | 3500 |
APOE | 400 | 291,720 |
CA9 | 1.5 | 1110 |
IL-8 | 1.9 | 1410 |
MMP-9 | 20.1 | 14,680 |
MMP-10 | 12.3 | 9030 |
PAI-1 | 12.0 | 8760 |
SDC-1 | 153 | 111,500 |
VEGF | 11.8 | 8620 |
Parameter | All (N = 181) | Controls, N = 127 | Bladder Cancer, N = 54 | p-Value |
---|---|---|---|---|
Age, years, mean (range) | 65.5 (26–88) | 64.2 (26–89) | 68.9 (52–88) | 0.02 |
18–54 years, n (%) | 31 (17.1) | 27 (21.3) | 4 (7.4) | |
55–64 years, n (%) | 46 (25.4) | 33 (26.0) | 13 (24.1) | |
65–74 years, n (%) | 61 (33.7) | 38 (29.9) | 23 (42.6) | |
≥75 years, n (%) | 43 (23.8) | 29 (22.8) | 14 (25.9) | |
Male/female ratio (% male) | 126:55 (69.6% male) | 85:42 (66.9% male) | 41:13 (75.9% male) | 0.23 |
Race, n (%) | 0.41 | |||
White | 92 (50.8) | 68 (53.5) | 24 (44.4) | |
Other | 88 (48.6) | 58 (45.7) | 30 (55.6) | |
Unknown | 1 (0.6) | 1 (0.8) | 0 (0.0) | |
Primary Tumor Stage, n (%) | N/A | |||
NMIBC (Ta, Tis, or T1) | N/A * | 41 (76%) | ||
MIBC (T2–T4) | N/A | 13 (24%) | ||
Grade, n (%) | N/A | |||
Low | N/A | 13 (24%) | ||
High | N/A | 41 (76%) |
Analyte (pg/mL) | FlexMap 3D (N = 181) | LX200 (N = 181) | MagPix (N = 181) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | Mean | SD | Median | Mean | SD | Median | ICC * | |
A1AT | 95,335 | 1.3 × 105 | 31,412 | 98,525 | 1.4 × 105 | 31,172 | 98,052 | 1.3 × 105 | 31,168 | >0.99 |
ANG | 472 | 784 | 99 | 468 | 782 | 96 | 473 | 781 | 98 | >0.99 |
APOE | 888 | 1874 | 400 | 866 | 1813 | 400 | 829 | 1676 | 400 | >0.99 |
CA9 | 7 | 26 | 2 | 7 | 26 | 2 | 7 | 27 | 2 | >0.99 |
IL-8 | 155 | 350 | 8 | 163 | 359 | 9 | 158 | 292 | 10 | >0.99 |
MMP9 | 397 | 1701 | 20 | 387 | 1686 | 20 | 388 | 1692 | 20 | >0.99 |
MMP10 | 32 | 176 | 12 | 32 | 181 | 12 | 31 | 174 | 12 | >0.99 |
PAI-1 | 198 | 656 | 12 | 198 | 658 | 12 | 196 | 658 | 12 | >0.99 |
SDC-1 | 9540 | 6848 | 8005 | 9470 | 6934 | 8209 | 9553 | 7208 | 8241 | >0.99 |
VEGF | 165 | 499 | 43 | 160 | 476 | 40 | 159 | 466 | 38 | >0.99 |
Sample ID | Instrument | A1AT | ANG | ApoE | CA9 | IL-8 | MMP-9 | MMP-10 | PAI-1 | SDC-1 | VEGF |
---|---|---|---|---|---|---|---|---|---|---|---|
#M003 | FlexMap 3D | 340,684 | 3500 | 9321 | 48 | 1410 | 934 | 519 | 4642 | 31,386 | 4836 |
Cancer | 200 | 324,637 | 3500 | 9104 | 47 | 1410 | 863 | 491 | 4599 | 31,382 | 4397 |
MagPix | 328,482 | 3500 | 8861 | 52 | 1410 | 871 | 462 | 4756 | 33,713 | 4353 | |
#M004 | FlexMap 3D | 421,933 | 464 | 851 | 12 | 1410 | 300 | 12 | 271 | 26,923 | 513 |
Cancer | 200 | 348,662 | 441 | 830 | 13 | 1410 | 280 | 12 | 268 | 28,563 | 497 |
MagPix | 409,455 | 526 | 769 | 20 | 1410 | 279 | 12 | 280 | 32,092 | 526 | |
#M006 | FlexMap 3D | 170,574 | 835 | 922 | 3 | 463 | 49 | 12 | 284 | 36,675 | 180 |
Cancer | 200 | 178,759 | 874 | 886 | 6 | 444 | 46 | 12 | 292 | 38,813 | 174 |
MagPix | 256,081 | 1001 | 845 | 3 | 468 | 41 | 12 | 303 | 44,261 | 182 | |
#C017 | FlexMap 3D | 5528 | 98 | 400 | 2 | 2 | 20 | 12 | 12 | 3467 | 12 |
Control | 200 | 5544 | 95 | 400 | 2 | 2 | 20 | 12 | 12 | 3463 | 12 |
MagPix | 5286 | 96 | 400 | 2 | 2 | 20 | 12 | 12 | 3353 | 12 | |
#C018 | FlexMap 3D | 3557 | 6 | 400 | 2 | 2 | 20 | 12 | 12 | 1102 | 12 |
Control | 200 | 3526 | 8 | 400 | 2 | 2 | 20 | 12 | 14 | 1039 | 12 |
MagPix | 3100 | 7 | 400 | 2 | 2 | 20 | 12 | 12 | 995 | 12 | |
#C019 | FlexMap 3D | 69,062 | 174 | 400 | 2 | 4 | 20 | 12 | 12 | 3698 | 47 |
Control | 200 | 71,593 | 166 | 400 | 2 | 3 | 20 | 12 | 12 | 3525 | 48 |
MagPix | 71,237 | 166 | 400 | 2 | 3 | 20 | 12 | 12 | 3573 | 46 |
Biomarker | Instruments | n | RMSE | R2 | %CV |
---|---|---|---|---|---|
A1AT | LX200 vs. MagPix | 181 | 1.05 | 0.999 | 0.5% |
LX200 vs. FlexMap 3D | 181 | 1.05 | 0.999 | 0.4% | |
MagPix vs. FlexMap 3D | 181 | 1.07 | 0.999 | 0.6% | |
ANG | LX200 vs. MagPix | 181 | 1.07 | 0.999 | 1.4% |
LX200 vs. FlexMap 3D | 181 | 1.08 | 0.998 | 1.7% | |
MagPix vs. FlexMap 3D | 181 | 1.08 | 0.998 | 1.6% | |
ApoE | LX200 vs. MagPix | 181 | 1.03 | 0.997 | 0.5% |
LX200 vs. FlexMap 3D | 181 | 1.02 | 0.999 | 0.4% | |
MagPix vs. FlexMap 3D | 181 | 1.04 | 0.997 | 0.6% | |
CA9 | LX200 vs. MagPix | 181 | 1.17 | 0.970 | 17.4% |
LX200 vs. FlexMap 3D | 181 | 1.20 | 0.960 | 20.4% | |
MagPix vs. FlexMap 3D | 181 | 1.24 | 0.948 | 23.1% | |
IL-8 | LX200 vs. MagPix | 181 | 1.04 | 0.999 | 1.6% |
LX200 vs. FlexMap 3D | 181 | 1.06 | 0.999 | 2.2% | |
MagPix vs. FlexMap 3D | 181 | 1.07 | 0.999 | 2.3% | |
MMP-9 | LX200 vs. MagPix | 181 | 1.03 | 0.999 | 0.7% |
LX200 vs. FlexMap 3D | 181 | 1.03 | 0.999 | 0.7% | |
MagPix vs. FlexMap 3D | 181 | 1.05 | 0.999 | 1.2% | |
MMP-10 | LX200 vs. MagPix | 181 | 1.03 | 0.997 | 1.2% |
LX200 vs. FlexMap 3D | 181 | 1.03 | 0.997 | 1.3% | |
MagPix vs. FlexMap 3D | 181 | 1.04 | 0.995 | 1.6% | |
PAI-1 | LX200 vs. MagPix | 181 | 1.07 | 0.998 | 2.1% |
LX200 vs. FlexMap 3D | 181 | 1.06 | 0.999 | 1.6% | |
MagPix vs. FlexMap 3D | 181 | 1.07 | 0.998 | 2.0% | |
SDC-1 | LX200 vs. MagPix | 181 | 1.03 | 0.999 | 0.3% |
LX200 vs. FlexMap 3D | 181 | 1.02 | 0.999 | 0.3% | |
MagPix vs. FlexMap 3D | 181 | 1.04 | 0.999 | 0.4% | |
VEGF | LX200 vs. MagPix | 181 | 1.06 | 0.998 | 1.6% |
LX200 vs. FlexMap 3D | 181 | 1.06 | 0.998 | 1.5% | |
MagPix vs. FlexMap 3D | 181 | 1.07 | 0.998 | 1.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Shimizu, T.; Pagano, I.; Hogrefe, W.; Dunbar, S.; Rosser, C.J.; Furuya, H. Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments. Diagnostics 2025, 15, 1749. https://doi.org/10.3390/diagnostics15141749
Tanaka S, Shimizu T, Pagano I, Hogrefe W, Dunbar S, Rosser CJ, Furuya H. Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments. Diagnostics. 2025; 15(14):1749. https://doi.org/10.3390/diagnostics15141749
Chicago/Turabian StyleTanaka, Sunao, Takuto Shimizu, Ian Pagano, Wayne Hogrefe, Sherry Dunbar, Charles J. Rosser, and Hideki Furuya. 2025. "Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments" Diagnostics 15, no. 14: 1749. https://doi.org/10.3390/diagnostics15141749
APA StyleTanaka, S., Shimizu, T., Pagano, I., Hogrefe, W., Dunbar, S., Rosser, C. J., & Furuya, H. (2025). Expanded Performance Comparison of the Oncuria 10-Plex Bladder Cancer Urine Assay Using Three Different Luminex xMAP Instruments. Diagnostics, 15(14), 1749. https://doi.org/10.3390/diagnostics15141749