Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure
Abstract
1. Introduction
2. Experimental Apparatus and Diagnostic Methods
2.1. Experimental Apparatus
2.2. Flame Conditions
2.3. Laser Diagnosis
2.4. Image Processing
3. Results and Discussion
3.1. Flame Structures
3.2. Effect of Swirl Number and Pressure on OH Distribution
3.3. Laser-Induced PAH Fluorescence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ABE | Acetone-butanol-ethanol |
HAB | Height above the burner |
IRZ | Inner recirculation zone |
LES | Large eddy simulations |
LII | Laser-induced incandescence |
PAHs | Polycyclic aromatic hydrocarbons |
PDFs | Probability density functions |
PIV | Particle image velocimetry |
PLIF | Planar laser-induced fluorescence |
PME | Palm biodiesel/methyl esters |
PVC | Processing vortex core |
SL | Shear layer |
SNR | Signal to noise ratio |
Dh | Hub diameter of the swirler (mm) |
Dn | Tip diameter of the swirler (mm) |
SN | Swirl number |
θ | Swirler vane angle |
References
- Philo, J.J.; Shahin, T.T.; McDonald, C.T.; Gejji, R.M.; Lucht, R.P.; Slabaugh, C.D. Effect of fuel temperature on the structure of a high-pressure liquid-fueled swirl flame. Fuel 2023, 354, 129142. [Google Scholar] [CrossRef]
- Xin, S.; Wang, W.; He, Y.; Zhu, Y.; Wang, Z. Effect of low fuel temperature on combustion deterioration of kerosene swirling spray flames using OH-PLIF. Fuel 2024, 358, 130098. [Google Scholar] [CrossRef]
- Oberleithner, K.; Stöhr, M.; Im, S.H.; Arndt, C.M.; Steinberg, A.M. Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: Experiments and linear stability analysis. Combust. Flame 2015, 162, 3100–3114. [Google Scholar] [CrossRef]
- Grader, M.; Eberle, C.; Gerlinger, P.; Aigner, M. LES of a Pressurized, Sooting Aero-Engine Model Combustor at Different Equivalence Ratios with a Sectional Approach for PAHs and Soot. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Guiberti, T.F.; Zimmer, L.; Durox, D.; Schuller, T. Experimental Analysis of V- to M-Shape Transition of Premixed CH4/H2/Air Swirling Flames. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- Chterev, I.; Foley, C.W.; Foti, D.; Kostka, S.; Caswell, A.W.; Jiang, N.; Lynch, A.; Noble, D.R.; Menon, S.; Seitzman, J.M.; et al. Flame and Flow Topologies in an Annular Swirling Flow. Combust. Sci. Technol. 2014, 186, 1041–1074. [Google Scholar] [CrossRef]
- Strakey, P.; Woodruff, S.; Williams, T.; Schefer, R. OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 2007; p. 980. [Google Scholar]
- Stopper, U.; Meier, W.; Sadanandan, R.; Stöhr, M.; Aigner, M.; Bulat, G. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combust. Flame 2013, 160, 2103–2118. [Google Scholar] [CrossRef]
- Boxx, I.; Slabaugh, C.; Kutne, P.; Lucht, R.P.; Meier, W. 3kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure. Proc. Combust. Inst. 2015, 35, 3793–3802. [Google Scholar] [CrossRef]
- Chterev, I.; Boxx, I. Effect of hydrogen enrichment on the dynamics of a lean technically premixed elevated pressure flame. Combust. Flame 2021, 225, 149–159. [Google Scholar] [CrossRef]
- Agostinelli, P.W.; Laera, D.; Chterev, I.; Boxx, I.; Gicquel, L.; Poinsot, T. Large eddy simulations of mean pressure and H2 addition effects on the stabilization and dynamics of a partially-premixed swirled-stabilized methane flame. Combust. Flame 2023, 249, 112592. [Google Scholar] [CrossRef]
- Rault, T.M.; Vishwanath, R.B.; Gülder, Ö.L. Influence of m-xylene addition to Jet A-1 on spray structure, flow field and soot production in turbulent swirl-stabilized spray flames in a model combustor. Combust. Flame 2020, 219, 258–267. [Google Scholar] [CrossRef]
- Cavaliere, D.E.; Kariuki, J.; Mastorakos, E. A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames. Flow Turbul. Combust. 2013, 91, 347–372. [Google Scholar] [CrossRef]
- Chong, C.T.; Hochgreb, S. Spray flame structure of rapeseed biodiesel and Jet-A1 fuel. Fuel 2014, 115, 551–558. [Google Scholar] [CrossRef]
- Chong, C.T.; Chiong, M.-C.; Ng, J.-H.; Tran, M.-V.; Valera-Medina, A.; Józsa, V.; Tian, B. Dual-Fuel Operation of Biodiesel and Natural Gas in a Model Gas Turbine Combustor. Energy Fuels 2020, 34, 3788–3796. [Google Scholar] [CrossRef]
- Xie, T.; Chong, C.T.; Wang, S.; Seljak, T.; Ng, J.-H.; Tran, M.-V.; Karmakar, S.; Tian, B. Flow field, flame structure and emissions quantifications of oxygenated glycerol in a swirl flame combustor. Fuel 2022, 321, 124052. [Google Scholar] [CrossRef]
- Kumar, M.; Karmakar, S.; Chong, C.T. Investigation on combustion characteristics of acetone-butanol-ethanol/Jet A-1 mixture in a Swirl-stabilized combustor for its potential application in gas turbine engines. Fuel 2023, 340, 127610. [Google Scholar] [CrossRef]
- Philo, J.J.; Frederick, M.D.; Slabaugh, C.D. 100 kHz PIV in a liquid-fueled gas turbine swirl combustor at 1 MPa. Proc. Combust. Inst. 2021, 38, 1571–1578. [Google Scholar] [CrossRef]
- Chterev, I.; Rock, N.; Ek, H.; Emerson, B.; Seitzman, J.; Jiang, N.; Roy, S.; Lee, T.; Gord, J.; Lieuwen, T. Simultaneous imaging of fuel, OH, and three component velocity fields in high pressure, liquid fueled, swirl stabilized flames at 5 kHz. Combust. Flame 2017, 186, 150–165. [Google Scholar] [CrossRef]
- Malbois, P.; Salaün, E.; Rossow, B.; Cabot, G.; Bouheraoua, L.; Richard, S.; Renou, B.; Grisch, F. Quantitative measurements of fuel distribution and flame structure in a lean-premixed aero-engine injection system by kerosene/OH-PLIF measurements under high-pressure conditions. Proc. Combust. Inst. 2019, 37, 5215–5222. [Google Scholar] [CrossRef]
- Salaün, E.; Frindt, F.; Cabot, G.; Renou, B.; Richard, S.; Cazalens, M.; Malbois, P.; Grisch, F. Experimental Investigation on NO Pollutant Formation in High-Pressure Swirl-Stabilized Kerosene/Air Flames Using NO-, OH- and Kerosene-PLIF and PIV Laser Diagnostics. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2020. [Google Scholar]
- Legros, S.; Brunet, C.; Domingo-Alvarez, P.; Malbois, P.; Salaun, E.; Godard, G.; Caceres, M.; Barviau, B.; Cabot, G.; Renou, B.; et al. Combustion for aircraft propulsion: Progress in advanced laser-based diagnostics on high-pressure kerosene/air flames produced with low-NOx fuel injection systems. Combust. Flame 2021, 224, 273–294. [Google Scholar] [CrossRef]
- Lyu, Z.; Yan, T.; Qian, Y.; Cen, L.; Jin, Z.; Zhou, D.; Lu, X. Experimental and numerical investigation on soot formation characteristics in n-decane diffusion flames at elevated pressures. Proc. Combust. Inst. 2024, 40, 105628. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Bauer, C.K.; Gülder, Ö.L. Soot and flow field in turbulent swirl-stabilized spray flames of Jet A-1 in a model combustor. Proc. Combust. Inst. 2019, 37, 5437–5444. [Google Scholar] [CrossRef]
- Al Sadi, K.; Nadimi, E.; Wu, D. Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production. Energies 2025, 18, 3505. [Google Scholar] [CrossRef]
- Shi, J.; Yang, P.; Ren, X.; Yang, X.; Yan, H.; Tan, Y.; Lei, Z. Study on the Mechanism of Soot Inhibition in Methanol-Ethylene Mixed Combustion under High-Pressure Conditions. Fuel 2025, 391, 134697. [Google Scholar] [CrossRef]
- Chen, C.; Liu, D. Review of effects of zero-carbon fuel ammonia addition on soot formation in combustion. Renew. Sustain. Energy Rev. 2023, 185, 113640. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, J.; Liu, Y.; Chen, B.; Liu, A. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames. Energies 2017, 10, 1107. [Google Scholar] [CrossRef]
- Hui, X.; Zhang, C.; Xia, M.; Sung, C.-J. Effects of hydrogen addition on combustion characteristics of n-decane/air mixtures. Combust. Flame 2014, 161, 2252–2262. [Google Scholar] [CrossRef]
- Yan, Z.; Zhu, T.; Xue, X.; Liu, H.; Li, Q.; Huang, Z. Effects of NH3 and H2 addition on morphology, nanostructure and oxidation of soot in n-decane diffusion flames. Fuel Process. Technol. 2024, 253, 108003. [Google Scholar] [CrossRef]
- Li, R.; Yang, D.; Liu, F.; Hu, Q.; Liu, Q.; Yue, H.; Meng, Y.; Mei, Y. Study on in-cylinder soot formation process of F-T diesel/methanol dual-fuel diesel engine. Fuel 2025, 390, 134745. [Google Scholar] [CrossRef]
- Bouvier, M.; Cabot, G.; Yon, J.; Grisch, F. On the use of PIV, LII, PAH-PLIF and OH-PLIF for the study of soot formation and flame structure in a swirl stratified premixed ethylene/air flame. Proc. Combust. Inst. 2021, 38, 1851–1858. [Google Scholar] [CrossRef]
- Jain, A.; Wang, Y.; Schweizer, C.; Kulatilaka, W.D. Investigation of Flow-Flame Interactions in Kerosene Piloted Liquid-Spray Flames Using Simultaneous OH and PAH PLIF. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; AIAA SciTech Forum. American Institute of Aeronautics and Astronautics: Washington, DC, USA, 2020. [Google Scholar]
- Wang, Y.; Jain, A.; Schweizer, C.; Kulatilaka, W.D. OH, PAH, and sooting imaging in piloted liquid-spray flames of diesel and diesel surrogate. Combust. Flame 2021, 231, 111479. [Google Scholar] [CrossRef]
- Liang, S.; Li, Z.; Gao, J.; Ma, X.; Xu, H.; Shuai, S. PAHs and soot formation in laminar partially premixed co-flow flames fuelled by PRFs at elevated pressures. Combust. Flame 2019, 206, 363–378. [Google Scholar] [CrossRef]
- Wan, K.; Huang, Y.; Gao, Z.; He, Y.; Jiang, C. Large-Eddy Simulation of a Swirling Aviation Kerosene Spray Flame Using 3-Component Surrogate Fuels. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Yi, R.; Chen, X.; Chen, C.P. Surrogate for Emulating Physicochemical and Kinetics Characteristics of RP-3 Aviation Fuel. Energy Fuels 2019, 33, 2872–2879. [Google Scholar] [CrossRef]
- Liu, J.; Hu, E.; Yin, G.; Huang, Z.; Zeng, W. An experimental and kinetic modeling study on the low-temperature oxidation, ignition delay time, and laminar flame speed of a surrogate fuel for RP-3 kerosene. Combust. Flame 2022, 237, 111821. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Srinivasan, K. Influence of swirl number on jet noise reduction using flat vane swirlers. Aerosp. Sci. Technol. 2018, 73, 256–268. [Google Scholar] [CrossRef]
- Sharma, S.; Ghate, K.; Sundararajan, T.; Sahu, S. Effects of air swirler geometry on air and spray droplet interactions in a spray chamber. Adv. Mech. Eng. 2019, 11, 1687814019850978. [Google Scholar] [CrossRef]
- Gupta, A.K.; Lilley, D.G.; Syred, N. Swirl Flows; Tunbridge Wells: Kent, UK, 1984. [Google Scholar]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Bren˜a de la Rosa, A.; Wang, G.; Bachalo, W.D. The Effect of Swirl on the Velocity and Turbulence Fields of a Liquid Spray. J. Eng. Gas Turbines Power 1992, 114, 72–81. [Google Scholar] [CrossRef]
- Mulla, I.A.; Renou, B. Simultaneous imaging of soot volume fraction, PAH, and OH in a turbulent n-heptane spray flame. Combust. Flame 2019, 209, 452–466. [Google Scholar] [CrossRef]
- Liao, Y.-H.; Hermanson, J.C. OH-PLIF Imaging of the Reaction Zone in Swirled, Strongly-Pulsed Jet Diffusion Flames with a Low Reynolds Number. Combust. Sci. Technol. 2018, 190, 615–631. [Google Scholar] [CrossRef]
- Beretta, F.; D’Alessio, A.; D’Orsi, A.; Minutolo, P.U.V. and Visible Laser Excited Fluorescence from Rich Premixed and Diffusion Flames. Combust. Sci. Technol. 1992, 85, 455–470. [Google Scholar] [CrossRef]
- Liu, P.; He, Z.; Hou, G.-L.; Guan, B.; Lin, H.; Huang, Z. The Diagnostics of Laser-Induced Fluorescence (LIF) Spectra of PAHs in Flame with TD-DFT: Special Focus on Five-Membered Ring. J. Phys. Chem. A 2015, 119, 13009–13017. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ren, F.; Cheng, X.; Wang, L.; Zhu, L.; Huang, Z. The effects of 1-methylnaphthalene addition to n-dodecane on the formation of soot and polycyclic aromatic hydrocarbons in laminar coflow diffusion flames. Fuel 2022, 329, 125378. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. Numerical modeling of turbulent flow structure and heat transfer in a droplet-laden swirling flow in a pipe with a sudden expansion. Numer. Heat Transf. Part A Appl. 2017, 71, 721–736. [Google Scholar] [CrossRef]
- Pakhomov, M.; Terekhov, V. The effect of droplets thermophysical properties on turbulent heat transfer in a swirling separated mist flow. Int. J. Therm. Sci. 2020, 149, 106180. [Google Scholar] [CrossRef]
- Shin, D.; Satija, A.; Lucht, R.P. Spray characteristics of standard and alternative aviation fuels at high ambient pressure conditions. Exp. Therm. Fluid Sci. 2022, 130, 110511. [Google Scholar] [CrossRef]
- Jasuja, A.K.; Lefebvre, A.H. Influence of Ambient Air Pressure on Pressure-Swirl Atomizer Spray Characteristics. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2001. [Google Scholar]
- Chigier, N.A. The Atomization and Burning of Liquid Fuel Sprays. In Energy and Combustion Science; Chigier, N.A., Ed.; Pergamon: New York, NY, USA, 1979; pp. 183–200. [Google Scholar]
- Cessou, A.; Stepowski, D. Planar Laser Induced Fluorescence Measurement of [ OH] in the Stabilization Stage of a Spray Jet Flame. Combust. Sci. Technol. 1996, 118, 361–381. [Google Scholar] [CrossRef]
- Allen, M.G.; McManus, K.R.; Sonnenfroh, D.M.; Paul, P.H. Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion. Appl. Opt. 1995, 34, 6287–6300. [Google Scholar] [CrossRef] [PubMed]
- Dekterev, A.A.; Lobasov, A.S.; Dekterev, A.A. Numerical simulation of unsteady combustion at elevated pressure and initial temperature of the mixture for the model combustion chamber. J. Phys. Conf. Ser. 2020, 1677, 012036. [Google Scholar] [CrossRef]
Flame Case | Fuel Mass Flow Rate (g/s) | Air Mass Flow Rate (g/s) | Vane Angle | Swirl Number (SN) | Pressure (bar) |
---|---|---|---|---|---|
S1 | 0.2 | 6.17 | 20° | 0.30 | 1 |
S2 | 30° | 0.48 | 1–3 (increment of 0.5 bar) | ||
S3 | 43° | 0.77 | 1–3 (increment of 0.5 bar) | ||
S4 | 50° | 0.99 | 1 | ||
S5 | 55° | 1.18 | 1–3 (increment of 0.5 bar) |
Combination | Object | Camera | Range (nm) |
---|---|---|---|
OH+PAH (340 nm) | OH | ICCD1: Part A | 305–315 |
PAH at 340 nm | ICCD1: Part B | 314–366 | |
PAHs | PAH at 340 nm | ICCD1: Part B | 314–366 |
PAH at 386 nm | ICCD1: Part A | 359–413 | |
PAH at 525 nm | ICCD2 | 500–550 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhu, R.; Liu, S.; He, Y.; Weng, W.; Wang, S.; Roberts, W.L.; Wang, Z. Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure. Energies 2025, 18, 3923. https://doi.org/10.3390/en18153923
Wang W, Zhu R, Liu S, He Y, Weng W, Wang S, Roberts WL, Wang Z. Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure. Energies. 2025; 18(15):3923. https://doi.org/10.3390/en18153923
Chicago/Turabian StyleWang, Wenyu, Runfan Zhu, Siyu Liu, Yong He, Wubin Weng, Shixing Wang, William L. Roberts, and Zhihua Wang. 2025. "Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure" Energies 18, no. 15: 3923. https://doi.org/10.3390/en18153923
APA StyleWang, W., Zhu, R., Liu, S., He, Y., Weng, W., Wang, S., Roberts, W. L., & Wang, Z. (2025). Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure. Energies, 18(15), 3923. https://doi.org/10.3390/en18153923