Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = karst soil improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1760 KB  
Article
Mechanisms of Multi-Path Runoff Leakage Induced by Cracks at the Rock–Soil Interface on Bedrock-Exposed Slopes in Karst Critical Zones
by Xingya Chen, Xudong Peng, Longpei Cen, Wenping Meng, Quanhou Dai and Yanyi Huang
Hydrology 2026, 13(1), 24; https://doi.org/10.3390/hydrology13010024 - 8 Jan 2026
Viewed by 254
Abstract
As exposed bedrocks commonly interface with the soil directly, lacking a transition layer, cracks at rock–soil interface cracks (RSI-Cracks), are well-developed, particularly following wet–dry alternation in karst critical zones. However, inadequate understanding of the influence of RSI-Cracks on multi-path runoff generation around bedrocks [...] Read more.
As exposed bedrocks commonly interface with the soil directly, lacking a transition layer, cracks at rock–soil interface cracks (RSI-Cracks), are well-developed, particularly following wet–dry alternation in karst critical zones. However, inadequate understanding of the influence of RSI-Cracks on multi-path runoff generation around bedrocks has hindered an in-depth comprehension of subsurface-dominated hydrological processes in karst areas. To address this gap, we developed micro-slope models replicating rock–soil interfacial configurations by building upon field investigations. Two conditions, namely, the presence and absence of RSI-Cracks, were incorporated, with rain intensity and rock surface inclination as experimental conditions. Our results indicate that RSI-Cracks significantly alter the runoff output (p < 0.05), exacerbating subsurface water leakage. Compared with that on slopes without RSI-Cracks, the proportion of surface runoff on slopes with RSI-Cracks is reduced, with a reduction range of 4 to 46%. Conversely, RSI-Cracks promote an increase in the proportion of outflow at the rock–soil interface (RSI flow), with an increase range of 7 to 38%. This is an important reason for the aggravation of subsurface water leakage through RSI-Cracks. However, there is no significant change in the water loss caused by internal soil seepage on slopes with or without RSI-Cracks. These findings provide novel insights into underground water loss, with valuable implications for the construction and improvement of hydrological models in karst areas. Full article
(This article belongs to the Special Issue The Influence of Landscape Disturbance on Catchment Processes)
Show Figures

Figure 1

33 pages, 7850 KB  
Article
Future Land Use Change Threatens Ecosystems in the Rocky Desertification Areas: Conservation Insights from Integrated Model-A Case Study of Wenshan Prefecture, Yunnan Province, China
by Yanfang Tan, Yuanhang Li, Shuai Zhou, Jianming Cui, Mingmin Huang, Yuan Gu, Dong Chen, Zeting Dong and Yun Zhang
Sustainability 2026, 18(1), 452; https://doi.org/10.3390/su18010452 - 2 Jan 2026
Viewed by 217
Abstract
The Rocky Desertification area has high sensitivity and poor anti-interference ability in the ecosystem. It is challenging to achieve sustainable development in a rocky desertification area. Given this issue, the System Dynamics model, the Future Land Use Simulation (FlUS) model, the Integrated Valuation [...] Read more.
The Rocky Desertification area has high sensitivity and poor anti-interference ability in the ecosystem. It is challenging to achieve sustainable development in a rocky desertification area. Given this issue, the System Dynamics model, the Future Land Use Simulation (FlUS) model, the Integrated Valuation and Trade-offs of ESs (InVEST) model, and the Structural Equation Model (SEM) were integrated in this study to analyze future ecosystem service change in Wenshan Prefecture under SSP1-1.9, SSP2-4.5, and SSP5-8.5 scenarios. The following results are obtained. (1) The area of cultivated land, construction land, forest land, and grassland increased in SSP1-1.9; the area of forest land and grassland decreased in SSP2-4.5 scenario and SSP5-8.5 scenario. (2) The water supply (WS), carbon sequestration (CS), and soil conservation power (SDR) under the three different scenarios were improved compared with 2020. Among them, habitat quality (HQ) demonstrated a slight increase trend under the SSP1-1.9 scenario but decreased under the other two scenarios. (3) WS, CS, and HQ exhibited a tradeoff relationship in the three scenarios compared with 2020. (4) In the SSP1-1.9 and SSP2-4.5 scenarios, the synergistic relationships among CS, HQ, SDR, and WS were particularly detected in the northern, southern, and central parts of the study area. Additionally, climate change and vegetation-dominated ecological environment are the main driving mechanisms affecting ES changes. This paper summarizes the spatial differences in the change trend and synergistic tradeoff and lays a crucial scientific foundation for the ecological protection of karst landform areas. Full article
Show Figures

Figure 1

21 pages, 11034 KB  
Article
Refinement Assessment of Soil Conservation Service and Analysis of Its Trade-Off/Synergy with Other Key Services in the Guizhou Plateau Based on Satellite-UAV-Ground Systems
by Linan Niu, Quanqin Shao and Meiqi Chen
Remote Sens. 2026, 18(1), 93; https://doi.org/10.3390/rs18010093 - 26 Dec 2025
Viewed by 192
Abstract
The Guizhou Plateau, with the most extensive and representative karst landforms worldwide, is characterized by severe soil erosion and a highly fragile ecological environment. However, large-scale assessments of soil conservation services in this region remain limited. A key challenge lies in identifying appropriate [...] Read more.
The Guizhou Plateau, with the most extensive and representative karst landforms worldwide, is characterized by severe soil erosion and a highly fragile ecological environment. However, large-scale assessments of soil conservation services in this region remain limited. A key challenge lies in identifying appropriate datasets and methodologies for regional-scale soil conservation service evaluations, particularly under conditions of data scarcity or limited data accuracy. In this study, Unmanned Aerial Vehicle imagery, runoff plot observations, ground survey data, and multi-source satellite remote sensing data were integrated to refine LS and C in the Revised Universal Soil Loss Equation (RUSLE), thereby establishing a parameterized and localized soil erosion model. This improvement provided a methodological foundation for soil conservation service research in the region. Subsequently, the spatiotemporal variations in soil conservation services in the Guizhou Plateau over the past two decades were assessed. Furthermore, the relationships between soil conservation services and other key ecosystem services, including water conservation and carbon sequestration, were quantitatively examined, and the driving factors were analyzed. Soil conservation on the Guizhou Plateau exhibited an improving trend from 2000 to 2020. In karst areas, the relationship between soil conservation and water conservation was primarily influenced by temperature, altitude, and vegetation coverage, whereas in non-karst areas, it was regulated by rainfall and slope. Ecological restoration projects have enhanced the synergy between soil conservation and carbon sequestration by promoting vegetation cover. These findings could contribute to the next stage of ecological engineering initiatives and ecological policy implementation in Guizhou. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

18 pages, 7262 KB  
Article
Pasture Restoration Reduces Runoff and Soil Loss in Karst Landscapes of the Brazilian Cerrado
by Isabela Fernanda L. G. Camargo, Henrique Marinho Leite Chaves and Maria Rita Souza Fonseca
Sustainability 2025, 17(24), 11079; https://doi.org/10.3390/su172411079 - 10 Dec 2025
Viewed by 260
Abstract
Water erosion is a major driver of soil degradation in the Brazilian Cerrado, intensified by the conversion of natural vegetation into agricultural land. The excessive runoff and sediment generated in poorly covered karst slopes impact the hydrologic cycle of the biome’s sinkholes and [...] Read more.
Water erosion is a major driver of soil degradation in the Brazilian Cerrado, intensified by the conversion of natural vegetation into agricultural land. The excessive runoff and sediment generated in poorly covered karst slopes impact the hydrologic cycle of the biome’s sinkholes and underground rivers. This study evaluated the effectiveness of pasture restoration in reducing runoff and soil loss in three experimental farms situated in a vulnerable karst area of Central Brazil. Runoff and soil loss were monitored during three hydrologic years in plots of degraded pasture (DP), restored pasture (RP), and natural savannah (NS), using unbound Gerlach settings. The experiment was carried out on three farms in the Vermelho river basin, which were treated as blocks. The results indicate that pasture restoration reduced runoff by 50% and soil loss by 55–95% when compared to degraded pasture conditions, below on-site erosion tolerance thresholds. Runoff and soil loss in restored pasture (RP) plots fell between DP and NS, though in some cases, soil loss in RP reached levels that are comparable to the natural savannah. Normalized soil loss was highly correlated with runoff (R2 = 0.94), allowing for the latter to be used as a proxy of the former. The increased groundwater recharge and reduced sediment yield resulting from pasture restoration improve on- and off-site resilience in vulnerable karst landscapes and could be utilized as a sustainable soil conservation policy. Full article
Show Figures

Figure 1

20 pages, 6223 KB  
Article
Research on Vegetation Dynamics and Driving Mechanisms in Karst Desertified Areas Integrating Remote Sensing and Multi-Source Data
by Jimin Tang, Yifei Liu, Yan Wang, Jiangxia Ye, Xiaojie Yin, Zhexiu Yu and Chao Zhang
Agriculture 2025, 15(23), 2464; https://doi.org/10.3390/agriculture15232464 - 27 Nov 2025
Viewed by 415
Abstract
Rocky desertification severely restricts socio-economic development in the karst regions. However, assessments linking karst rocky desertification and NPP changes over the long term and at high resolution are limited. This study aims to reveal the spatiotemporal patterns and driving mechanisms of NPP changes [...] Read more.
Rocky desertification severely restricts socio-economic development in the karst regions. However, assessments linking karst rocky desertification and NPP changes over the long term and at high resolution are limited. This study aims to reveal the spatiotemporal patterns and driving mechanisms of NPP changes in Wenshan Prefecture, addressing the scientific gap in quantitative process research and mechanism identification in karst desertification areas. We estimated vegetation NPP from 2000 to 2020 using remote sensing data and the CASA model. The Theil–Sen trend analysis and Mann–Kendall test were applied to assess temporal variation, while a Geographical Detector identified the dominant natural and human factors and their interactions shaping NPP spatial patterns. Our results showed that NPP increased overall by 4.07 gC m−2 a−1, alongside a general decline in rocky desertification. The most significant improvement occurred between 2010 and 2015, when rocky desertification shrank by 2224 km2 and the dynamic rate reached 1.42%. Mean NPP reached 1057 gC m−2 a−1, with a “northwest high–southeast low” spatial pattern, and 77% of the region showed significant increases. Rocky desertification was most severe at elevations between 1000 and 2000 m. In the karst region, NPP is mainly controlled by natural factors, with soil depth and slope being the strongest influences. Human activity had the largest negative impact, and most factors interacted synergistically, where hydrothermal gradients and human disturbances more strongly suppressed NPP on steep, thin slopes than individually expected. These findings provide robust scientific evidence and practical decision-making support for ecological restoration, rocky desertification control and long-term sustainable development in Wenshan and other karst regions, highlighting the importance of continuous monitoring and adaptive management strategies to consolidate restoration achievements and guide future land-use planning and regional ecological policy. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 7619 KB  
Article
The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control
by Shui Li, Pingping Yang, Changxin Yang, Haoru Zhang and Xiong Gao
Land 2025, 14(9), 1903; https://doi.org/10.3390/land14091903 - 18 Sep 2025
Viewed by 859
Abstract
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific [...] Read more.
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific effects of ecological restoration measures. This study integrates multi-source remote sensing data and adjusts InVEST model parameters to systematically reveal the spatiotemporal evolution of carbon storage and its driving mechanisms in typical karst plateau regions of southwest China under ecological restoration measures. The results indicate: (1) From 2000 to 2020, the carbon stock in the study area increased by 6.09% overall. However, from 2020 to 2025, due to the rapid conversion of forest land into building land and grassland, the carbon stock decreased sharply by 7.69%. (2) Severe rock desertification constrains carbon stock, and afforestation provides significantly higher long-term carbon sink benefits. (3) The spatial heterogeneity of carbon storage is primarily influenced by the combined effects of natural factors (rock desertification, elevation, NDVI) and human factors (POP). Based on the research findings, it is recommended that measures to promote close forests be prioritized in karst regions to protect and restore forest ecosystems. At the same time, local habitat improvement and the establishment of ecological compensation mechanisms should be implemented, and the expansion of building land should be strictly controlled to enhance the stability of ecosystems and their carbon sink functions. These research findings provide a solid scientific basis for enhancing and precisely regulating the carbon sink capacity of fragile karst ecosystems, and are of great significance for formulating scientifically sound and reasonable ecological protection policies. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

16 pages, 3861 KB  
Article
Moss-Induced Changes in Soil C/N/P and CEC: An Integrated Spectral Perspective
by Yu Lu and Zhikui Liu
Sustainability 2025, 17(18), 8348; https://doi.org/10.3390/su17188348 - 17 Sep 2025
Viewed by 836
Abstract
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral [...] Read more.
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral responses to moss cover were concurrently analyzed. Soil properties under moss crusts and bare controls were quantified through chemical assays. Coverage effects were compared via bar charts (sparse) and point-line plots (dense) with fitted curves and 95% confidence intervals. Spectral reflectance (250–2500 nm) was measured to characterize surface optical properties. Statistical correlations between variables were established. Research has shown the following: (1) Moss coverage significantly enhanced OC, TN, and CEC versus bare soil (B. dichotomum showed the strongest improvement: dense crust increased OC/TN/TP by 6.37/1.73/0.45 g kg−1 and doubled CEC). (2) All nutrients and CEC decreased with depth, most sharply for G. humillimum OC (22.38% reduction at 3–6 cm) and P. yokohamae CEC (9.97% reduction). (3) Stoichiometric ratios exhibited species-specific responses: B. dichotomum had the smallest inter-layer differences in C/N/P ratios, while G. humillimum increased C/N by 34.33% at 3–6 cm. Sparse coverage elevated N/P ratios up to 59.38% (G. humillimum, 0–3 cm). (4) Spectral analysis revealed the following: Sparse coverage boosted reflectance via edge scattering and soil background contributions. Dense coverage suppressed reflectance due to water absorption (1450/1900 nm) and limited scattering. Bare soil exhibited persistently low reflectance from hematite absorption (500–700 nm). Moss biocrusts—particularly dense B. dichotomum—optimize topsoil fertility and CEC in karst soils, though effects diminish sharply below 3 cm. Spectral signatures provide non-invasive indicators of coverage density and erosion resistance. These insights highlight the crucial role of species-specific moss selection in promoting sustainable restoration practices and long-term ecological recovery in rocky desertification regions. Full article
Show Figures

Figure 1

28 pages, 4004 KB  
Article
Influencing Factors and Adaptation Strategies of Stoichiometric Characteristics of Main Shrubs and Herbs in Karst Area at Microhabitat Scale
by Peng Wu, Hua Zhou, Wenjun Zhao, Guangneng Yang, Yingchun Cui, Yiju Hou, Chengjiang Tan, Ting Zhou, Run Liu and Fangjun Ding
Plants 2025, 14(18), 2839; https://doi.org/10.3390/plants14182839 - 11 Sep 2025
Viewed by 621
Abstract
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and [...] Read more.
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and magnesium (Mg) contents of plant components and their stoichiometric ratios in different microhabitats were systematically measured, and the environmental driving factors were analyzed by redundancy analysis (RDA) and variance partitioning analysis (VPA). The results showed that there were no significant differences in the plant nutrient contents and stoichiometric ratios in different microhabitats, but there were significant differences with respect to the components. The contents of N, P, K, and Mg in shrub leaves were significantly higher than those in branches and roots, while the contents of C/N, C/P, and C/K in branches and roots were significantly higher than those in leaves. The K content of herb leaves was significantly higher than that of roots. This reflects the functional differentiation of plant components and the different trade-off strategies for resource acquisition and storage. The stoichiometric characteristics of shrub leaves are dominated by species characteristics, while herb leaves are controlled by leaf tissue density (LTD), and soil-exchangeable Ca has a significant regulatory effect on the roots of both plant forms. Shrubs directly obtain bedrock slow-release nutrients through deep roots penetrating rock crevices and combine high C/N and C/P to improve nutrient utilization efficiency, forming a “mechanical resistance priority–metabolic cost optimization” adaptation strategy. Herbs respond to environmental fluctuations through functional trait plasticity and achieve rapid growth with high specific leaf area (SLA) and low LTD. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

16 pages, 1477 KB  
Article
Co-Inoculation Between Bacteria and Algae from Biological Soil Crusts and Their Effects on the Growth of Poa annua and Sandy Soils Quality
by Lin Peng, Xuqiang Xie, Man Chen, Fengjie Qiao, Xingyu Liu, Yutong Zhao, Xiawei Peng and Fangchun Liu
Microorganisms 2025, 13(8), 1778; https://doi.org/10.3390/microorganisms13081778 - 30 Jul 2025
Cited by 1 | Viewed by 953
Abstract
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, [...] Read more.
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, four species of bacteria and algae were isolated and identified from biological soil crusts (during different developmental stages in a karst rocky desertification area). The soil quality was evaluated based on a soil quality index (SQI), growth indicators of Poa annua, soil physicochemical properties, and a stability analysis of aggregates. With the application of nutrient-poor sandy soils as the substrate, different treatment inoculation solutions were inoculated onto Poa annua. The results revealed that bacteria–algal co-inoculation reduces soil acidity, enhances soil nutrient content and aggregate stability, improves soil quality, and protects plant growth. Notably, compared with the single application of bacterial solution and algal solution, the combined application of bacteria–algal solution significantly improves the sandy soil quality. Full article
Show Figures

Figure 1

19 pages, 722 KB  
Review
Karst Multi-Source Organic Solid Waste Bio-Enhanced Composting: The Potential of Circular Utilization to Enhance Soil Quality and Control Contaminants
by Chen Huang, Xinyu Zhao, Hui Zhang, Zihan Wang and Beidou Xi
Fermentation 2025, 11(8), 426; https://doi.org/10.3390/fermentation11080426 - 24 Jul 2025
Viewed by 1297
Abstract
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW [...] Read more.
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW yields compounds with dual redox/adsorption capabilities, effectively improving soil quality and restoring ecological balance. The recycling and circular utilization of OSW resources become particularly critical in karst regions with vulnerable soil ecosystems, where sustainable resource management is urgently needed to maintain ecological balance. This review elucidates the ecological impacts of multi-source OSW compost applications on soil environments in ecologically fragile karst regions, specifically elucidating the mechanisms of heavy metals (HMs) migration–transformation and organic contaminant degradation (with emphasis on emerging pollutants), and the functional role of microbial carbon pumps in these processes. Furthermore, establishing a sustainable “multi-source OSW−compost−organic matter (adsorption and redox sites)−microorganisms−pollution remediation” cycle creates a green, low-carbon microenvironment for long-term soil remediation. Finally, this study evaluates the application prospects of the refined composting technology utilizing multi-objective regulation for OSW resource recycling and utilization in karst areas. This review provides critical insights for optimizing soil remediation strategies in karst ecosystems through organic waste valorization. Full article
Show Figures

Figure 1

21 pages, 9917 KB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Cited by 1 | Viewed by 853
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

20 pages, 4784 KB  
Article
Short-Term Application of Alfalfa Green Manure Increases Maize Yield and Soil Fertility While Altering Microbial Communities in Karst Yellow Clay Soil
by Xiaoye Gao, Shimei Yang, Yan He, Qiumei Zhao and Tao Zhang
Microorganisms 2025, 13(7), 1445; https://doi.org/10.3390/microorganisms13071445 - 21 Jun 2025
Viewed by 692
Abstract
Green manure effectively improves soil nutrients and crop yields, yet its partial substitution for chemical nitrogen fertilizer (CF) in maize systems remains underexplored in ecologically fragile Karst landscapes. To assess the effect of alfalfa green manure on maize yield, soil nutrients, enzymes, and [...] Read more.
Green manure effectively improves soil nutrients and crop yields, yet its partial substitution for chemical nitrogen fertilizer (CF) in maize systems remains underexplored in ecologically fragile Karst landscapes. To assess the effect of alfalfa green manure on maize yield, soil nutrients, enzymes, and microorganisms, we conducted a two-year field experiment comprising eight treatments: four CF levels (100%, 80%, 60%, and 0% of recommended CF) applied alone or combined with alfalfa green manure (CF100, AL_CF100, CF80, AL_CF80, CF60, AL_CF60, CF0, AL_CF0). The results showed that maize grain yield decreased with the sole reduction of chemical N fertilizer. Compared to the CF100 treatment, the AL_CF100 and AL_CF80 treatments significantly increased grain yield by an average of 21.8% and 16.9%, respectively. Additionally, the AL_CF60 treatment maintained maize grain yield in 2020 and significantly increased it in 2021. The AL_CF100 treatment significantly enhanced soil available N (AN) content, while soil Olsen-P (SOP) content and soil quality index (SQI) were significantly improved in the AL_CF100, AL_CF80, and AL_CF60 treatments. Alfalfa green manure application had no significant effect on soil bacterial and fungal communities. However, the CF rates positively influenced the relative abundances of bacterial phyla (Bacteroidota, Myxococcota, and Patescibacteria) and genera (Intrasporangium, Streptomyces, and Quadrisphaera), as well as fungal genera (Exophiala and Setophoma). α-Diversity analysis revealed that partial substitution of CF with alfalfa green manure did not significantly affect soil bacterial diversity (Ace, Shannon, and Sobs indices) or richness (Chao value). In contrast, chemical N fertilizer rates significantly altered the β-diversity of both bacteria and fungi. The soil AN, AK, sucrase activity, and the relative abundances of Bacteroidota, Streptomyces, and Instrasporangium showed significant positive relationship with maize grain yield. This study demonstrates that substituting 20% CF with alfalfa green manure optimizes maize productivity while enhancing soil health in Karst agroecosystems. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

27 pages, 14654 KB  
Article
Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst
by Yuwen Fu, Min Zhang, Zuju Li, Kangning Xiong, Qi Fang, Wanmei Hu, Liheng You and Zhifu Luo
Forests 2025, 16(6), 955; https://doi.org/10.3390/f16060955 - 5 Jun 2025
Viewed by 1294
Abstract
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This [...] Read more.
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This study aims to reveal whether SWCAF in karst areas improves RER through SWC benefits, ecosystem service (ES) enhancement and rural ecological environment quality (REEQ) improvement. We take Guizhou Province, the core area of the South China Karst (SCK), as the study area and 2010–2020 as the study period. By using the equivalent factor method, the remote sensing ecological index (RSEI) model, bivariate spatial autocorrelation and the panel vector autoregressive (PVAR) model, the study reveals SWCAF’s ecological benefits and its interaction mechanism with RER. Key findings reveal the following: (1) SWCAF reduced the area of SWL by 14.93% by converting cropland into forests. (2) The AF ecosystem service value (AFESV) increased by CNY 9.181 billion, and the forest-related AFESV increases represented 184% of the total AFESV, while REEQ showed an overall positive trend in the western SWC area. (3) The AFESV has an obvious synergistic effect with REEQ (r = 0.60) and obvious positive synergy with SWL (r = 0.69), and its spatial correlation increases over time. (4) The PVAR model verified that there is a bidirectional Granger causal relationship between the AFESV and RER, showing dynamic positive and negative alternating influences. This research study reveals that SWCAF drives RER through the dual path of SWL control and value-added ecological services, among which the forest ecosystem plays a core role. In the future, it is necessary to optimize the diversity of AF structures to avoid ecological service trade-offs. This research study provides a scientific basis for decision making and the ecological management of SWC in karst soils globally. Full article
Show Figures

Figure 1

22 pages, 3526 KB  
Article
Indirect Regulation of SOC by Different Land Uses in Karst Areas Through the Modulation of Soil Microbiomes and Aggregate Stability
by Haiyuan Shu, Xiaoling Liang, Lei Hou, Meiting Li, Long Zhang, Wei Zhang and Yali Song
Agriculture 2025, 15(11), 1220; https://doi.org/10.3390/agriculture15111220 - 3 Jun 2025
Cited by 1 | Viewed by 1031
Abstract
Natural restoration of vegetation and plantation are effective land use measures to promote soil organic carbon (SOC) sequestration. How soil physicochemical properties, microorganisms, Glomalin-related soil proteins (GRSPs), and aggregates interact to regulate SOC accumulation and sequestration remains unclear. This study examined five land [...] Read more.
Natural restoration of vegetation and plantation are effective land use measures to promote soil organic carbon (SOC) sequestration. How soil physicochemical properties, microorganisms, Glomalin-related soil proteins (GRSPs), and aggregates interact to regulate SOC accumulation and sequestration remains unclear. This study examined five land uses in the karst region of Southwest China: corn field (CF), corn intercropped with cabbage fields (CICF), orchard (OR), plantation (PL), and natural restoration of vegetation (NRV). The results revealed that SOC, total nitrogen (TN), total phosphorus (TP), total GRSP (T-GRSP), and easily extractable GRSP (EE-GRSP) contents were significantly higher under NRV and PL than in the CF, CICF, and OR, with increases ranging from 10.69% to 266.72%. Land use significantly influenced bacterial α-diversity, though fungal α-diversity remained unaffected. The stability of soil aggregates among the five land uses followed the order: PL > NRV > CF > OR > CICF. Partial least-squares path modeling (PLS-PM) identified land use as the most critical factor influencing SOC. SOC accumulation and stability were enhanced through improved soil properties, increased microbial diversity, and greater community abundance, promoting GRSP secretion and strengthening soil aggregate stability. In particular, soil microorganisms adhere to the aggregates of soil particles through the entanglement of fine roots and microbial hyphae and their secretions (GRSPs, etc.) to maintain the stability of the aggregates, thus protecting SOC from decomposition. Natural restoration of vegetation and plantation proved more effective for soil carbon sequestration in the karst region of Southwest China compared to sloping cropland and orchards. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

20 pages, 2936 KB  
Article
Chitosan-Modified Biochar for Improving Water Retention in Karst Quarries: A Potential Solution for Soil Remediation
by Xiaohua Shu, Shiqing Xiong, Qiulei Wang, Mingyu Yang and Qian Zhang
Sustainability 2025, 17(11), 4815; https://doi.org/10.3390/su17114815 - 23 May 2025
Viewed by 1908
Abstract
Biochar has been widely applied in soil remediation. However, few studies have been conducted on its effect on soil water retention in abandoned quarries. Moreover, due to the poor water storage capacity of the quarry, the adhesion and water retention capacity of biochar [...] Read more.
Biochar has been widely applied in soil remediation. However, few studies have been conducted on its effect on soil water retention in abandoned quarries. Moreover, due to the poor water storage capacity of the quarry, the adhesion and water retention capacity of biochar are limited in its application. Here, we used sugarcane bagasse (SB) and chicken manure (CM) prepared at 300 °C and 500 °C, and modified them with chitosan (CS) to improve the water absorption, and further explored their effects on the soil water retention characteristics in karst, abandoned quarry. The results indicated that the modified biochar significantly improves the hydrophilicity and water absorption capacity of the biochar. The water absorption multiples of 300SBB-CS, 500SBB-CS, 300CMB-CS, and 500CMB-CS were 131.03, 94.47, 86.19, and 114.70 g·g−1. After being applied to the quarry soil, it significantly improved the water retention characteristics. In addition, the application of modified biochar significantly increased the mean weight diameter (MWD), geometric mean diameter (GMD), and cation exchange capacity (CEC) of soil aggregates. Compared with the control, GMD of 300SBB-CS, 500SBB-CS, 300CMB-CS, and 500CMB-CS increased by 24.42%, 32.74%, 8.34%, and 21.20%, respectively. The modified biochar improves the soil’s water retention characteristics by enhancing its water absorption capacity. In addition, the modified biochar improves the stability of soil aggregates by increasing the soil CEC, which indirectly enhances the water retention characteristics of the soil. These findings provide substantial reference information for improving soil conditions in karst regions. Full article
Show Figures

Figure 1

Back to TopTop