Advances in Plant Nutrition Responses and Stress

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Nutrition".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 3561

Special Issue Editors


E-Mail Website
Guest Editor
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
Interests: plant nutrition; plant stress response; plant–soil interactions; mineral nutrient transport; boron deficiency

E-Mail Website
Guest Editor
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
Interests: plant nutrition; fertilizers; plant–soil interactions; oilseed rape (Brassica napus L.); iron homeostasis; boron stress; phosphate deficiency
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the global population expands and human activities intensify, the Earth experiences a surge in ecological anomalies and extreme climate events. These changes impose various abiotic stresses on plants, including extreme drought, high temperatures, saline–alkali conditions, nutrient imbalances, and heavy metal toxicity. Plant responses to these stresses are multifaceted and intricate, encompassing a spectrum of physiological and molecular mechanisms, from gene expression regulation and transcriptional processes to protein modifications. These processes are intricately linked to plant growth, development, and adaptation to environmental challenges. The rapid advancement of plant physiology, genetics, molecular biology, bioinformatics, and omics technologies, underpinned by large-scale data analysis, provides powerful tools for elucidating plant responses to nutrient and abiotic stresses at both the physiological and molecular levels. This Special Issue aims to obtain the latest research findings through insightful review articles focused on the multifaceted aspects of plant nutrient and abiotic stresses. These studies should concentrate on the mechanisms of uptake and transport, utilization efficiency, the balance of mineral nutrients in plants, and the impact of extreme abiotic stresses, including saline–alkali stress, high temperatures, drought stress, and heavy metal stress.

Dr. Sheliang Wang
Prof. Dr. Fangsen Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant nutrition
  • uptake and transport
  • utilization efficiency
  • extreme drought
  • high temperatures
  • saline–alkali condition
  • plant–soil interactions
  • heavy metal

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4174 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Shaker K+ Channel Gene Family in Cassava (Manihot esculenta Crantz) Under Potassium Stress
by Xianhai Xie, Chenyu Lin, Feilong Yu, Haozheng Li, Jin Xiao, Mingjuan Zheng, Wenquan Wang and Xin Guo
Plants 2025, 14(14), 2213; https://doi.org/10.3390/plants14142213 - 17 Jul 2025
Viewed by 277
Abstract
Shaker K+ channel proteins are responsible for potassium (K+) uptake and transport, playing a critical role in plant growth, development, and adaptation to K+ deficiency. Cassava, a key tropical root crop, is known for its characteristic of resilience to [...] Read more.
Shaker K+ channel proteins are responsible for potassium (K+) uptake and transport, playing a critical role in plant growth, development, and adaptation to K+ deficiency. Cassava, a key tropical root crop, is known for its characteristic of resilience to nutrient-poor soil and drought stress. However, the Shaker K+ channel gene family in cassava has not yet been characterized. In this study, 13 Shaker channel genes were identified from the near telomere-to-telomere (T2T) cassava genome using bioinformatics analysis. Phylogenetic relationships classified these genes into five distinct subfamilies, and all encoded proteins contained the conserved GYGD/GYGE motif typical of Shaker channels. Protein interaction network predictions revealed potential interactions among the Shaker family, as well as with the potassium transporter HAK5. Tissue-specific expression pattern analysis showed that MeGORK and MeAKT1.2 were expressed in all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis was conducted to examine the transcriptional levels of Shaker K+ channel gene family members in the roots and leaves of two cassava germplasms with different low-potassium tolerance after one month of low-potassium treatment. The results revealed that MeAKT1.2, MeAKT2.2, and MeKAT1 exhibited distinct expression patterns between the two germplasms, with higher expression levels observed in the potassium-tolerant germplasm. Therefore, these three genes may serve as important candidate genes for potassium stress tolerance in cassava. In summary, this study provides valuable insights into the characteristics and biological functions of the Shaker K+ channel gene family in cassava and identifies potential candidate genes for breeding or engineering potassium-efficient cassava cultivars. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

18 pages, 2047 KiB  
Article
Optimizing Management of Alfalfa (Medicago sativa L.) Nitrogen Fertilizer Based on Critical Nitrogen Concentration Dilution Curve Model
by Yaya Duan, Yi Ling, Haiyan Li, Wenjing Chang, Jiandong Lu, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Guoyun Shen
Plants 2025, 14(12), 1782; https://doi.org/10.3390/plants14121782 - 11 Jun 2025
Viewed by 395
Abstract
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago [...] Read more.
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago sativa L.), a perennial leguminous forage, was used as the model crop. Based on two years of field experiments, CNDC models of aboveground biomass were constructed under two nitrogen fertilizer regimes: urea (0, 80, 160, and 240 kg·ha−1, applied in a 6:2:2 basal-to-topdressing ratio) and controlled-release urea (CRU; 0, 80, 160, and 240 kg·ha−1, applied as a single basal dose). Using these models, the nitrogen nutrition index (NNI) and cumulative nitrogen deficit (Nand) models were developed to diagnose alfalfa nitrogen status, and the optimal nitrogen application rates were determined via regression analysis. The results showed that critical nitrogen concentration and aboveground biomass followed a power function relationship under both fertilizer types. For CRU treatments, parameters a and b were 3.41 and 0.20 (first cut), 3.15 and 0.12 (second cut), and 2.24 and 0.40 (third cut), respectively. For urea treatments, a and b were 3.13 and 0.35 (first cut), 2.21 and 0.16 (second cut), and 1.75 and 0.73 (third cut). The normalized root mean square error (n-RMSE) of the models ranged from 3.1% to 13%, indicating high model reliability. Based on the NNI, Nand, and yield response models, the optimal nitrogen application rates were 175.44~181.71 kg·ha−1 for urea and 145.63~153.46 kg·ha−1 for CRU, corresponding to theoretical maximum yields of 14.76~17.40 t·ha−1 and 16.76~20.66 t·ha−1, respectively. Compared to urea, CRU reduced nitrogen input by 18.41~20.47% while achieving equivalent or higher theoretical yields. This study provides a scientific basis for nitrogen status diagnosis and precision nitrogen application in alfalfa cultivation. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

18 pages, 8426 KiB  
Article
A C-Terminally Encoded Peptide, MeCEP6, Promotes Nitrate Uptake in Cassava Roots
by Fabao Lu, Xiuning Wang, Bo Liu, Hongxin Lin, Li Ai, Weitao Mai, Xiaochen Liu, Huaifang Zhang, Jinling Zhao, Luqman Khan, Wenquan Wang, Changying Zeng and Xin Chen
Plants 2025, 14(8), 1264; https://doi.org/10.3390/plants14081264 - 21 Apr 2025
Viewed by 472
Abstract
Cassava, an essential food crop, is valued for its tolerance to infertile soils. This study explores the role of C-terminally encoded peptides (CEPs) in cassava, mainly focusing on MeCEP6 and its function in nitrate uptake and plant growth. A comprehensive search on the [...] Read more.
Cassava, an essential food crop, is valued for its tolerance to infertile soils. This study explores the role of C-terminally encoded peptides (CEPs) in cassava, mainly focusing on MeCEP6 and its function in nitrate uptake and plant growth. A comprehensive search on the UniProt website identified 12 CEP genes in cassava, predominantly located on chromosomes 12 and 13. Notably, MeCEP6 demonstrated high expression levels in root tips and exhibited a significant response to low nitrate stress. Exogenous MeCEP6 and its overexpression enhanced NRT2 transporter expression while suppressing auxin-related genes, promoting nitrate uptake and inhibiting seedling growth under nitrogen limitation. This growth inhibition likely represents an adaptive mechanism, enhancing cassava’s survival under nitrogen limitation by optimizing nitrogen allocation and use efficiency, albeit at the cost of reduced growth potential in nitrogen-replete conditions. Moreover, it was identified that MeWRKY65 and MeWRKY70 could interact with the promoter of MeCEP6 to modulate the expression of MeCEP6. The dual-luciferase assays further prove that MeWRKY65 and MeWRKY70 can activate the transcription of MeCEP6 under low nitrate stress conditions. The study’s results help explain the underlying mechanism of MeCEP6 that benefits nitrogen use efficiency and nitrogen deficiency tolerance in cassava. These findings provide a molecular basis for improving cassava yield in nitrogen-deficient soils and highlight MeCEP6 as a potential target for crop improvement. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

20 pages, 3867 KiB  
Article
Transcriptional Analysis Reveals the Differences in Response of Floral Buds to Boron Deficiency Between Two Contrasting Brassica napus Varieties
by Zhexuan Jiang, Lan Liu, Sheliang Wang, Xiangsheng Ye, Zhaojun Liu and Fangsen Xu
Plants 2025, 14(6), 859; https://doi.org/10.3390/plants14060859 - 10 Mar 2025
Viewed by 627
Abstract
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of “flowering without seed [...] Read more.
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of “flowering without seed setting” usually results in severe yield loss. However, few studies have focused on the response of the reproductive organs to B deficiency. In this study, the B-efficient variety “Zhongshuang 11” (ZS11) and the B-inefficient variety “Westar 10” (W10) of Brassica napus were selected to be cultivated at the developmental stage (BBCH15) in a pot experiment, both with and without B supply. Clear phenotype differences in B deficiency between the two varieties’ flowers appeared only at the reproductive stage, and only W10 showed symptoms of delayed flower opening, stigma exsertion, and resulted in abortion. Transcriptome analysis for the early buds of both varieties between B supply (+B) and free (−B) treatments revealed that W10 had more differentially expressed genes (DEGs) corresponding to its greater susceptibility to −B. As two potential mechanisms to improve B-efficient utilization, we focused on analyzing the expression profiles of B transporter-related genes and phytohormone metabolism-related genes. BnaC05.NIP7;1, BnaC08.NIP3;1, and BnaBOR2s were identified as the key genes which could enhance the capacity of B translocation to buds of ZS11. Additionally, combined with a phytohormone concentration measurement, we showed that a significant increase in IAA and a drastic decrease in JA could predominantly lead to the abnormal development of W10’s buds. BnaC02.NIT2 (Nitrilase 2) and BnaKAT5s (3-Ketoacyl-CoA Thiolase 5), which are IAA and JA biosynthesis genes, respectively, could be the key genes responsible for the changes in IAA and JA concentrations in W10’s buds under −B. These candidate genes may regulate the genotype differences in the response of the rapeseed reproductive stage to −B between different B-efficient varieties. It also has potential to breed rapeseed varieties with B-efficient utilization in the reproductive stage, which would improve the seed yield under −B condition. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 2046 KiB  
Review
The Role of MYC2 Transcription Factors in Plant Secondary Metabolism and Stress Response Mechanisms
by Tuo Zeng, Han Su, Meiyang Wang, Jiefang He, Lei Gu, Hongcheng Wang, Xuye Du, Caiyun Wang and Bin Zhu
Plants 2025, 14(8), 1255; https://doi.org/10.3390/plants14081255 - 20 Apr 2025
Cited by 4 | Viewed by 1401
Abstract
Jasmonates (JAs) are essential signaling molecules that orchestrate plant responses to abiotic and biotic stresses and regulate growth and developmental processes. MYC2, a core transcription factor in JA signaling, plays a central role in mediating these processes through transcriptional regulation. However, the [...] Read more.
Jasmonates (JAs) are essential signaling molecules that orchestrate plant responses to abiotic and biotic stresses and regulate growth and developmental processes. MYC2, a core transcription factor in JA signaling, plays a central role in mediating these processes through transcriptional regulation. However, the broader regulatory functions of MYC2, particularly in secondary metabolism and stress signaling pathways, are still not fully understood. This review broadens that perspective by detailing the signaling mechanisms and primary functions of MYC2 transcription factors. It specifically emphasizes their roles in regulating the biosynthesis of secondary metabolites such as alkaloids, terpenes, and flavonoids, and in modulating plant responses to environmental stresses. The review further explores how MYC2 interacts with other transcription factors and hormonal pathways to fine-tune defense mechanisms and secondary metabolite production. Finally, it discusses the potential of MYC2 transcription factors to enhance plant metabolic productivity in agriculture, considering both their applications and limitations in managing secondary metabolite synthesis. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

Back to TopTop