Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,133)

Search Parameters:
Keywords = impact fracture test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4346 KB  
Study Protocol
Research and Application of Damage Zoning Characteristics and Damage Reduction Techniques in High-Intensity Mining Strata of the Shendong Mining Area
by Yongqiang Zhao, Xiaolong Wang, Jie Fang, Jianqi Ma, Mengyuan Li, Xinjie Liu and Jiangping Yan
Appl. Sci. 2026, 16(3), 1315; https://doi.org/10.3390/app16031315 - 28 Jan 2026
Abstract
With the increase in mining intensity and scale, the damage to groundwater resources and surface ecology caused by coal mining has become the main problem facing coal development. Coal mining can cause a redistribution of stress field and stress concentration in local areas [...] Read more.
With the increase in mining intensity and scale, the damage to groundwater resources and surface ecology caused by coal mining has become the main problem facing coal development. Coal mining can cause a redistribution of stress field and stress concentration in local areas of overlying rock, resulting in varying degrees of movement and damage to the overlying rock. Quantitative analysis of the degree of migration and damage in different areas of overlying rock and zoning control is crucial for achieving loss reduction and green mining. In this paper, the overburden damage is divided into regions according to the different causes of formation, regional characteristics of severity, and other factors, and the specific calculation method is given. UDEC7.0 numerical simulation software is used to simulate the overlying rock damage, and the best mining parameters are provided through the area changes in different zones. The research conclusions are as follows: according to the different damage states of overburden rock, the damage of overburden rock can be divided into four parts: I, caving fracture zone, II, fracture development zone, III, sliding failure zone, and IV, slight failure zone. In the four zones, the damage in zones II and IV is relatively light. During the mining process, attention should be given to controlling the development of Zone I to prevent it from abnormally enlarging; for Zone II, hydraulic fracturing can be used when there is a thick, hard key layer that poses a water inrush risk; for Zone III, the focus should be on preventing surface step fractures caused by it. For example, when a thick, hard key layer is present in Zone II, hydraulic fracturing can be applied to avoid large area hanging roofs and severe rock pressure. When the mining height is low, it mainly affects the proportion of regions I and III. With the increase in mining height, the main affected region becomes the II region. The larger the mining height is, the larger the proportion of the II region. With the increase in propulsion speed, the impact range on the surface increases, but the area with severe damage is relatively reduced. With the increase in mining width, the proportion of relatively seriously damaged areas increased. On-site measurements have shown that when the speeds of 120,401 and 22,207 working faces are slow, the rock layer pressure shows a dense state, the overburden fracture is more fully developed, and the area proportion of I and II zones is increased, which reflects the phenomenon of dense surface fracture development on the surface. When the advancing speed is large, the area proportions of zones III and IV increase, and the damage scope decreases. The on-site testing verified the conclusions drawn from theoretical analysis and numerical simulation, which can guide other mines under similar conditions to achieve safe and green production. Full article
(This article belongs to the Special Issue Mining-Induced Rock Strata Damage and Mine Disaster Control)
Show Figures

Figure 1

23 pages, 3262 KB  
Article
Designing Bio-Hybrid Sandwich Composites: Charpy Impact Performance of Polyester/Glass Systems Reinforced with Musa paradisiaca Fibres
by Aldo Castillo-Chung, Luis Aguilar-Rodríguez, Ismael Purizaga-Fernández and Alexander Yushepy Vega Anticona
J. Compos. Sci. 2026, 10(2), 59; https://doi.org/10.3390/jcs10020059 - 23 Jan 2026
Viewed by 174
Abstract
This study investigates the design of bio-hybrid sandwich composites by combining polyester/glass skins with cores reinforced by continuous Musa paradisiaca fibres. The aim is to quantify how fibre weight fraction and alkaline surface treatment control the Charpy impact performance of these systems. Sandwich [...] Read more.
This study investigates the design of bio-hybrid sandwich composites by combining polyester/glass skins with cores reinforced by continuous Musa paradisiaca fibres. The aim is to quantify how fibre weight fraction and alkaline surface treatment control the Charpy impact performance of these systems. Sandwich laminates were manufactured with three fibre loadings in the core (20, 25 and 30 wt.%), using fibres in the as-received condition and after alkaline treatment in NaOH solution. Charpy impact specimens were machined from the laminates and tested according to ISO 179-1. Fibre morphology and fracture surfaces were examined by scanning electron microscopy, while Fourier-transform infrared spectroscopy was used to monitor changes in surface chemistry after alkaline treatment. The combined effect of fibre content and treatment on absorbed energy was assessed through a two-way analysis of variance. Increasing Musa paradisiaca fibre content up to 30 wt.% enhanced the impact energy of the sandwich composites, and alkaline treatment further improved performance by strengthening fibre–matrix adhesion and promoting fibre pull-out, crack deflection and bridging mechanisms. The best Charpy impact response was obtained for cores containing 30 wt.% NaOH-treated fibres, demonstrating that surface modification and optimised fibre loading are effective design parameters for toughening polyester/glass bio-hybrid sandwich composites. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

20 pages, 11536 KB  
Article
Kinetic Energy Evolution in the Impact Crushing of Typical Quasi-Brittle Materials
by Chuan Zhang, Xingjian Cao and Yongtai Pan
Minerals 2026, 16(1), 102; https://doi.org/10.3390/min16010102 - 21 Jan 2026
Viewed by 75
Abstract
Crushing is a critical step in the efficient utilization of quasi-brittle materials such as ores and solid wastes. During this process, materials undergo fracture, and the product particles are ejected, carrying significant kinetic energy. This study investigates typical quasi-brittle materials—concrete and quartz glass—by [...] Read more.
Crushing is a critical step in the efficient utilization of quasi-brittle materials such as ores and solid wastes. During this process, materials undergo fracture, and the product particles are ejected, carrying significant kinetic energy. This study investigates typical quasi-brittle materials—concrete and quartz glass—by conducting impact crushing tests using a drop-weight apparatus under varying contact modes and input energy levels. High-speed camera was employed to capture the fracture patterns of the materials and the trajectories of the ejected particles, enabling the calculation of kinetic energy during crushing. The results indicate that under point contact loading, both kinetic energy and its proportion increase significantly with rising input energy. In contrast, under surface contact loading, the kinetic energy and its proportion exhibit minimal change as input energy increases. The average ejection velocity of particles from quartz glass specimens during crushing was 6.28 m/s, which is 2.21 times that of concrete specimens. Moreover, the average proportion of kinetic energy in quartz glass crushing was 5.049%, approximately 14.43 times greater than that in concrete. Enhancing material toughness and adopting surface contact loading help reduce both the kinetic energy and its proportion during crushing. This research contributes to minimizing kinetic energy loss and improving the efficiency of energy utilization in crushing processes. Full article
(This article belongs to the Collection Advances in Comminution: From Crushing to Grinding Optimization)
Show Figures

Figure 1

22 pages, 6012 KB  
Article
Fracture Expansion and Closure in Overburden: Mechanisms Controlling Dynamic Water Inflow to Underground Reservoirs in Shendong Coalfield
by Shirong Wei, Zhengjun Zhou, Duo Xu and Baoyang Wu
Processes 2026, 14(2), 355; https://doi.org/10.3390/pr14020355 - 19 Jan 2026
Viewed by 226
Abstract
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to [...] Read more.
The construction of underground reservoirs in coal goafs is an innovative technology to alleviate the coal–water conflict in arid mining areas of northwest China. However, its widespread application is constrained by the challenge of accurately predicting water inflow, which fluctuates significantly due to the dynamic “expansion–closure” behavior of mining-induced fractures. This study focuses on the Shendong mining area, where repeated multi-seam mining occurs, and employs a coupled Finite Discrete Element Method (FDEM) and Computational Fluid Dynamics (CFD) numerical model, combined with in situ tests such as drilling fluid loss and groundwater level monitoring, to quantify the evolution of overburden fractures and their impact on reservoir water inflow during mining, 8 months post-mining, and after 7 years. The results demonstrate that the height of the water-conducting fracture zone decreased from 152 m during mining to 130 m after 7 years, while fracture openings in the key aquifer and aquitard were reduced by over 50%. This closure process caused a dramatic decline in water inflow from 78.3 m3/h to 2.6 m3/h—a reduction of 96.7%. The CFD-FDEM simulations showed a deviation of only 10.6% from field measurements, confirming fracture closure as the dominant mechanism driving inflow attenuation. This study reveals how fracture closure shifts water flow patterns from vertical to lateral recharge, providing a theoretical basis for optimizing the design and sustainable operation of underground reservoirs. Full article
Show Figures

Figure 1

14 pages, 2995 KB  
Article
Foam-Based Wearable Devices Embedded with Shear-Thickening Fluids for Biomedical Protective Applications
by Oluwaseyi Oyetunji and Abolghassem Zabihollah
Materials 2026, 19(2), 391; https://doi.org/10.3390/ma19020391 - 19 Jan 2026
Viewed by 323
Abstract
Falls are a leading cause of bone fractures among the elderly, particularly hip fractures resulting from side falls. This research deals with the feasibility of application of shear-thickening fluids (STFs) to design self-protective wearable devices to rapidly respond to sudden impact due to [...] Read more.
Falls are a leading cause of bone fractures among the elderly, particularly hip fractures resulting from side falls. This research deals with the feasibility of application of shear-thickening fluids (STFs) to design self-protective wearable devices to rapidly respond to sudden impact due to falls. The device consists of a lightweight, flexible foam structure embedded with STF-filled compartments, which remain soft during normal movements but stiffen upon sudden impact, effectively dissipating energy and reducing force trans-mission to the bones. First, a foam-based sandwich panel filled with STF is fabricated and subjected to several falling scenarios through a ball drop test. The induced strain of the device with and without STF is measured using Fiber Bragg Grating (FBG) sensors. Then, the effect of localized STF is explored by fabricating a soft 3D-printed (TPU) sandwich panel filled with STF at selected cavities. It was observed that the application of STF reduces the induced strain by approximately 50% for the TPU skin device and 30% for the foam-based device. This adaptive response mechanism offers a balance between comfort and protection, ensuring wearability for daily use while significantly lowering fracture risks. The proposed solution aims to enhance fall-related injury prevention for the elderly, improving their quality of life and reducing healthcare burdens associated with fall-related fractures. Full article
Show Figures

Figure 1

27 pages, 6130 KB  
Article
Poisson’s Ratio as the Master Variable: A Single-Parameter Energy-Conscious Model (PNE-BI) for Diagnosing Brittle–Ductile Transition in Deep Shales
by Bo Gao, Jiping Wang, Binhui Li, Junhui Li, Jun Feng, Hongmei Shao, Lu Liu, Xi Cao, Tangyu Wang and Junli Zhao
Sustainability 2026, 18(2), 985; https://doi.org/10.3390/su18020985 - 18 Jan 2026
Viewed by 246
Abstract
As shale gas development extends into deeper formations, the unclear brittle-ductile transition (BDT) mechanism and low fracturing efficiency have emerged as critical bottlenecks, posing challenges to the sustainable and economical utilization of this clean energy resource. This study, focusing on the Liangshang Formation [...] Read more.
As shale gas development extends into deeper formations, the unclear brittle-ductile transition (BDT) mechanism and low fracturing efficiency have emerged as critical bottlenecks, posing challenges to the sustainable and economical utilization of this clean energy resource. This study, focusing on the Liangshang Formation shale of Sichuan Basin’s Pingye-1 Well, pioneers a paradigm shift by identifying Poisson’s ratio (ν) as the master variable governing this transition. Triaxial tests reveal that ν systematically increases with depth, directly regulating the failure mode shift from brittle fracture to ductile flow. Building on this, we innovatively propose the Poisson’s Ratio-regulated Energy-based Brittleness Index (PNE-BI) model. This model achieves a decoupled diagnosis of BDT by quantifying how ν intrinsically orchestrates the energy redistribution between elastic storage and plastic dissipation, utilizing ν as the sole governing variable to regulate energy weighting for rapid and accurate distinction between brittle, transitional, and ductile states. Experiments confirm the ν-dominated energy evolution: Low ν rocks favor elastic energy accumulation, while high ν rocks (>0.22) exhibit a dramatic 1520% surge in plastic dissipation, dominating energy consumption (35.9%) and confirming that ν enhances ductility by reducing intergranular sliding barriers. Compared to traditional multi-variable models, the PNE-BI model utilizes ν values readily obtained from conventional well logs, providing a transformative field-ready tool that significantly reduces the experimental footprint and promotes resource efficiency. It guides toughened fracturing fluid design in ductile zones to suppress premature closure and optimizes injection rates in brittle zones to prevent fracture runaway, thereby enhancing operational longevity and minimizing environmental impact. This work offers a groundbreaking and sustainable solution for boosting the efficiency of mid-deep shale gas development, contributing directly to more responsible and cleaner energy extraction. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

12 pages, 1777 KB  
Article
Enhanced Fracture Energy and Toughness of UV-Curable Resin Using Flax Fiber Composite Laminates
by Mingwen Ou, Huan Li, Dequan Tan, Yizhen Peng, Hao Zhong, Linmei Wu and Wubin Shan
Biomimetics 2026, 11(1), 71; https://doi.org/10.3390/biomimetics11010071 - 15 Jan 2026
Viewed by 276
Abstract
Ultraviolet (UV) curable resins are widely used in photopolymerization-based 3D printing due to their rapid curing and compatibility with high-resolution processes. However, their brittleness and limited mechanical performance restrict their applicability, particularly in impact-resistant high-performance 3D-printed structures. Inspired by the mantis shrimp’s exceptional [...] Read more.
Ultraviolet (UV) curable resins are widely used in photopolymerization-based 3D printing due to their rapid curing and compatibility with high-resolution processes. However, their brittleness and limited mechanical performance restrict their applicability, particularly in impact-resistant high-performance 3D-printed structures. Inspired by the mantis shrimp’s exceptional energy absorption and impact resistance, attributed to its helicoidal fiber architecture, we developed a Bouligand flax fiber-reinforced composite laminate. By constructing biomimetic helicoidal composites based on Bouligand arrangements, the mechanical performance of flax fiber-reinforced UV-curable resin was systematically investigated. The influence of flax fiber orientation was assessed using mechanical testing combined with the digital image correlation (DIC) method. The results demonstrate that a 45° interlayer angle of flax fiber significantly enhanced the fracture energy of the resin from 1.67 KJ/m2 to 15.41 KJ/m2, an increase of ~823%. Moreover, the flax fiber-reinforced helicoidal structure markedly improved the ultimate tensile strength of the resin, with the 90° interlayer angle of flax fiber exhibiting the greatest enhancement, increasing from 5.32 MPa to 19.45 MPa. Full article
Show Figures

Figure 1

19 pages, 5806 KB  
Article
Ballistic Failure Analysis of Hybrid Natural Fiber/UHMWPE-Reinforced Composite Plates Using Experimental and Finite Element Methods
by Eduardo Magdaluyo, Ariel Jorge Payot, Lorenzo Matilac and Denisse Jonel Pavia
J. Manuf. Mater. Process. 2026, 10(1), 33; https://doi.org/10.3390/jmmp10010033 - 13 Jan 2026
Viewed by 338
Abstract
This study evaluated the ballistic performance and failure mechanisms of epoxy-based hybrid laminates reinforced with abaca/UHMWPE and pineapple leaf fiber (PALF)/UHMWPE fabrics fabricated by using vacuum-assisted hand lay-up. Ballistic tests utilized 9 mm full metal jacket (FMJ) rounds (~426 m/s impact velocity) under [...] Read more.
This study evaluated the ballistic performance and failure mechanisms of epoxy-based hybrid laminates reinforced with abaca/UHMWPE and pineapple leaf fiber (PALF)/UHMWPE fabrics fabricated by using vacuum-assisted hand lay-up. Ballistic tests utilized 9 mm full metal jacket (FMJ) rounds (~426 m/s impact velocity) under NIJ Standard Level IIIA conditions (44 mm maximum allowable BFS). This experimental test was complemented by finite element analysis (FEA) incorporating an energy-based bilinear fracture criterion to simulate matrix cracking and fiber pull-out. The results showed that abaca/UHMWPE composites exhibited lower backface signature (BFS) and depth of penetration (DOP) values (~23 mm vs. ~42 mm BFS; ~7 mm vs. ~9 mm DOP) than PALF/UHMWPE counterparts, reflecting superior interfacial adhesion and more ductile failure modes. Accelerated weathering produced matrix microcracking and delamination in both systems, reducing overall ballistic resistance. Scanning electron microscopy confirmed improved fiber–matrix bonding in abaca composites and interfacial voids in PALF laminates. The FEA results reproduced major failure modes, such as delamination, fiber–matrix debonding, and petaling, and identified stress concentration zones that agreed with experimental observations, though the extent of delamination was slightly underpredicted. Overall, the study demonstrated that abaca/UHMWPE hybridcomposites offer enhanced ballistic performance and durability compared with PALF/UHMWPE laminates, supporting their potential as sustainable alternatives for lightweight protective applications. Full article
Show Figures

Figure 1

13 pages, 7587 KB  
Article
Risk Assessment of Stress Corrosion Cracking in 42CrMo Substrates Induced by Coating Failure of the Screw Rotor
by Yuhong Jiang, Hualin Zheng, Chengxiu Yu, Jiancheng Luo, Wei Liu, Zhiming Yu, Hanwen Zhang and Dezhi Zeng
Coatings 2026, 16(1), 97; https://doi.org/10.3390/coatings16010097 - 12 Jan 2026
Viewed by 205
Abstract
Cracking occurred in the surface coating of a screw rotor during shale gas well operations. To determine whether the coating cracks could contribute to the failure of the 42CrMo substrate, the microstructure and morphology of surface cracks and local corrosion pits were examined [...] Read more.
Cracking occurred in the surface coating of a screw rotor during shale gas well operations. To determine whether the coating cracks could contribute to the failure of the 42CrMo substrate, the microstructure and morphology of surface cracks and local corrosion pits were examined and analyzed using a metallographic microscope, an SEM, and an EDS. To investigate the cross-sectional morphology and elemental distribution of corrosion pits, EDS mapping was performed. The composition of the corrosion products was characterized using Raman spectroscopy and XPS. In addition, four-point bend stress corrosion tests were conducted on screw rotor specimens under simulated service conditions. The results indicate that the P and S contents in the screw rotor substrate exceeded the specified limits, whereas its tensile and impact strengths satisfied the standard requirements. The microstructure consisted of tempered sorbite and ferrite, along with a small amount of sulfide inclusions. The corrosion products on the fracture surface were primarily identified as FeOOH, Fe3O4, and Cr(OH)3. All specimens failed during the four-point bend tests. The chlorine (Cl) content in the corroded regions reached up to 8.05%. These findings demonstrate that the crack resistance of the 42CrMo screw rotor was markedly reduced under the simulated service conditions of 130 °C in a saturated, oxygenated 25% CaCl2 solution. The study concludes that stress concentration induced by sulfide inclusions in the screw rotor, together with the combined effects of chloride ions, dissolved oxygen, and applied load, promotes the initiation and propagation of stress corrosion cracking. Therefore, it is recommended to strictly control the chemical composition and inclusion content of the screw rotor material and to reduce the oxygen content of the drilling fluid, thereby mitigating the risk of corrosion-induced cracking of the rotor. Full article
(This article belongs to the Special Issue Advanced Coating Protection Technology in the Oil and Gas Industry)
Show Figures

Figure 1

21 pages, 5944 KB  
Article
Effect of Vibratory Mixing on the Quasi-Static and Dynamic Compressive Properties of a Sustainable Concrete for Transmission Tower Foundations
by Guangtong Sun, Xingliang Chen, Fei Yang, Xinri Wang, Wanhui Feng and Hongzhong Li
Buildings 2026, 16(2), 310; https://doi.org/10.3390/buildings16020310 - 11 Jan 2026
Viewed by 112
Abstract
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing [...] Read more.
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing influences strength evolution, failure modes, strain rate sensitivity, and energy absorption of rubberized concrete compared with conventional mixing at 0%, 20%, and 30% rubber contents. Quasi-static compression tests and Split Hopkinson Pressure Bar (SHPB) dynamic compression tests were conducted to quantify these effects. The results show that vibratory mixing significantly improves the paste–aggregate–rubber interfacial structure. It increases the compressive strength by 8.4–30% compared with conventional mixing and reduces the strength loss at the 30% rubber content from 51.12% to 38.98%. Under high-speed impact loading, vibratory mixed rubber concrete exhibits higher peak strength, stronger energy absorption capacity, and a more stable strain rate response. The mixture with 20% rubber content shows the best comprehensive performance and is suitable for impact-resistant design of transmission tower foundations. Future research should extend this work by considering different rubber particle sizes and vibratory mixing frequencies to identify optimal combinations, and by incorporating quantitative fragment size distribution analysis under impact loading to further clarify the fracture mechanisms and enhance the application of rubberized concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 6583 KB  
Article
Flexural Fracture Behavior and Mechanical Properties of SAP-PVA Fiber-Reinforced Concrete
by Xiaozhu Hu, Yanjun Wang, Faxiang Xie and Wenhao Cao
Materials 2026, 19(1), 203; https://doi.org/10.3390/ma19010203 - 5 Jan 2026
Viewed by 216
Abstract
To investigate the fracture behavior of super-absorbent polymer (SAP) internally cured polyvinyl alcohol (PVA) fiber-reinforced concrete (SAP-PVAC), three-point bending tests were carried out. This study systematically examined the effects of (1) PVA fiber content and (2) initial crack-depth-to-beam-height ratios (a0/ [...] Read more.
To investigate the fracture behavior of super-absorbent polymer (SAP) internally cured polyvinyl alcohol (PVA) fiber-reinforced concrete (SAP-PVAC), three-point bending tests were carried out. This study systematically examined the effects of (1) PVA fiber content and (2) initial crack-depth-to-beam-height ratios (a0/D) on the failure modes, fracture toughness (KIC), and residual flexural tensile strength (fR,1) of SAP-PVAC beams. The test results demonstrate that SAP particles have a weakening effect on concrete strength (reduce about 6%). Still, the addition of PVA fibers can effectively improve the crack-resistance performance of SAP-PVAC and significantly increase the residual flexural tensile strength by 4.5–42%. The softening performance of the concrete is affected by the initial crack-height ratio. An increase in a0/D leads to an obvious increase in the crack opening displacement but has little impact on the fracture toughness, while the fracture energy shows a downward trend. SEM microscopic analysis reveals that the synergistic effect of SAP and PVA fibers exhibits a positive promoting effect on the toughening and crack resistance of SAP-PVAC specimens. These results establish a theoretical framework for SAP-PVAC fracture assessment and provide actionable guidelines for its shrinkage-crack mitigation structure engineering applications. Full article
(This article belongs to the Special Issue Reinforced Concrete: Mechanical Properties and Materials Design)
Show Figures

Figure 1

17 pages, 3498 KB  
Article
Impact of Thermomechanical Aging on Marginal Fit and Fracture Resistance of CAD/CAM Endocrowns Fabricated from Different Materials
by Bülent Kadir Tartuk and Gizem Akın Tartuk
Polymers 2026, 18(1), 143; https://doi.org/10.3390/polym18010143 - 5 Jan 2026
Viewed by 404
Abstract
The restoration of endodontically treated teeth remains a clinical challenge, particularly when substantial coronal tissue loss is present. Endocrowns fabricated using CAD/CAM technologies offer a conservative and esthetic alternative to conventional post-core systems; however, their long-term performance may be influenced by age-related mechanical [...] Read more.
The restoration of endodontically treated teeth remains a clinical challenge, particularly when substantial coronal tissue loss is present. Endocrowns fabricated using CAD/CAM technologies offer a conservative and esthetic alternative to conventional post-core systems; however, their long-term performance may be influenced by age-related mechanical and thermal stresses. This study evaluated the effect of thermomechanical aging on the marginal adaptation and fracture resistance of endocrowns fabricated from three CAD/CAM materials: zirconia-reinforced lithium silicate (ZLS), polyetherether ketone (PEEK), and 3D-printed resin. Sixty extracted human molars were endodontically treated and restored with endocrowns produced from these materials (n = 20 per group) and then subdivided into aged (n = 10) and control (n = 10) subgroups. Thermomechanical aging involved 5000 thermal cycles between 5 °C and 55 °C, and 75,000 mechanical loading cycles at 50 N. Marginal gaps were examined using scanning electron microscopy, and fracture resistance was tested under axial load at a crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA followed by Tukey’s post hoc test (α = 0.05). Thermomechanical aging significantly increased the marginal gaps in all materials (p < 0.05). The smallest marginal discrepancies were observed in the 3D-printed resin group, while the largest occurred in the ZLS after aging, likely due to dimensional changes during crystallization. Fracture resistance decreased in ZLS (−21.2%) and 3D resin (−20.9%) after aging (p < 0.05) but was not significantly affected in PEEK (−5.4%, p = 0.092). Thermomechanical aging adversely affects marginal adaptation across all materials, whereas its impact on strength is material-dependent. PEEK demonstrated the most stable mechanical performance and may represent a promising alternative for long-term endocrown restorations. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

14 pages, 9996 KB  
Article
Development of PBAT-Modified Photopolymer Resin Micro-Composites for More Sustainable SLA Additive Manufacturing
by Mamoun Alshihabi, Shafahat Ali and Ibrahim Deiab
Sustainability 2026, 18(1), 408; https://doi.org/10.3390/su18010408 - 31 Dec 2025
Viewed by 324
Abstract
The photopolymer resins commonly utilized in stereolithography (SLA) additive manufacturing are non-renewable, brittle in nature and have low impact and thermal insulation properties, limiting their applications in sustainable and functional applications. To overcome these shortcomings, this paper introduces the initial research on the [...] Read more.
The photopolymer resins commonly utilized in stereolithography (SLA) additive manufacturing are non-renewable, brittle in nature and have low impact and thermal insulation properties, limiting their applications in sustainable and functional applications. To overcome these shortcomings, this paper introduces the initial research on the use of Polybutylene Adipate Terephthalate (PBAT), a biodegradable polymer, into SLA resins to create partially sustainable micro-composites with enhanced mechanical and thermal capabilities. PBAT micropowder was mixed with standard resin at 1, 5 and 10 wt% and 3D printed using SLA. To determine performance and interfacial morphology, mechanical testing (tensile and impact), thermal conductivity measurements and SEM fracture surface analysis were carried out. Introduction of PBAT significantly increased toughness, flexibility and the impact strength of the 1% PBAT composite stood at 168.63 J/m2 with 68.69 J/m2 of pure resin whereas the 10% PBAT sample was found to be 16% more efficient in thermal insulation. These findings indicate that partially replacing the photopolymer resin with biodegradable PBAT can enhance impact strength and thermal insulation while reducing the overall amount of petrochemical resin required. The article provides a new avenue of eco-friendly, high-performance photopolymer composites to facilitate sustainable additive manufacturing. Full article
Show Figures

Figure 1

18 pages, 5679 KB  
Article
Effect of Fe and Si Content on Microstructure, Mechanical Properties, and Corrosion Resistance of 7050 Alloy
by Changlin Li, Wei Zhao, Tingrui Zhang, Xiwu Li, Zhicheng Liu, Ying Li, Lizhen Yan, Pengfei Xu, Kai Wen, Yongan Zhang, Zhihui Li and Baiqing Xiong
Materials 2026, 19(1), 135; https://doi.org/10.3390/ma19010135 - 30 Dec 2025
Viewed by 305
Abstract
In this work, the effect of Fe and Si content on microstructure, mechanical properties, and corrosion resistance of 7050 alloy was systematically investigated by room temperature tensile, fracture toughness, and exfoliation corrosion tests, complemented by microstructural characterization through SEM and TEM. The results [...] Read more.
In this work, the effect of Fe and Si content on microstructure, mechanical properties, and corrosion resistance of 7050 alloy was systematically investigated by room temperature tensile, fracture toughness, and exfoliation corrosion tests, complemented by microstructural characterization through SEM and TEM. The results demonstrate that the impurity elements Fe and Si induce the formation of insoluble Fe-rich phases and Mg2Si phases in the alloy, respectively. The coexistence of Fe and Si leads to a severe synergistic deterioration effect on mechanical properties. Furthermore, the study reveals that Si has a more profound negative impact on mechanical properties than Fe. While Fe primarily reduces ductility and fracture toughness by initiating microcracks through Fe-rich phases with minimal effect on strength, Si not only forms brittle Mg2Si phases that impair toughness but also significantly depletes the Mg content in the matrix, thereby reducing the quantity of strengthening phases. This results in a comprehensive and severe decline in strength, plasticity, and toughness. In addition, Fe and Si impurities markedly degrade the exfoliation corrosion resistance of the alloy. Full article
Show Figures

Figure 1

23 pages, 8309 KB  
Article
Study on the Mechanism of Intense Strata Behavior and Control Technology for Goaf-Side Roadway in Extra-Thick Coal Seam
by Shuai Yan, Yongjie Wang, Jianbiao Bai, Xiaolin Li and Qundi Qu
Appl. Sci. 2026, 16(1), 378; https://doi.org/10.3390/app16010378 - 29 Dec 2025
Viewed by 275
Abstract
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study [...] Read more.
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study took the 4301 tailgate of a coal mine in Shaanxi province as the engineering background, integrating field investigation, theoretical analysis, FLAC3D numerical simulation, and industrial tests. Guided by the key stratum theory, we systematically analyzed the influence of overlying key strata fracture on strata pressure. The results show three key strata: near-field secondary key strata (KS1, KS2) with “vertical O-X” fracturing and far-field main key stratum (MKS) with “horizontal O-X” fracturing. The radial extrusion force from MKS rotational blocks is the core cause of 200 m range advanced deformation. A collaborative control scheme of near-field key strata directional fracturing roof-cutting pressure relief and high-strength bolt-cable support was proposed. Industrial verification indicates roadway deformation was significantly reduced, with roof subsidence, floor heave, and rib convergence controlled within safe engineering limits. This study fills the gap of insufficient research on far-field key strata’s impact, providing a reliable technical solution for similar extra-thick coal seam FMTC goaf-side roadway surrounding rock control. Full article
Show Figures

Figure 1

Back to TopTop