Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,987)

Search Parameters:
Keywords = hydrogen molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1555 KiB  
Article
Lithium-Decorated C26 Fullerene in DFT Investigation: Tuning Electronic Structures for Enhanced Hydrogen Storage
by Jiangang Yu, Lili Liu, Quansheng Li, Zhidong Xu, Yujia Shi and Cheng Lei
Molecules 2025, 30(15), 3223; https://doi.org/10.3390/molecules30153223 - 31 Jul 2025
Viewed by 205
Abstract
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene [...] Read more.
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene and Li-decorated C26 fullerene using density functional theory (DFT) calculations. The results reveal that Li atoms preferentially bind to the H5-5 site of C26, driven by significant electron transfer (0.90 |e|) from Li to C26. This electron redistribution modulates the electronic structure of C26, as evidenced by projected density of states (PDOS) analysis, where the p orbitals of C atoms near the Fermi level undergo hybridization with Li orbitals, enhancing the electrostatic environment for H2 adsorption. For Li-decorated C26, the average adsorption energy and consecutive adsorption energy decrease as more H2 molecules are adsorbed, indicating a gradual weakening of adsorption strength and signifying a saturation limit of three H2 molecules. Charge density difference and PDOS analyses further demonstrate that H2 adsorption induces synergistic electron transfer from both Li (0.89 |e| loss) and H2 (0.01 |e| loss) to C26 (0.90 |e| gain), with orbital hybridization between H s orbitals, C p orbitals, and Li orbitals stabilizing the adsorbed system. This study aimed to provide a comprehensive understanding of the microscopic mechanism underlying Li-enhanced H2 adsorption on C26 fullerene and offer insights into the rational design of metal-decorated fullerene-based systems for efficient hydrogen storage. Full article
Show Figures

Graphical abstract

14 pages, 1605 KiB  
Article
Supramolecular Switching by Substituent Tuning: A Crystal Engineering Study of 2-Amino- and 2,3-Diamino-5-Halogenopyridines
by Irina S. Konovalova and Guido J. Reiss
Crystals 2025, 15(8), 700; https://doi.org/10.3390/cryst15080700 - 31 Jul 2025
Viewed by 148
Abstract
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction [...] Read more.
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction energies between molecules was employed to estimate the driving forces of crystal formation. As a result, regularities in crystal structure organization were identified. For compounds 1 and 2, a dimeric building unit is formed by two N–H…Npyr hydrogen bonds. These dimers are further connected to neighboring units by C–H…π, C–H…N, N…X (X = Cl, Br), and non-specific interactions. The aforementioned intermolecular interactions give rise to layered structures that are similar but not isotypical. No significant contributions from π–π or N–H…N(H2) interactions are observed in 1 and 2. The structures of 3 and 4 are isotypical and crystallize in the non-centrosymmetric space group P212121. The most important intermolecular interactions are N–H…Npyr, N–H…N(H2), and stacking interactions. These interactions lead to identical columnar-layered structures in both 3 and 4. No significant contributions from halogen bonds of the type N…X (X = Cl, Br) are found in 3 and 4. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

10 pages, 1596 KiB  
Article
Investigating the Effect of Hydrogen Bonding on the Viscosity of an Aqueous Methanol Solution Using Raman Spectroscopy
by Nan-Nan Wu, Fang Liu, Zonghang Li, Ziyun Qiu, Xiaofan Li, Junhui Huang, Bohan Li, Junxi Qiu and Shun-Li Ouyang
Molecules 2025, 30(15), 3204; https://doi.org/10.3390/molecules30153204 - 30 Jul 2025
Viewed by 161
Abstract
Water science has always been a central part of modern scientific research. In this study, the viscosity and hydrogen bond structures of methanol aqueous solutions with different molar ratios were investigated via confocal microscopic Raman spectroscopy. The Raman spectra of methanol in the [...] Read more.
Water science has always been a central part of modern scientific research. In this study, the viscosity and hydrogen bond structures of methanol aqueous solutions with different molar ratios were investigated via confocal microscopic Raman spectroscopy. The Raman spectra of methanol in the CH and CO stretching regions were measured in order to investigate the structure of water/methanol molecules. The points of transition were identified by observing changes in viscosity following changes in concentration, and the bands were assigned to the C-H bond vibration shifts where the molar ratios of methanol and water were 1:3 and 3:1. Furthermore, the large band shift of 19 cm−1 between the methanol solutions with the lowest and highest concentrations contained three hydrogen bond network modes, affecting the viscosity of the solution. This study provides an explanation for the relationship between the microstructures and macroscopic properties of aqueous solutions. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

12 pages, 2954 KiB  
Article
Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium
by Yingxin Zhang, Hengxing Qiu, Chunyu Shen, Shuwen Hou, Qiuju Fu and Xuebo Zhao
Chemistry 2025, 7(4), 124; https://doi.org/10.3390/chemistry7040124 - 30 Jul 2025
Viewed by 197
Abstract
To address the low selectivity in the electrocatalytic conversion of furfural (FFR) to furfuryl alcohol (FFA) under alkaline conditions, a Zn-based metal–organic framework (MBON-2) featuring a 3D hierarchical flower-like architecture self-assembled from nanosheets was synthesized via a simple hydrothermal method. Under optimal conditions, [...] Read more.
To address the low selectivity in the electrocatalytic conversion of furfural (FFR) to furfuryl alcohol (FFA) under alkaline conditions, a Zn-based metal–organic framework (MBON-2) featuring a 3D hierarchical flower-like architecture self-assembled from nanosheets was synthesized via a simple hydrothermal method. Under optimal conditions, MBON-2 exhibited an extremely high selectivity of FFA (100%) and a high Faradaic efficiency (FE) of 93.19% at −0.2 V vs. RHE. Electrochemical impedance spectroscopy (EIS) revealed the excellent electron transfer and mass transport properties of MBON-2. In addition, in situ Fourier transform infrared (FTIR) spectroscopy studies confirmed the adsorption of FFR molecules onto the Zn and B sites of MBON-2 during the ECH of FFR, providing key insights into the hydrogenation mechanism. The numerous exposed B and Zn sites of the MBON-2, as well as its robust structural stability contributed to its outstanding catalytic performance in the electrochemical hydrogenation (ECH) of FFR. This work provides valuable guidelines for developing efficient Zn-based catalysts for the ECH of FFR. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass and Its Derivatives)
Show Figures

Figure 1

18 pages, 4455 KiB  
Article
Spermine Promotes the Formation of Conchosporangia in Pyropia haitanensis Through Superoxide Anions
by Tingting Niu, Haike Qian, Lufan Cheng, Qijun Luo, Juanjuan Chen, Rui Yang, Peng Zhang, Tiegan Wang and Haimin Chen
Mar. Drugs 2025, 23(8), 309; https://doi.org/10.3390/md23080309 - 30 Jul 2025
Viewed by 486
Abstract
The transition from conchocelis to conchosporangia in Pyropia haitanensis represents a pivotal stage in its life cycle. As a commercially vital red alga, P. haitanensis plays a dominant role in global nori production. The transition governing its sporulation efficiency is pivotal for aquaculture [...] Read more.
The transition from conchocelis to conchosporangia in Pyropia haitanensis represents a pivotal stage in its life cycle. As a commercially vital red alga, P. haitanensis plays a dominant role in global nori production. The transition governing its sporulation efficiency is pivotal for aquaculture success, yet the underlying regulatory mechanisms, especially their integration with metabolic cues such as polyamines, remain poorly understood. This study uncovered a critical role for the polyamine spermine (SPM) in promoting conchosporangial formation, mediated through the signaling activity of superoxide anions (O2·). Treatment with SPM markedly elevated O2· levels, an effect that was effectively inhibited by the NADPH oxidase inhibitor diphenyliodonium chloride (DPI), underscoring the role of O2· as a key signaling molecule. Transcriptomic analysis revealed that SPM enhanced photosynthesis, carbon assimilation, and respiratory metabolism, while simultaneously activating antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), to regulate hydrogen peroxide (H2O2) levels and maintain redox homeostasis. Furthermore, SPM upregulated genes associated with photosynthetic carbon fixation and the C2 oxidative photorespiration pathway, supplying the energy and metabolic resources necessary for this developmental transition. These findings suggested that SPM orchestrated O2· signaling, photosynthetic activity, and antioxidant defenses to facilitate the transition from conchocelis to conchosporangia in P. haitanensis. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

31 pages, 19845 KiB  
Article
In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα)
by Dadang Muhammad Hasyim, Ida Musfiroh, Rudi Hendra, Taufik Muhammad Fakih, Nur Kusaira Khairul Ikram and Muchtaridi Muchtaridi
Appl. Sci. 2025, 15(15), 8444; https://doi.org/10.3390/app15158444 - 30 Jul 2025
Viewed by 336
Abstract
Estrogen receptor alpha (ERα) plays a vital role in the development and progression of breast cancer by regulating the expression of genes associated with cell proliferation in breast tissue. ERα inhibition is a key strategy in the prevention and treatment of breast cancer. [...] Read more.
Estrogen receptor alpha (ERα) plays a vital role in the development and progression of breast cancer by regulating the expression of genes associated with cell proliferation in breast tissue. ERα inhibition is a key strategy in the prevention and treatment of breast cancer. Previous research modified chalcone compounds into pyrazoline benzenesulfonamide derivatives (Modifina) which show activity as an ERα inhibitor. This study aimed to design novel pyrazoline benzenesulfonamide derivatives (PBDs) as ERα antagonists using in silico approaches. Structure-based and ligand-based drug design approaches were used to create drug target molecules. A total of forty-five target molecules were initially designed and screened for drug likeness (Lipinski’s rule of five), cytotoxicity, pharmacokinetics and toxicity using a web-based prediction tools. Promising candidates were subjected to molecular docking using AutoDock 4.2.6 to evaluate their binding interaction with ERα, followed by molecular dynamics simulations using AMBER20 to assess complex stability. A pharmacophore model was also generated using LigandScout 4.4.3 Advanced. The molecular docking results identified PBD-17 and PBD-20 as the most promising compounds, with binding free energies (ΔG) of −11.21 kcal/mol and −11.15 kcal/mol, respectively. Both formed hydrogen bonds with key ERα residues ARG394, GLU353, and LEU387. MM-PBSA further supported these findings, with binding energies of −58.23 kJ/mol for PDB-17 and −139.46 kJ/mol for PDB-20, compared to −145.31 kJ/mol, for the reference compound, 4-OHT. Although slightly less favorable than 4-OHT, PBD-20 demonstrated a more stable interaction with ERα than PBD-17. Furthermore, pharmacophore screening showed that both PBD-17 and PBD-20 aligned well with the generated model, each achieving a match score of 45.20. These findings suggest that PBD-17 and PBD-20 are promising lead compounds for the development of a potent ERα inhibitor in breast cancer therapy. Full article
(This article belongs to the Special Issue Drug Discovery and Delivery in Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 2178 KiB  
Article
Enabling Early Prediction of Side Effects of Novel Lead Hypertension Drug Molecules Using Machine Learning
by Takudzwa Ndhlovu and Uche A. K. Chude-Okonkwo
Drugs Drug Candidates 2025, 4(3), 35; https://doi.org/10.3390/ddc4030035 - 29 Jul 2025
Viewed by 250
Abstract
Background: Hypertension is a serious global health issue affecting over one billion adults and leading to severe complications if left unmanaged. Despite medical advancements, only a fraction of patients effectively have their hypertension under control. Among the factors that hinder adherence to [...] Read more.
Background: Hypertension is a serious global health issue affecting over one billion adults and leading to severe complications if left unmanaged. Despite medical advancements, only a fraction of patients effectively have their hypertension under control. Among the factors that hinder adherence to hypertensive drugs are the debilitating side effects of the drugs. The lack of adherence results in poorer patient outcomes as patients opt to live with their condition, instead of having to deal with the side effects. Hence, there is a need to discover new hypertension drug molecules with better side effects to increase patient treatment options. To this end, computational methods such as artificial intelligence (AI) have become an exciting option for modern drug discovery. AI-based computational drug discovery methods generate numerous new lead antihypertensive drug molecules. However, predicting their potential side effects remains a significant challenge because of the complexity of biological interactions and limited data on these molecules. Methods: This paper presents a machine learning approach to predict the potential side effects of computationally synthesised antihypertensive drug molecules based on their molecular properties, particularly functional groups. We curated a dataset combining information from the SIDER 4.1 and ChEMBL databases, enriched with molecular descriptors (logP, PSA, HBD, HBA) using RDKit. Results: Gradient Boosting gave the most stable generalisation, with a weighted F1 of 0.80, and AUC-ROC of 0.62 on the independent test set. SHAP analysis over the cross-validation folds showed polar surface area and logP contributing the largest global impact, followed by hydrogen bond counts. Conclusions: Functional group patterns, augmented with key ADMET descriptors, offer a first-pass screen for identifying side-effect risks in AI-designed antihypertensive leads. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 263
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

6 pages, 790 KiB  
Short Note
6-Amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile
by Andreas S. Kalogirou, Andreas Kourtellaris and Panayiotis A. Koutentis
Molbank 2025, 2025(3), M2043; https://doi.org/10.3390/M2043 - 28 Jul 2025
Viewed by 184
Abstract
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis [...] Read more.
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis spectroscopy. Intermolecular hydrogen bonding interactions were observed in the solid state between the C≡N and N-H groups of adjacent molecules. Full article
Show Figures

Figure 1

19 pages, 3427 KiB  
Article
Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials
by Hongzhi Hu, Adila Abuduheni, Yujin Zhao, Yuhao Lin, Yang Liu and Zunqi Liu
Molecules 2025, 30(15), 3107; https://doi.org/10.3390/molecules30153107 - 24 Jul 2025
Viewed by 187
Abstract
Polyoxometalate (POM)-type supramolecular materials have unique structures and hold immense potential for development in the fields of biomedicine, information storage, and electrocatalysis. In this study, (NH4)3 [AlMo6O24H6]·7H2O was employed as a polyacid [...] Read more.
Polyoxometalate (POM)-type supramolecular materials have unique structures and hold immense potential for development in the fields of biomedicine, information storage, and electrocatalysis. In this study, (NH4)3 [AlMo6O24H6]·7H2O was employed as a polyacid anion template, pentacyclic imidazole molecules served as organic ligands, and the moderate-temperature hydrothermal and natural evaporation methods were used in combination for the design and synthesis of two octamolybdenum-oxo cluster (homopolyacids containing molybdenum-oxygen structures as the main small-molecular structures)-based organic–inorganic hybrid compounds, [(C3N2H5)(C3N2H4)][(β-Mo8O26H2)]0.5 (1) and {Zn(C3N2H4)4}{[(γ-Mo8O26)(C3N2H4)2]0.5}·2H2O (2). Structural and property characterization revealed that both compounds crystallized in the P-1 space group with relatively stable three-dimensional structures under the action of hydrogen bonding. Upon temperature stimulation, the [Zn(C3N2H4)4]2+ cation and water molecules in 2 exhibited obvious oscillations, leading to significant dielectric anomalies at approximately 250 and 260 K when dielectric testing was conducted under heating conditions. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 1441 KiB  
Article
The Relaxation Behavior of Water Confined in AOT-Based Reverse Micelles Under Temperature-Induced Clustering
by Ivan V. Lunev, Alexander N. Turanov, Mariya A. Klimovitskaya, Artur A. Galiullin, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(15), 7152; https://doi.org/10.3390/ijms26157152 - 24 Jul 2025
Viewed by 256
Abstract
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, [...] Read more.
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, in low, high and microwave frequencies, anchoring with relaxation of shell (bound) water, orientation of surfactant anions at water-surfactant interface and relaxation of bulk water confined in reverse micelles. The analysis of dielectric relaxation processes in AOT-based w/o microemulsions under temperature induced clustering of reverse micelles were made according to structural information obtained in NMR and conductometry experiments. The “wait and switch” relaxation mechanism was applied for the explanation of results for water in the bound and bulk states under spatial limitation in reverse micelles. It was shown that surfactant layer predominantly influences the bound water. The properties of water close to AOT interface are determined by strong interactions between water and ionic AOT molecules, which perturb water H-bonding network. The decrease in micelle size causes a weakening of hydrogen bonds, deformation of its steric network and reduction in co-operative relaxation effects. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

13 pages, 6546 KiB  
Article
Structural Comparison of Three N-(4-Methoxyphenyl)-Nitrobenzenesulfonamide Derivatives
by Mark Oblazny and Christhoper G. Hamaker
Crystals 2025, 15(8), 673; https://doi.org/10.3390/cryst15080673 - 23 Jul 2025
Viewed by 327
Abstract
The series of all three N-(4-methoxyphenyl)-nitrobenzenesulfonamides has been synthesized and their crystal structures analyzed. The bond lengths and angles are all very similar, only the C-S-N-C torsion angles are significantly different in the three molecules, leading to different orientations of the phenyl [...] Read more.
The series of all three N-(4-methoxyphenyl)-nitrobenzenesulfonamides has been synthesized and their crystal structures analyzed. The bond lengths and angles are all very similar, only the C-S-N-C torsion angles are significantly different in the three molecules, leading to different orientations of the phenyl rings in the molecules. All three molecules exhibit N–HO hydrogen bonds with the sulfonamide group; however, in only two of the three is the acceptor an oxygen atom on the sulfonamide group. In the third, the acceptor oxygen is the methoxy oxygen atom. Compound A forms an infinite three-dimensional network, compound B exhibits ladder-shaped sheets, and C shows infinite sheets that are fairly planar. Overall, the differences in overall intermolecular interactions appear to be driven by packing rather than by the overall shapes of the molecules themselves. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

14 pages, 2825 KiB  
Article
Effects of Pressure on Hydrogen Diffusion Behaviors in Corundum
by Shun-Feng Yan, Lin Li, Xiao Dong, Xiao-Wei Li, Mao-Wen Yuan and Sheng-Rong Li
Crystals 2025, 15(8), 672; https://doi.org/10.3390/cryst15080672 - 23 Jul 2025
Viewed by 144
Abstract
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the [...] Read more.
Hydrogen, as the smallest atom and a key component of water, can penetrate minerals in various forms (e.g., atoms, molecules), significantly influencing their properties. The hydrogen diffusion behavior in corundum (α-Al2O3) under high pressure was systematically investigated using the DFT + NEB method. The results indicate that H atoms tend to aggregate into H2 molecules within corundum under both ambient and high-pressure conditions. However, hydrogen predominantly migrates in its atomic form (H) under both low- and high-pressure environments. The energy barriers for H and H2 diffusion increase with pressure, and hydrogen diffusion weakens the chemical bonds nearby. Using the Arrhenius equation, we calculated the diffusion coefficient of H in corundum, which increases with temperature but decreases with pressure. On geological time scales, hydrogen diffusion is relatively slow, potentially resulting in a heterogeneous distribution of water in the lower mantle. These findings provide novel insights into hydrogen diffusion mechanisms in corundum under extreme conditions, with significant implications for hydrogen behavior in mantle minerals at high pressures. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 1147 KiB  
Hypothesis
Possible Enantioseparation of Racemic Ribose on Chiral Surface Formed by Adsorption of Nucleobases
by Roman Bielski and Michal Tencer
Life 2025, 15(8), 1160; https://doi.org/10.3390/life15081160 - 23 Jul 2025
Viewed by 248
Abstract
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) [...] Read more.
The paper proposes a putative prebiotic scenario leading to homochirality in the RNA world. In this scenario, racemic ribose, the only chiral moiety in RNA, was enantioseparated (in its pyranose form) on a chiral surface formed by the adsorption of (prochiral) nucleobases (NBs) on a mineral or metal. Purine bases (adenine and guanine) are more likely candidates for this process than pyrimidine bases because they have more H-bond donors and acceptors. Another possible candidate surface for the enantioseparation of ribose would be formed by the adsorption of nucleobase pairs, e.g., guanine–cytosine (GC). Interactions of ribose molecules with hydrogen bond donors and acceptors of NBs or NB pairs (located on the surface) enforced the orientation of ribose molecules in two directions perpendicular to each other and parallel to the surface. Consequently, the energy of interactions of enantiomers of the sugar with the surface was not the same. Thus, a solvent moving along the surface caused the enantiomers of ribose to move with different rates, resulting in the enantioseparation of ribose in a chromatography-like process. The same process would also separate ribose from other monosaccharides in the mix. Hydrogen bonding between nucleobases was also pivotal in the formation of large homochiral domains on the surfaces. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
Show Figures

Figure 1

7 pages, 636 KiB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 491
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

Back to TopTop