In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα)
Abstract
1. Introduction
2. Materials and Methods
2.1. Tools and Materials
2.2. Ligand Design
2.3. Prediction of Lipinski’s Rule of Five
2.4. Prediction of Cell Line Cytotoxicity
2.5. Prediction of Pharmacokinetic and Toxicity Profiles
2.6. Molecular Docking Simulations
2.6.1. Separation of Native Ligands and Receptors
2.6.2. Preparation of Ligand and Receptor
2.6.3. Grid Parameters
2.6.4. Molecular Docking Process
2.7. Molecular Dynamics (MD) Simulations
2.8. Pharmacophore Modeling
3. Results and Discussion
3.1. Ligand Modeling
3.2. Lipinski’s Rule of Five Evaluation
3.3. Assessment of Cell Line Cytotoxic Potential
3.4. Pharmacokinetic and Toxicity Profiles Prediction
3.5. Docking-Based Interaction Simulations
3.6. Molecular Flexibility Simulations
3.7. Pharmacophore-Based Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EF | Enrichment Factor |
HBA | Hydrogen Bond Acceptor |
HBD | Hydrogen-Bond Donor |
HI | Hydrophobic Interactions |
HIA | Human Intestinal Absorption |
LBDD | Ligand-Based Drug Design |
MW | Molecular Weight |
MlogP | Moriguchi Octanol–Water Partition Coefficient |
MM-PBSA | Molecular Mechanics Poisson–Boltzmann Surface Area |
PPB | Plasma Protein Binding |
RMSD | Root Mean Square Deviation |
RMSF | Root Mean Square Fluctuation |
ROC | Receiver Operating Characteristic |
SBDD | Structure-Based Drug Design |
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Qin, K.; Li, F.; Chen, W. Comparative Study of Cancer Profiles between 2020 and 2022 Using Global Cancer Statistics (GLOBOCAN). J. Natl. Cancer Cent. 2024, 4, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, S.S.; Bhatia, N.M.; Bhatia, M.S. Development of Leads Targeting ER-α in Breast Cancer: An in Silico Exploration from Natural Domain. Steroids 2018, 131, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; De Luca, A.; Avena, P.; De Amicis, F.; Casaburi, I.; Sirianni, R.; Pezzi, V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int. J. Mol. Sci. 2022, 23, 1242. [Google Scholar] [CrossRef] [PubMed]
- Ariazi, E.A.; Ariazi, J.L.; Cordera, F.; Jordan, V.C. Estrogen Receptors as Therapeutic Targets in Breast Cancer. Curr. Top. Med. Chem. 2006, 6, 181–202. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, B.; Ou-Yang, L. Role of Estrogen Receptors in Health and Disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, H.; Yao, J. ERα, a Key Target for Cancer Therapy: A Review. OncoTargets Ther. 2020, 13, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Yin, F.; Nie, L.; Wang, Y.; Qin, J.; Chen, J. Estrogen and Estrogen Receptor Modulators: Potential Therapeutic Strategies for COVID-19 and Breast Cancer. Front. Endocrinol. 2022, 13, 829879. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Zakharov, M.N.; Khan, S.H.; Miki, R.; Jang, H.; Toraldo, G.; Singh, R.; Bhasin, S.; Jasuja, R. The Dynamic Structure of the Estrogen Receptor. J. Amino Acids 2011, 2011, 812540. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Barron, M.G. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists. PLoS ONE 2017, 12, e0169607. [Google Scholar] [CrossRef] [PubMed]
- Sinyani, A.; Idowu, K.; Shunmugam, L.; Kumalo, H.M.; Khan, R. A Molecular Dynamics Perspective into Estrogen Receptor Inhibition by Selective Flavonoids as Alternative Therapeutic Options. J. Biomol. Struct. Dyn. 2023, 41, 4093–4105. [Google Scholar] [CrossRef] [PubMed]
- Bafna, D.; Ban, F.; Rennie, P.S.; Singh, K.; Cherkasov, A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int. J. Mol. Sci. 2020, 21, 4193. [Google Scholar] [CrossRef] [PubMed]
- Damkier, P.; Kjærsgaard, A.; Barker, K.A.; Cronin-Fenton, D.; Crawford, A.; Hellberg, Y.; Janssen, E.A.M.; Langefeld, C.; Ahern, T.P.; Lash, T.L. CYP2C19*2 and CYP2C19*17 Variants and Effect of Tamoxifen on Breast Cancer Recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium Dataset. Sci. Rep. 2017, 7, 7727. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.; Zhao, F.; Yu, Z.; Zhu, X.; Li, C.G. Interactions between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review. Front. Pharmacol. 2022, 13, 847113. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Deng, K.; Huang, J.; Zeng, R.; Zuo, J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front. Pharmacol. 2020, 11, 592912. [Google Scholar] [CrossRef] [PubMed]
- Kurtanović, N.; Tomašević, N.; Matić, S.; Proia, E.; Sabatino, M.; Antonini, L.; Mladenović, M.; Ragno, R. Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin a Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022, 27, 2823. [Google Scholar] [CrossRef] [PubMed]
- Lainé, M.; Fanning, S.W.; Chang, Y.-F.; Green, B.; Greene, M.E.; Komm, B.; Kurleto, J.D.; Phung, L.; Greene, G.L. Lasofoxifene as a Potential Treatment for Therapy-Resistant ER-Positive Metastatic Breast Cancer. Breast Cancer Res. 2021, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, S.; Kankainen, M.; Paavolainen, L.; Kovanen, R.-M.; Ikonen, E.; Kangaspeska, S.; Pietiäinen, V.; Kallioniemi, O. Association of Tamoxifen Resistance and Lipid Reprogramming in Breast Cancer. BMC Cancer 2018, 18, 850. [Google Scholar] [CrossRef] [PubMed]
- Shagufta; Ahmad, I. Tamoxifen a Pioneering Drug: An Update on the Therapeutic Potential of Tamoxifen Derivatives. Eur. J. Med. Chem. 2018, 143, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xu, F.; Nie, M.; Xia, W.; Qin, T.; Qin, G.; An, X.; Xue, C.; Peng, R.; Yuan, Z.; et al. Selective Estrogen Receptor Modulator-Associated Nonalcoholic Fatty Liver Disease Improved Survival in Patients with Breast Cancer: A Retrospective Cohort Analysis. Medicine 2015, 94, e1718. [Google Scholar] [CrossRef] [PubMed]
- Reimers, L.; Crew, K.D. Tamoxifen versus Raloxifene versus Exemestane for Chemoprevention. Curr. Breast Cancer Rep. 2012, 4, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Subarnas, A.; Diantini, A.; Abdulah, R.; Zuhrotun, A.; Hadisaputri, Y.E.; Puspitasari, I.M.; Yamazaki, C.; Kuwano, H.; Koyama, H. Apoptosis Induced in MCF-7 Human Breast Cancer Cells by 2′,4′-Dihydroxy-6-Methoxy-3,5-Dimethylchalcone Isolated from Eugenia aquea Burm f. Leaves. Oncol. Lett. 2015, 9, 2303–2306. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Yusuf, M.; Syahidah, H.N.; Subarnas, A.; Zamri, A.; Bryant, S.D.; Langer, T. Cytotoxicity of Chalcone of Eugenia Aquea burm F. Leaves against T47D Breast Cancer Cell Lines and Its Prediction as an Estrogen Receptor Antagonist Based on Pharmacophore-Molecular Dynamics Simulation. Adv. Appl. Bioinform. Chem. 2019, 12, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Prasetiawati, R.; Zamri, A.; Barliana, M.I.; Muchtaridi, M. In Silico Predictive for Modification of Chalcone with Pyrazole Derivatives as a Novel Therapeutic Compound for Targeted Breast Cancer Treatment. J. Appl. Pharm. Sci. 2019, 9, 020–028. [Google Scholar] [CrossRef]
- Lazniewski, M.; Dermawan, D.; Hidayat, S.; Muchtaridi, M.; Dawson, W.K.; Plewczynski, D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods 2022, 203, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.; Lee, X.Y.; De Raeymaeker, J.; Tame, J.R.; Zhang, K.Y.; De Maeyer, M.; Voet, A.R. Pharmacophore Modeling: Advances, Limitations, and Current Utility in Drug Discovery. J. Recept. Ligand Channel Res. 2014, 7, 81–92. [Google Scholar] [CrossRef]
- de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular Docking as a Popular Tool in Drug Design, an in Silico Travel. Adv. Appl. Bioinform. Chem. 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular Dynamics Simulations: Advances and Applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wan, H.; Shi, Y.; Ouyang, P. Personal Experience with Four Kinds of Chemical Structure Drawing Software: Review on Chemdraw, Chemwindow, ISIS/Draw, and Chemsketch. J. Chem. Inf. Comput. Sci. 2004, 44, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Lagunin, A.A.; Rudik, A.V.; Pogodin, P.V.; Savosina, P.I.; Tarasova, O.A.; Dmitriev, A.V.; Ivanov, S.M.; Biziukova, N.Y.; Druzhilovskiy, D.S.; Filimonov, D.A.; et al. CLC-Pred 2.0: A Freely Available Web Application for in Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds. Int. J. Mol. Sci. 2023, 24, 1689. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.A.; Dubovskaja, V.I.; Rudik, A.V.; Pogodin, P.V.; Druzhilovskiy, D.S.; Gloriozova, T.A.; Filimonov, D.A.; Sastry, N.G.; Poroikov, V.V. CLC-Pred: A Freely Available Web-Service for in Silico Prediction of Human Cell Line Cytotoxicity for Drug-like Compounds. PLoS ONE 2018, 13, e0191838. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lee, I.H.; Kim, H.J.; Chang, G.S.; Chung, J.E.; No, K.T. The PreADME Approach: Web-Based Program for Rapid Prediction of Physico-Chemical, Drug Absorption and Drug-like Properties. In EuroQSAR 2002: Designing Drugs and Crop Protectants: Processes, Problems and Solutions; Blackwell Publishing: Malden, MA, USA, 2003; pp. 418–420. [Google Scholar]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef] [PubMed]
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A Web Server for the in Silico Prediction of Rodent Oral Toxicity. Nucleic Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell 1998, 95, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Begam, K.A.; Kanagathara, N.; Marchewka, M.K.; Lo, A.-Y. DFT, Hirshfeld and Molecular Docking Studies of a Hybrid Compound—2,4-Diamino-6-Methyl-1,3,5-Triazin-1-Ium Hydrogen Oxalate as a Promising Anti-Breast Cancer Agent. Heliyon 2022, 8, e10355. [Google Scholar] [CrossRef] [PubMed]
- Moulishankar, A.; Sundarrajan, T. Pharmacophore, QSAR, Molecular Docking, Molecular Dynamics and ADMET Study of Trisubstituted Benzimidazole Derivatives as Potent Anti-Tubercular Agents. Chem. Phys. Impact 2024, 8, 100512. [Google Scholar] [CrossRef]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational Protein–Ligand Docking and Virtual Drug Screening with the AutoDock Suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Dermawan, D.; Yusuf, M. Molecular Docking, 3D Structure-Based Pharmacophore Modeling, and ADME Prediction of Alpha Mangostin and Its Derivatives against Estrogen Receptor Alpha. J. Young Pharm. 2018, 10, 252–259. [Google Scholar] [CrossRef]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular Docking and Dynamics Simulation Study of Bioactive Compounds from Ficus carica L. with Important Anticancer Drug Targets. PLoS ONE 2021, 16, e0254035. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III.; Cisneros, G.A.; Cruzeiro, V.W.D.; Darden, T.A.; et al. Amber 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Ho, J. MM/GBSA Prediction of Relative Binding Affinities of Carbonic Anhydrase Inhibitors: Effect of Atomic Charges and Comparison with Autodock4Zn. J. Comput.-Aided Mol. Des. 2023, 37, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Syahidah, H.N.; Subarnas, A.; Yusuf, M.; Bryant, S.D.; Langer, T. Molecular Docking and 3D-Pharmacophore Modeling to Study the Interactions of Chalcone Derivatives with Estrogen Receptor Alpha. Pharmaceuticals 2017, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; MacKerell, A.D. Computer-Aided Drug Design Methods. In Antibiotics: Methods and Protocols; Sass, P., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1520, pp. 85–106. ISBN 978-1-4939-6634-9. [Google Scholar]
- Shim, J.; MacKerell, Jr.; Alexander, D. Computational Ligand-Based Rational Design: Role of Conformational Sampling and Force Fields in Model Development. Med. Chem. Commun. 2011, 2, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, Z.; Wang, X.; Zhang, X.; Mu, K.; Shi, Y.; Peng, C.; Xu, Z.; Zhu, W. Ligand-Based Approach for Predicting Drug Targets and for Virtual Screening against COVID-19. Brief. Bioinform. 2021, 22, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Chen, Y.-P.P. Structure-Based Drug Design to Augment Hit Discovery. Drug Discov. Today 2011, 16, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.B.; Segretti, M.C.F.; Polli, M.C.; Parise-Filho, R. Analysis of the Applicability and Use of Lipinski’s Rule for Central Nervous System Drugs. Lett. Drug Des. Discov. 2016, 13, 999–1006. [Google Scholar] [CrossRef]
- Natesan, S.; Wang, Z.; Lukacova, V.; Peng, M.; Subramaniam, R.; Lynch, S.; Balaz, S. Structural Determinants of Drug Partitioning in N-Hexadecane/Water System. J. Chem. Inf. Model. 2013, 53, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- van der Spoel, D.; Manzetti, S.; Zhang, H.; Klamt, A. Prediction of Partition Coefficients of Environmental Toxins Using Computational Chemistry Methods. ACS Omega 2019, 4, 13772–13781. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, J.T.S.; Feghali, R.; Ribeiro, R.P.; Ramos, M.J.; Fernandes, P.A. The Importance of Intramolecular Hydrogen Bonds on the Translocation of the Small Drug Piracetam through a Lipid Bilayer. RSC Adv. 2021, 11, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Rafi, S.B.; Hearn, B.R.; Vedantham, P.; Jacobson, M.P.; Renslo, A.R. Predicting and Improving the Membrane Permeability of Peptidic Small Molecules. J. Med. Chem. 2012, 55, 3163–3169. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. J. Comput. Biol. 2020, 27, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Q.; Wilkinson, B. Drug Discovery beyond the ‘Rule-of-Five’. Curr. Opin. Biotechnol. 2007, 18, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Chagas, C.M.; Moss, S.; Alisaraie, L. Drug Metabolites and Their Effects on the Development of Adverse Reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm. 2018, 549, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chakraborty, M.; Chandra, A.; Alam, M.P. Structure-Activity Relationship (SAR) and Molecular Dynamics Study of Withaferin-A Fragment Derivatives as Potential Therapeutic Lead against Main Protease (Mpro) of SARS-CoV-2. J. Mol. Model. 2021, 27, 97. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Brightman, F.; Gill, H.; Lee, S.; Pufong, B. Simulation Modelling of Human Intestinal Absorption Using Caco-2 Permeability and Kinetic Solubility Data for Early Drug Discovery. J. Pharm. Sci. 2008, 97, 4557–4574. [Google Scholar] [CrossRef] [PubMed]
- Lambrinidis, G.; Vallianatou, T.; Tsantili-Kakoulidou, A. In Vitro, in Silico and Integrated Strategies for the Estimation of Plasma Protein Binding. A Review. Adv. Drug Deliv. Rev. 2015, 86, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Charlier, B.; Coglianese, A.; De Rosa, F.; de Grazia, U.; Operto, F.F.; Coppola, G.; Filippelli, A.; Dal Piaz, F.; Izzo, V. The Effect of Plasma Protein Binding on the Therapeutic Monitoring of Antiseizure Medications. Pharmaceutics 2021, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.; Chatterjee, J. The Use of in Silico Tools for the Toxicity Prediction of Potential Inhibitors of SARS-CoV-2. Altern. Lab. Anim. 2021, 49, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Myshkin, E.; Brennan, R.; Khasanova, T.; Sitnik, T.; Serebriyskaya, T.; Litvinova, E.; Guryanov, A.; Nikolsky, Y.; Nikolskaya, T.; Bureeva, S. Prediction of Organ Toxicity Endpoints by QSAR Modeling Based on Precise Chemical-Histopathology Annotations. Chem. Biol. Drug Des. 2012, 80, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Cavasotto, C.N.; Scardino, V. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS Omega 2022, 7, 47536–47546. [Google Scholar] [CrossRef] [PubMed]
- Celestin, M.N.; Musteata, F.M. Impact of Changes in Free Concentrations and Drug-Protein Binding on Drug Dosing Regimens in Special Populations and Disease States. J. Pharm. Sci. 2021, 110, 3331–3344. [Google Scholar] [CrossRef] [PubMed]
- Wanat, K. Biological Barriers, and the Influence of Protein Binding on the Passage of Drugs across Them. Mol. Biol. Rep. 2020, 47, 3221–3231. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative Assessment of Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019, 59, 895–913. [Google Scholar] [CrossRef] [PubMed]
- Kirchmair, J.; Markt, P.; Distinto, S.; Wolber, G.; Langer, T. Evaluation of the Performance of 3D Virtual Screening Protocols: RMSD Comparisons, Enrichment Assessments, and Decoy Selection—What Can We Learn from Earlier Mistakes? J. Comput.-Aided Mol. Des. 2008, 22, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Shivanika, C.; Deepak Kumar, S.; Ragunathan, V.; Tiwari, P.; Sumitha, A.; Brindha Devi, P. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Natural Compounds against the SARS-CoV-2 Main-Protease. J. Biomol. Struct. Dyn. 2022, 40, 585–611. [Google Scholar] [CrossRef]
- Mardianingrum, R.; Yusuf, M.; Hariono, M.; Mohd Gazzali, A.; Muchtaridi, M. α-Mangostin and Its Derivatives against Estrogen Receptor Alpha. J. Biomol. Struct. Dyn. 2022, 40, 2621–2634. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tu, Y.; Ågren, H.; Eriksson, L.A. Characterization of Agonist Binding to His524 in the Estrogen Receptor α Ligand Binding Domain. J. Phys. Chem. B 2012, 116, 4823–4830. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Yusuf, M.; Diantini, A.; Choi, S.B.; Al-Najjar, B.O.; Manurung, J.V.; Subarnas, A.; Achmad, T.H.; Wardhani, S.R.; Wahab, H.A. Potential Activity of Fevicordin-A from Phaleria Macrocarpa (Scheff) Boerl. Seeds as Estrogen Receptor Antagonist Based on Cytotoxicity and Molecular Modelling Studies. Int. J. Mol. Sci. 2014, 15, 7225–7249. [Google Scholar] [CrossRef] [PubMed]
- Drwal, M.N.; Griffith, R. Combination of Ligand- and Structure-Based Methods in Virtual Screening. Drug Discov. Today Technol. 2013, 10, e395–e401. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhong, A.; Wang, Q.; Zheng, T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Cocking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs 2022, 20, 29. [Google Scholar] [CrossRef]
Compound | Position of Ring | R | Compound | Position of Ring | R |
---|---|---|---|---|---|
PBD-1 | 2 | PBD-24 | 4 | ||
PBD-2 | 3 | PBD-25 | 2 | ||
PBD-3 | 4 | PBD-26 | 3 | ||
PBD-4 | 2 | PBD-27 | 4 | ||
PBD-5 | 3 | PBD-28 | 2 | ||
PBD-6 | 4 | PBD-29 | 3 | ||
PBD-7 | 2 | PBD-30 | 4 | ||
PBD-8 | 3 | PBD-31 | 2 | ||
PBD-9 | 4 | PBD-32 | 3 | ||
PBD-10 | 2 | PBD-33 | 4 | ||
PBD-11 | 3 | PBD-34 | 2 | ||
PBD-12 | 4 | PBD-35 | 3 | ||
PBD-13 | 2 | PBD-36 | 4 | ||
PBD-14 | 3 | PBD-37 | 2 | ||
PBD-15 | 4 | PBD-38 | 3 | ||
PBD-16 | 2 | PBD-39 | 4 | ||
PBD-17 | 3 | PBD-40 | 2 | ||
PBD-18 | 4 | PBD-41 | 3 | ||
PBD-19 | 2 | PBD-42 | 4 | ||
PBD-20 | 3 | PBD-43 | 2 | ||
PBD-21 | 4 | PBD-44 | 3 | ||
PBD-22 | 2 | PBD-45 | 4 | ||
PBD-23 | 3 |
Compound | MW | MlogP | HBD | HBA | Violation | Compound | MW | MlogP | HBD | HBA | Violation |
---|---|---|---|---|---|---|---|---|---|---|---|
4-OHT | 387.51 | 4.49 | 1 | 3 | 1 | PBD-22 | 486.59 | 2.58 | 1 | 5 | 0 |
Raloxifene | 473.58 | 3.21 | 2 | 5 | 0 | PBD-23 | 486.59 | 2.58 | 1 | 5 | 0 |
Lasofoxifene | 413.55 | 4.57 | 1 | 3 | 1 | PBD-24 | 486.59 | 2.58 | 1 | 5 | 0 |
PBD-1 | 464.58 | 2.35 | 1 | 6 | 0 | PBD-25 | 490.62 | 2.75 | 1 | 6 | 0 |
PBD-2 | 464.58 | 2.35 | 1 | 6 | 0 | PBD-26 | 490.62 | 2.75 | 1 | 6 | 0 |
PBD-3 | 464.58 | 2.35 | 1 | 6 | 0 | PBD-27 | 490.62 | 2.75 | 1 | 6 | 0 |
PBD-4 | 492.63 | 2.75 | 1 | 6 | 0 | PBD-28 | 473.54 | 2.38 | 1 | 6 | 0 |
PBD-5 | 492.63 | 2.75 | 1 | 6 | 0 | PBD-29 | 473.54 | 2.38 | 1 | 6 | 0 |
PBD-6 | 492.63 | 2.75 | 1 | 6 | 0 | PBD-30 | 473.54 | 2.38 | 1 | 6 | 0 |
PBD-7 | 498.60 | 2.74 | 1 | 6 | 0 | PBD-31 | 477.58 | 2.55 | 1 | 6 | 0 |
PBD-8 | 498.60 | 2.74 | 1 | 6 | 0 | PBD-32 | 477.58 | 2.55 | 1 | 6 | 0 |
PBD-9 | 498.60 | 2.74 | 1 | 6 | 0 | PBD-33 | 477.58 | 2.55 | 1 | 6 | 0 |
PBD-10 | 484.57 | 2.55 | 1 | 6 | 0 | PBD-34 | 489.61 | 3.18 | 1 | 5 | 0 |
PBD-11 | 484.57 | 2.55 | 1 | 6 | 0 | PBD-35 | 489.61 | 3.18 | 1 | 5 | 0 |
PBD-12 | 484.57 | 2.55 | 1 | 6 | 0 | PBD-36 | 489.61 | 3.18 | 1 | 5 | 0 |
PBD-13 | 470.54 | 3.02 | 1 | 6 | 0 | PBD-37 | 479.55 | 1.96 | 1 | 7 | 0 |
PBD-14 | 470.54 | 3.02 | 1 | 6 | 0 | PBD-38 | 479.55 | 1.96 | 1 | 7 | 0 |
PBD-15 | 470.54 | 3.02 | 1 | 6 | 0 | PBD-39 | 479.55 | 1.96 | 1 | 7 | 0 |
PBD-16 | 504.64 | 2.95 | 1 | 6 | 1 | PBD-40 | 487.57 | 2.00 | 1 | 6 | 0 |
PBD-17 | 504.64 | 2.95 | 1 | 6 | 1 | PBD-41 | 487.57 | 2.00 | 1 | 6 | 0 |
PBD-18 | 504.64 | 2.95 | 1 | 6 | 1 | PBD-42 | 487.57 | 2.00 | 1 | 6 | 0 |
PBD-19 | 505.63 | 1.96 | 2 | 7 | 1 | PBD-43 | 483.58 | 3.54 | 1 | 5 | 0 |
PBD-20 | 505.63 | 1.96 | 2 | 7 | 1 | PBD-44 | 483.58 | 3.54 | 1 | 5 | 0 |
PBD-21 | 505.63 | 1.96 | 2 | 7 | 1 | PBD-45 | 483.58 | 3.54 | 1 | 5 | 0 |
Compound | Pharmacokinetic | Toxicity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
HIA | Caco-2 | PPB | Carcinogenicity | Hepatotoxicity | Immunotoxicity | Mutagenicity | Cytotoxicity | Toxicity Class | ||
Mouse | Rat | |||||||||
4-OHT | 97.20 | 47.74 | 99.51 | No | No | Yes | Yes | No | No | 4 |
Raloxifene | 96.20 | 32.68 | 100 | No | No | No | Yes | No | No | 4 |
Lasofoxifene | 97.22 | 51.55 | 100 | No | No | No | Yes | No | Yes | 4 |
PBD-1 | 96.72 | 6.09 | 84.72 | No | No | No | Yes | No | No | 5 |
PBD-2 | 96.72 | 5.91 | 85.98 | No | No | No | Yes | No | No | 5 |
PBD-3 | 96.72 | 5.78 | 84.33 | No | No | No | Yes | No | No | 5 |
PBD-4 | 96.78 | 10.87 | 89.21 | No | No | No | Yes | No | No | 5 |
PBD-5 | 96.78 | 10.56 | 90.36 | No | No | No | Yes | No | No | 5 |
PBD-6 | 96.78 | 10.41 | 89.84 | No | No | No | Yes | No | No | 5 |
PBD-7 | 96.91 | 3.63 | 92.15 | No | No | No | No | No | No | 5 |
PBD-8 | 96.91 | 3.46 | 93.19 | No | No | No | No | No | No | 5 |
PBD-9 | 96.91 | 3.44 | 91.84 | No | No | No | No | No | No | 5 |
PBD-10 | 96.87 | 2.49 | 92.94 | No | No | No | No | No | No | 5 |
PBD-11 | 96.87 | 2.40 | 94.39 | No | No | No | No | No | No | 5 |
PBD-12 | 96.87 | 2.34 | 92.92 | No | No | No | No | No | No | 5 |
PBD-13 | 96.85 | 1.70 | 96.29 | No | No | No | No | No | No | 5 |
PBD-14 | 96.85 | 1.65 | 95.37 | No | No | No | No | No | No | 5 |
PBD-15 | 96.85 | 1.64 | 94.14 | No | No | No | No | No | No | 5 |
PBD-16 | 96.83 | 8.73 | 88.03 | No | No | No | No | No | No | 5 |
PBD-17 | 96.83 | 8.42 | 89.17 | No | No | No | No | No | No | 5 |
PBD-18 | 96.83 | 8.29 | 88.79 | No | No | No | No | No | No | 5 |
PBD-19 | 95.79 | 4.24 | 83.93 | No | No | No | No | No | No | 5 |
PBD-20 | 95.79 | 4.09 | 85.51 | No | No | No | No | No | No | 5 |
PBD-21 | 95.79 | 4.02 | 83.11 | No | No | No | No | No | No | 5 |
PBD-22 | 96.94 | 6.28 | 89.86 | No | No | No | No | No | No | 5 |
PBD-23 | 96.94 | 6.01 | 91.28 | No | No | No | No | No | No | 5 |
PBD-24 | 96.94 | 5.89 | 90.39 | No | No | No | No | No | No | 5 |
PBD-25 | 96.78 | 6.57 | 87.70 | No | No | No | No | No | No | 5 |
PBD-26 | 96.78 | 6.29 | 88.85 | No | No | No | No | No | No | 5 |
PBD-27 | 96.78 | 6.17 | 88.13 | No | No | No | No | No | No | 5 |
PBD-28 | 96.85 | 2.73 | 94.22 | No | No | No | No | No | No | 5 |
PBD-29 | 96.85 | 2.64 | 95.86 | No | No | No | No | No | No | 5 |
PBD-30 | 96.85 | 2.56 | 94.13 | No | No | No | No | No | No | 5 |
PBD-31 | 96.80 | 2.89 | 84.06 | No | No | No | No | No | No | 5 |
PBD-32 | 96.80 | 2.80 | 84.63 | No | No | No | No | No | No | 5 |
PBD-33 | 96.80 | 2.71 | 84.86 | No | No | No | No | No | No | 5 |
PBD-34 | 97.05 | 12.26 | 96.64 | No | No | No | No | No | No | 5 |
PBD-35 | 97.05 | 12.19 | 97.45 | No | No | No | No | No | No | 5 |
PBD-36 | 97.05 | 12.11 | 95.57 | No | No | No | No | No | No | 5 |
PBD-37 | 97.33 | 2.08 | 85.19 | No | No | No | No | No | No | 5 |
PBD-38 | 97.33 | 2.01 | 86.07 | No | No | No | No | No | No | 5 |
PBD-39 | 97.33 | 1.93 | 85.95 | No | No | No | No | No | No | 5 |
PBD-40 | 96.93 | 3.12 | 89.01 | No | No | No | No | No | No | 5 |
PBD-41 | 96.93 | 3.00 | 90.06 | No | No | No | No | No | No | 5 |
PBD-42 | 96.93 | 2.92 | 89.60 | No | No | No | No | No | No | 5 |
PBD-43 | 97.13 | 4.76 | 96.58 | No | No | No | No | No | No | 5 |
PBD-44 | 97.13 | 4.58 | 97.40 | No | No | No | No | No | No | 5 |
PBD-45 | 97.13 | 4.50 | 95.43 | No | No | No | No | No | No | 5 |
Ligand | Inhibition Constant (nM) | Binding Energy (kcal/mol) | Intermolecular Energy (kcal/mol) | Torsional Energy (kcal/mol) | Ligand | Inhibition Constant (nM) | Binding Energy (kcal/mol) | Intermolecular Energy (kcal/mol) | Torsional Energy (kcal/mol) |
---|---|---|---|---|---|---|---|---|---|
4-OHT | 4.26 | −11.42 | −13.81 | 2.39 | 22 | 16.77 | −10.61 | −12.99 | 2.39 |
Raloxifene | 2.94 | −11.63 | −14.32 | 2.68 | 23 | 54.89 | −9.91 | −12.29 | 2.39 |
Lasofoxifene | 2.71 | −11.69 | −13.78 | 2.09 | 24 | 217.41 | −9.09 | −11.48 | 2.39 |
1 | 56.27 | −9.89 | −12.28 | 2.39 | 25 | 16.58 | −10.61 | −13.00 | 2.39 |
2 | 37.36 | −10.13 | −12.52 | 2.39 | 26 | 9.43 | −10.95 | −13.33 | 2.39 |
3 | 127.39 | −9.41 | −11.79 | 2.39 | 27 | 53.23 | −9.92 | −12.31 | 2.39 |
4 | 72.62 | −9.74 | −12.72 | 2.98 | 28 | 18.53 | −10.55 | −12.64 | 2.09 |
5 | 27.07 | −10.32 | −13.31 | 2.98 | 29 | 39.41 | −10.10 | −12.19 | 2.09 |
6 | 129.33 | −9.40 | −12.38 | 2.98 | 30 | 187.65 | −9.18 | −11.26 | 2.09 |
7 | 10.38 | −10.89 | −13.28 | 2.39 | 31 | 17.47 | −10.58 | −12.67 | 2.09 |
8 | 25.47 | −10.36 | −12.75 | 2.39 | 32 | 25.73 | −10.35 | −12.44 | 2.09 |
9 | 126.50 | −9.41 | −11.80 | 2.39 | 33 | 204.73 | −9.13 | −11.21 | 2.09 |
10 | 12.01 | −10.81 | −12.89 | 2.09 | 34 | 11.17 | −10.85 | −12.94 | 2.09 |
11 | 14.89 | −10.68 | −12.77 | 2.09 | 35 | 20.31 | −10.49 | −12.58 | 2.09 |
12 | 152.58 | −9.30 | −11.39 | 2.09 | 36 | 120.10 | −9.44 | −11.53 | 2.09 |
13 | 15.08 | −10.67 | −12.46 | 1.79 | 37 | 31.20 | −10.24 | −12.33 | 2.09 |
14 | 39.26 | −10.10 | −11.89 | 1.79 | 38 | 58.24 | −9.87 | −11.96 | 2.09 |
15 | 260.53 | −8.98 | −10.77 | 1.79 | 39 | 254.64 | −9.00 | −11.08 | 2.09 |
16 | 8.26 | −11.03 | −13.41 | 2.39 | 40 | 29.89 | −10.27 | −12.65 | 2.39 |
17 | 6.08 | −11.21 | −13.60 | 2.39 | 41 | 88.58 | −9.62 | −12.01 | 2.39 |
18 | 20.01 | −10.50 | −12.89 | 2.39 | 42 | 440.16 | −8.67 | −11.06 | 2.39 |
19 | 14.19 | −10.71 | −13.09 | 2.39 | 43 | 8.12 | −11.04 | −13.13 | 2.09 |
20 | 6.71 | −11.15 | −13.54 | 2.39 | 44 | 9.52 | −10.94 | −13.03 | 2.09 |
21 | 14.44 | −10.70 | −13.08 | 2.39 | 45 | 90.96 | −9.61 | −11.69 | 2.09 |
Compound | Hydrogen Bond | Hydrophobic | Pi–Anion | Pi–Sulfur | |||||
---|---|---|---|---|---|---|---|---|---|
Conventional H-Bond | Carbon H-Bond | Alkyl and Pi–Alkyl | Pi–Sigma | Pi–Pi Stacked | Pi–Pi T-shaped | Amide–Pi Stacked | |||
4-OHT | ARG394, GLU353, LEU387 | ALA350, LEU346, LEU387, LEU391, LEU525, MET421, PHE404 | |||||||
Raloxifene | GLU353 | ASP351 | ALA350, LEU354, LEU384, LEU387, LEU391, LEU525, LEU536, TRP383 | LEU384 | |||||
Lasofoxifene | GLU353 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU391, LEU525, PHE404, TRP383 | LEU346 | MET388 | |||||
PBD-1 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU525 | LEU525 | LEU346 | GLU353 | MET343 | ||||
PBD-2 | ARG394 | ALA350 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, THR347, TRP383 | MET343, MET421, PHE404 | ||||
PBD-3 | ARG394 | ALA350, LEU346, LEU384, LEU387, LEU525, MET421 | ALA350, THR347 | ||||||
PBD-4 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU428, LEU391, MET388, MET421, PHE404 | LEU525 | MET343 | ||||||
PBD-5 | ARG394 | ASP351 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, LEU536, TRP383 | ALA350, THR347, TRP383 | MET343, MET421 | ||||
PBD-6 | ARG394 | PHE404 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, LEU539, MET343, MET421 | THR347, TRP383 | PHE404 | ||||
PBD-7 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU428, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-8 | ARG394 | ALA350, LEU346, LEU354, LEU387, LEU525 | ALA350, THR347 | TRP383 | MET421 | ||||
PBD-9 | ARG394 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, LEU525, THR347 | MET343, MET421, MET522 | |||||
PBD-10 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU391, LEU428 | LEU525, MET388 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-11 | THR347 | ALA350, LEU346, LEU387, LEU391, MET388 | LEU349, LEU525 | MET343 | |||||
PBD-12 | ARG394 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, LEU346, THR347 | MET421 | |||||
PBD-13 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU391, LEU428, LEU525, MET388, MET421 | LEU525 | LEU346 | MET343 | |||||
PBD-14 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, LEU536 | ALA350, THR347 | TRP383 | MET343, MET421 | ||||
PBD-15 | ARG394 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, THR347 | MET421 | |||||
PBD-16 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU428, MET388, MET241 | LEU525 | GLU353 | MET343 | |||||
PBD-17 | ARG394, GLU353, LEU387 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, TRP383 | LEU346, LEU525, THR347 | MET343, MET421 | |||||
PBD-18 | ARG394 | ASP351 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, LEU536, MET343, MET421, TRP383 | ALA350, THR347 | PHE404 | ||||
PBD-19 | ALA350, LEU346, LEU349, LEU384, LEU387 | LEU525 | PHE404 | LEU346 | GLU353 | MET343 | |||
PBD-20 | ARG394, GLU353, LEU387 | ASP351 | ALA350, LEU346, LEU384, LEU525, TRP383 | LEU387 | ASP351 | MET421 | |||
PBD-21 | ARG394 | ASP351 | ALA350, LEU346, LEU384, LEU387, LEU525, MET343, MET421 | ALA350, THR347 | PHE404 | ||||
PBD-22 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU428, LEU525, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-23 | ARG394 | ASP351 | ALA350, LEU346, LEU384, LEU387, LEU525, MET421 | LEU354, THR347 | MET343, PHE404 | ||||
PBD-24 | ARG394 | LEU525 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, THR347 | MET421, MET522 | ||||
PBD-25 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU428, LEU525, MET388, MET421 | LEU525 | LEU346 | GLU353 | |||||
PBD-26 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, TRP383 | LEU346, THR347 | MET343, MET421 | |||||
PBD-27 | ARG394 | ASP351 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, LEU536, MET343, MET421, TRP383 | ALA350, THR347 | PHE404 | ||||
PBD-28 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU428, LEU525, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-29 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525 | ALA350, THR347 | ASP351 | MET343, PHE404 | ||||
PBD-30 | ARG394 | LEU525 | ALA350, LEU346, LEU384, LEU387, LEU525, MET528 | ALA350, THR347 | MET421 | ||||
PBD-31 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU428, MET388, MET421 | LEU525 | LEU346 | GLU353 | MET343 | ||||
PBD-32 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525, TRP383 | ALA350, THR347 | MET343, MET421, PHE404 | |||||
PBD-33 | ARG394 | LEU525 | ALA350, LEU346, LEU387, LEU525 | ALA350, THR347 | MET421 | ||||
PBD-34 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU391, LEU428, LEU525, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-35 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525 | LEU346, THR347 | TRP383 | MET343, MET421 | ||||
PBD-36 | ARG394 | ALA350, LEU384, LEU387, LEU525, | LEU346, THR347 | MET343, MET421 | |||||
PBD-37 | ALA350, LEU346, LEU349, LEU384, LEU387, LEU525, LEU391 | LEU525 | LEU346 | GLU353 | MET343 | ||||
PBD-38 | ARG394 | ALA350, LEU346, LEU384, LEU387, LEU525 | ALA350, THR347 | MET343, MET421 | |||||
PBD-39 | ARG394 | ALA350, LEU346, LEU387, LEU525 | ALA350, THR347 | MET421 | |||||
PBD-40 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU525, LEU428, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-41 | ARG394 | ASP351, ALA350 | ALA350, LEU346, LEU384, LEU387, LEU525 | LEU346, LEU354, | TRP383 | MET343, MET421 | |||
PBD-42 | ARG394 | ASP351 | ALA350, LEU346, LEU384, LEU387, LEU525, LEU536, MET343 | ALA350, THR347 | TRP383 | MET421, PHE404 | |||
PBD-43 | ALA350, LEU346, LEU349, LEU387, LEU391, LEU428, LEU525, MET388 | LEU525 | LEU346 | GLU353 | MET343, MET421 | ||||
PBD-44 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU428, LEU525 | ALA350, THR347 | TRP383 | MET343, MET421 | ||||
PBD-45 | ARG394 | ALA350, LEU346, LEU354, LEU384, LEU387, LEU525 | ALA350, THR347 | MET421 |
Compound | Donor | Acceptor | Occupancy (%) |
---|---|---|---|
4-OHT | OHT553 | LEU387 | 0.05 |
OHT553 | GLU353 | 69.08 | |
ASN532 | OHT553 | 0.25 | |
ARG394 | OHT553 | 0.10 | |
Lasofoxifene | LSF553 | GLU353 | 58.14 |
THR347 | LSF553 | 0.05 | |
Raloxifene | RLF553 | LEU387 | 3.05 |
ARG394 | RLF553 | 0.10 | |
RLF553 | GLU353 | 67.58 | |
RLF553 | GLY521 | 48.05 | |
RLF553 | GLY420 | 6.09 | |
RLF553 | GLU419 | 2.40 | |
PBD-17 | S17553 | GLU353 | 16.28 |
PBD-20 | S20553 | GLU353 | 20.68 |
ARG394 | S20553 | 0.70 | |
S20553 | VAL534 | 0.20 | |
S20553 | ALA350 | 0.55 | |
S20553 | ASP351 | 0.15 | |
THR347 | S20553 | 0.15 |
Energy Component (kJ/mol) | 4OHT | Lasofoxifene | Raloxifene | PDB-17 | PDB-20 |
---|---|---|---|---|---|
van der Waal energy | −210.692 +/− 49.723 | −206.511 +/− 85.204 | −182.284 +/− 89.907 | −143.024 +/− 125.396 | −269.768 +/− 13.616 |
Electrostattic energy | −46.459 +/− 15.339 | −33.386 +/− 14.431 | −51.407 +/− 29.272 | −18.581 +/− 17.862 | −37.782 +/− 9.535 |
Polar solvation energy | 134.072 +/− 25.233 | 102.413 +/− 46.862 | 131.862 +/− 51.000 | 118.106 +/− 59.301 | 194.421 +/ 17.221 |
SASA energy | −22.228 +/− 4.753 | −20.402 +/− 8.369 | −19.327 +/− 9.859 | −14.730 +/− 12.733 | −26.333 +/− 1.201 |
Binding energy | −145.307 +/− 46.242 | −157.886 +/− 62.032 | −121.156 +/− 74.705 | −58.229 +/− 100.631 | −139.462 +/− 15.049 |
Compound | Fit-Pharmacophore Score (%) | Compound | Fit-Pharmacophore Score (%) |
---|---|---|---|
4-OHT | 47.65 | PBD-22 | 45.15 |
Raloxifene | 47.54 | PBD-23 | 45.14 |
Lasofoxifene | 46.74 | PBD-24 | 45.14 |
PBD-1 | 45.14 | PBD-25 | 45.14 |
PBD-2 | 45.15 | PBD-26 | 45.14 |
PBD-3 | 45.14 | PBD-27 | 45.14 |
PBD-4 | 45.14 | PBD-28 | 45.14 |
PBD-5 | 45.14 | PBD-29 | 45.14 |
PBD-6 | 45.14 | PBD-30 | 45.14 |
PBD-7 | 45.15 | PBD-31 | 45.15 |
PBD-8 | 45.14 | PBD-32 | 45.14 |
PBD-9 | 45.14 | PBD-33 | 45.14 |
PBD-10 | 45.15 | PBD-34 | 45.14 |
PBD-11 | 45.15 | PBD-35 | 45.15 |
PBD-12 | 45.14 | PBD-36 | 45.15 |
PBD-13 | 45.15 | PBD-37 | 45.15 |
PBD-14 | 45.14 | PBD-38 | 45.14 |
PBD-15 | 45.15 | PBD-39 | 45.14 |
PBD-16 | 45.15 | PBD-40 | 45.15 |
PBD-17 | 45.20 | PBD-41 | 45.14 |
PBD-18 | 45.15 | PBD-42 | 45.14 |
PBD-19 | 45.15 | PBD-43 | 45.14 |
PBD-20 | 45.20 | PBD-44 | 45.14 |
PBD-21 | 45.15 | PBD-45 | 45.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasyim, D.M.; Musfiroh, I.; Hendra, R.; Fakih, T.M.; Ikram, N.K.K.; Muchtaridi, M. In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα). Appl. Sci. 2025, 15, 8444. https://doi.org/10.3390/app15158444
Hasyim DM, Musfiroh I, Hendra R, Fakih TM, Ikram NKK, Muchtaridi M. In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα). Applied Sciences. 2025; 15(15):8444. https://doi.org/10.3390/app15158444
Chicago/Turabian StyleHasyim, Dadang Muhammad, Ida Musfiroh, Rudi Hendra, Taufik Muhammad Fakih, Nur Kusaira Khairul Ikram, and Muchtaridi Muchtaridi. 2025. "In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα)" Applied Sciences 15, no. 15: 8444. https://doi.org/10.3390/app15158444
APA StyleHasyim, D. M., Musfiroh, I., Hendra, R., Fakih, T. M., Ikram, N. K. K., & Muchtaridi, M. (2025). In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα). Applied Sciences, 15(15), 8444. https://doi.org/10.3390/app15158444