Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Hirshfeld Surface Analysis
2.3. XRD and Thermal Analysis
2.4. Variable-Temperature Infrared (VTIR) Testing
2.5. Variable-Temperature Dielectric Testing
2.6. Electrochemical Testing
2.7. Structural Void Calculations
2.8. Surface Electrostatic Potential Testing
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Synthesis of Crystals
3.2.1. Synthesis of [(C3N2H5)(C3N2H4)][(β-Mo8O26H2)]0.5 (1)
3.2.2. Synthesis of {Zn(C3N2H4)4}{[(γ-Mo8O26) (C3N2H4)2]0.5}·2H2O (2)
3.2.3. Preparation of Glassy Carbon Electrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DFT | Density functional theory |
DSPP | DFT semi-core pseudopotentials |
DTA | Differential thermal analysis |
DNP | Double numerical plus polarization |
POM | Polyoxometalate |
IR | Room-temperature infrared |
TGA | Thermogravimetric analysis |
VTIR | Variable-temperature infrared |
XRD | X-ray diffraction |
References
- Liu, Q.; Lin, H.; Wang, X.L.; Wang, X.; Xu, N.; Tian, Y.; Yang, L.; Li, X.; Sun, J. Two Novel Polyoxometalate-Based Metal–Organic Complexes with Chiral Waugh-Type [MnMo9O32]6-Anions as High-Efficiency Catalytic Oxidative Desulfurization Catalysts. Cryst. Growth Des. 2021, 21, 7015–7022. [Google Scholar] [CrossRef]
- Wen, H.; Liu, G.; Qi, S.C.; Gu, C.; Yang, T.; Tan, P.; Sun, L.-B. Photo-switchable phosphotungstic acid active sites in metal–organic frameworks for a tailorable deacetalization reaction. J. Mater. Chem. A 2023, 11, 6869–6876. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; Zhang, Y.; Zhang, T.; Zhang, Z.; Li, X.-H.; Wang, X.-L. A Keggin-type polyoxometalate-based metal–organic complex as a highly efficient heterogeneous catalyst for the selective oxidation of alkylbenzenes. Dalton Trans. 2022, 51, 2331–2337. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, X.L.; Lin, H.Y.; Chang, Z.-H.; Zhang, Y.-C.; Tian, Y.; Lu, J.-J.; Yu, L. Two new polyoxometalate-based metal–organic complexes for the detection of trace Cr(VI) and their capacitor performance. Dalton Trans. 2021, 50, 9450–9456. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, X.L.; Chang, Z.H.; Zhang, Z.; Wang, X.; Lin, H.-Y. Two flexible bis (pyrazole)-bis (amide) ligand directed β-octamolybdate-based metal–organic complexes with different adsorption activities towards organic dyes and electrocatalytic properties. Inorganic Chem. Commun. 2021, 129, 108580. [Google Scholar] [CrossRef]
- Bai, Z.; Zhou, C.; Xu, H.; Wang, G.; Pang, H.; Ma, H. Polyoxometalates-doped Au nanoparticles and reduced graphene oxide: A new material for the detection of uric acid in urine. Sens. Actuators B 2017, 243, 361–371. [Google Scholar] [CrossRef]
- Wang, P.; Zou, X.; Tan, H.; Wu, S.; Jiang, L.; Zhu, G. Ultrathin ZIF-8 film containing polyoxometalate as an enhancer for selective formaldehyde sensing. J. Mater. Chem. C 2018, 6, 5412–5419. [Google Scholar] [CrossRef]
- Sun, X.; Lan, Q.; Geng, J.; Yu, M.; Li, Y.; Li, X.; Chen, L. Polyoxometalate as electron acceptor in dye/TiO2 films to accelerate room-temperature NO2 gas sensing. Sens. Actuators B 2023, 374, 132795. [Google Scholar] [CrossRef]
- Chen, J.J.J.; Barteau, M.A. Molybdenum polyoxometalates as active species for energy storage in non-aqueous media. J. Energy Storage 2017, 13, 255–261. [Google Scholar] [CrossRef]
- Herrmann, S.; Aydemir, N.; Nägele, F.; Fantauzzi, D.; Jacob, T.; Travas-Sejdic, J.; Streb, C. Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole. Adv. Funct. Mater. 2017, 27, 1700881. [Google Scholar] [CrossRef]
- Wang, C.; Song, Y.; Cong, W.; Yan, Y.; Wang, M.; Zhou, J. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage. Chin. Chem. Lett. 2023, 34, 108194. [Google Scholar] [CrossRef]
- Skunik-Nuckowska, M.; Węgrzyn, K.; Dyjak, S.; Wisińska, N.H.; Kulesza, P.J. Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Mater. 2019, 21, 427–438. [Google Scholar] [CrossRef]
- Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S. One-pot synthesis of polyoxometalate decorated polyindole for energy storage supercapacitors. ACS Omega 2021, 6, 11199–11208. [Google Scholar] [CrossRef]
- Das, A.; Mohapatra, M.; Basu, S. Unleashing asymmetric polyoxometalate redox activators on 2D interfaces for high-performance hybrid energy storage. Carbon 2024, 223, 119007. [Google Scholar] [CrossRef]
- Feng, T.; Liu, L.; Mao, S.; Xue, H.; Zhao, J.; Bai, Y.; Zhao, W. Polyoxometalate/poly (3,4-ethylenedioxythiophene) nanocomposites enabling visualization of energy storage status in multicolor electrochromic supercapacitors. Appl. Surf. Sci. 2023, 641, 158450. [Google Scholar] [CrossRef]
- Kondinski, A.; Monakhov, K.Y. Breaking the gordian knot in the structural chemistry of polyoxometalates: Copper (II)–oxo/hydroxo clusters. Chem. Eur. J. 2017, 23, 7841–7852. [Google Scholar] [CrossRef]
- Van Rompuy, L.S.; Parac-Vogt, T.N. Interactions between polyoxometalates and biological systems: From drug design to artificial enzymes. Curr. Opin. Biotechnol. 2019, 58, 92–99. [Google Scholar] [CrossRef]
- De Azambuja, F.; Parac-Vogt, T.N. Water-tolerant and atom economical amide bond formation by metal-substituted polyoxometalate catalysts. ACS Catal. 2019, 9, 10245–10252. [Google Scholar] [CrossRef]
- Chang, D.; Li, Y.; Chen, Y.; Wang, X.; Zang, D.; Liu, T. Polyoxometalate-based nanocomposites for antitumor and antibacterial applications. Nanoscale Adv. 2022, 4, 3689–3706. [Google Scholar] [CrossRef]
- Aureliano, M.; Gumerova, N.I.; Sciortino, G.; Garribba, E.; Rompel, A.; Crans, D.C. Polyoxovanadates with emerging biomedical activities. Coord. Chem. Rev. 2021, 447, 214143. [Google Scholar] [CrossRef]
- Qi, Y.; Han, L.; Qi, Y.; Jin, X.; Zhang, B.; Niu, J.; Zhong, J.; Xu, Y. Anti-flavivirus activity of polyoxometalate. Antivir. Res. 2020, 179, 104813. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhang, X.B.; Li, Y.L.; Huang, S.-L.; Yang, G.-Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Lin, Y.Y.; Li, X.X.; Zhao, D.; Zheng, S.-T. Integration of metallacycles and polyoxometalate macrocycles. Inorg. Chem. Front. 2021, 8, 1297–1302. [Google Scholar] [CrossRef]
- Bell, N.L.; Kupper, M.; Cronin, L. Design of experiments for optimization of polyoxometalate syntheses. Chem. Mater. 2021, 33, 7263–7271. [Google Scholar] [CrossRef]
- Liu, J.C.; Zhao, J.W.; Streb, C.; Song, Y.F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734. [Google Scholar] [CrossRef]
- Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838. [Google Scholar] [CrossRef]
- Wang, S.M.; Hwang, J.; Kim, E. Polyoxometalates as promising materials for electrochromic devices. J. Mater. Chem. C 2019, 7, 7828–7850. [Google Scholar] [CrossRef]
- Fullmer, L.B.; Malmberg, C.E.; Fast, D.B.; Wills, L.A.; Cheong, P.H.-Y.; Dolgos, M.R.; Nyman, M. Aqueous tantalum polyoxometalate reactivity with peroxide. Dalton Trans. 2017, 46, 8486–8493. [Google Scholar] [CrossRef]
- Xu, W.; Li, X.; Shi, J. Oxidative depolymerization of cellulolytic enzyme lignin over silicotungvanadium polyoxometalates. Polymers 2019, 11, 564. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, R. Direct hydroxylation of benzene to phenol by supported vanadium substitution polyoxometalates using H2O2 as oxidant. Res. Chem. Intermed. 2018, 44, 5911–5922. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 49, 7568–7601. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, J.Y.; Chang, Z.H.; Zhang, Z.; Wang, X.; Lin, H.Y.; Cui, Z.W. α–γ-Type [Mo8O26]4–-containing metal–organic complex possessing efficient catalytic activity toward the oxidation of thioether derivatives. Inorg. Chem. 2021, 60, 3331–3337. [Google Scholar] [CrossRef]
- Figueredo, F.; Girolametti, F.; Aneggi, E.; Lekka, M.; Annibaldi, A.; Susmel, S. Plastic electrode decorated with polyhedral anion tetrabutylammonium octamolybdate [N(C4H9)4]4Mo8O26 for nM phosphate electrochemical detection. Anal. Chim. Acta 2021, 1161, 338469. [Google Scholar] [CrossRef]
- Uk, L.; Joo, H.C.; Park, K.M.; Mal, S.S.; Kortz, U.; Keita, B.; Nadjo, L. Facile incorporation of platinum(IV) into polyoxometalate frameworks: Preparation of [H2PtIVV9O28]5- and Characterization by 195Pt NMR Spectroscopy. Angew Chem. Int Ed. 2007, 47, 793–796. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Huang, P.Z.; Fu, D.-W.; Jia, Q.-Q.; Lu, H.-F. Ferroelasticity in organic–inorganic hybrid perovskites. Chem. Eur. J. 2022, 28, e202201005. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.W.; Huang, K.C.; Zhang, Y.; Zhou, L.; Cui, Z.; Zhang, K.; Zhang, X.-Y.; Zhang, J.-P. Diverse Structures Based on a Heptanuclear Cobalt Cluster with 0D to 3D Metal–Organic Frameworks: Magnetism and Application in Batteries. Chem. Eur. J. 2018, 24, 1962–1970. [Google Scholar] [CrossRef]
- Huang, P.Z.; Liu, Z.; Ye, L.K.; Ni, H.-F.; Luo, J.-Q.; Teri, G.; Jia, Q.-Q.; Zhuang, B.; Wang, C.-F.; Zhang, Z.-X.; et al. Mechanically deformable organic ferroelectric crystal with plasticity optimized by fluorination. Nat. Commun. 2025, 16, 3071. [Google Scholar] [CrossRef]
- Zhuang, B.; Pan, L.; Li, Z.L.; Liu, J.-Y.; Zhang, Z.-X.; Ding, K.; Zhang, Y.; Liu, Z.; Fu, D.-W. Multiple Ferroic Orderings in Lead-Free Hybrid Material Induced by Molecular Asymmetric Modification. ACS Mater. Lett. 2025, 7, 1540–1546. [Google Scholar] [CrossRef]
- Zhuang, B.; Jia, Q.Q.; Li, Z.L.; Liu, J.-Y.; Wang, Y.; Li, J.-X.; Ding, K.; Liu, Z.-Q.; Fu, D.-W. Dimensional tunability and photoluminescence triggered by solvent encapsulation strategies in hybrid materials. Inorg. Chem. Front. 2025, 12, 4256–4264. [Google Scholar] [CrossRef]
- Yang, J.B.; Pan, J.H.; Zhu, Y.H.; Wang, J.-L.; Mei, H.; Xu, Y. Two 1D Anderson-Type polyoxometalate-based metal–organic complexes as bifunctional heterogeneous catalysts for CO2 photoreduction and sulfur oxidation. Inorg. Chem. 2022, 61, 11775–11786. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Ye, Q.; Fu, D.W.; Xiong, R.G. Optoelectronic duple bistable switches: A bulk molecular single crystal and unidirectional ultraflexible thin film based on imidazolium fluorochromate. Adv. Funct. Mater. 2017, 27, 1603945. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Xie, Y.F.; Ai, Y.; Liao, W.-Q.; Li, P.-F.; Nakamura, T.; Xiong, R.-G. Organic ferroelectric vortex–antivortex domain structure. J. Am. Chem. Soc. 2020, 142, 21932–21937. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Zhang, Y.; Tang, Y.Y.; Li, P.-F.; Xiong, R.-G. Fluoridation achieved antiperovskite molecular ferroelectric in [(CH3)2(F-CH2CH2)NH]3(CdCl3)(CdCl4). J. Am. Chem. Soc. 2019, 141, 4372–4378. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.R.; Luo, X.; Liao, W.Q.; Tang, Y.-Y.; Xiong, R.-G. An above-room-temperature molecular ferroelectric: [cyclopentylammonium]2CdBr4. Inorg. Chem. 2019, 59, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.W.; Gao, J.X.; Huang, P.Z.; Ren, R.-Y.; Shao, T.; Han, L.-J.; Liu, J.; Gong, J.-M. Observation of transition from ferroelasticity to ferroelectricity by solvent selective effect in anilinium bromide. Angew. Chem. Int. Ed. 2021, 60, 8198–8202. [Google Scholar] [CrossRef]
- Hiyoshi, N. Fabrication of Keggin-type Polyoxometalate Membranes at the Gas–Liquid Interface. Langmuir 2020, 36, 3958–3962. [Google Scholar] [CrossRef]
- Cheng, D.; Li, B.; Sun, S.; Zhu, L.-J.; Li, Y.; Wu, X.-L.; Zang, H.-Y. Proton-conducting polyoxometalates as redox electrolytes synergistically boosting the performance of self-healing solid-state supercapacitors with polyaniline. CCS Chem. 2021, 3, 1649–1658. [Google Scholar] [CrossRef]
- Yu, B.; Zou, B.; Hu, C.W. Recent applications of polyoxometalates in CO2 capture and transformation. J. CO2 Util. 2018, 26, 314–322. [Google Scholar] [CrossRef]
- Kibler, A.J.; Tsang, N.; Winslow, M.; Argent, S.P.; Lam, H.W.; Robinson, D.; Newton, G.N. Electronic Structure and Photoactivity of Organoarsenic Hybrid Polyoxometalates. Inorg. Chem. 2023, 62, 3585–3591. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, C.; Lee, J.Y.; Ryu, J.; Ryu, W.-H. Polyoxometalate as a Nature-Inspired Bifunctional Catalyst for Lithium–Oxygen Batteries. ACS Catal. 2018, 8, 7213–7221. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wang, H.; Ni, H.F.; Wang, N.; Wang, C.F.; Huang, P.Z.; Jia, Q.Q.; Teri, G.; Fu, D.W.; Zhang, Y.; et al. Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission. Angew. Chem. 2024, 136, e202319650. [Google Scholar] [CrossRef]
- Kumar, D.; Tomar, A.K.; Singh, G.; Sharma, R.K. Interlayer gap widened 2D α-Co(OH)2 nanoplates with decavanadate anion for high potential aqueous supercapacitor. Electrochim. Acta 2020, 363, 137238. [Google Scholar] [CrossRef]
- Chen, H.Y.; Friedl, J.; Pan, C.J.; Haider, A.; Al-Oweini, R.; Cheah, Y.L.; Lin, M.-H.; Kortz, U.; Hwang, B.-J.; Srinivasan, M.; et al. In situ X-ray absorption near edge structure studies and charge transfer kinetics of Na6[V10O28] electrodes. Phys. Chem. Chem. Phys. 2017, 19, 3358–3365. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Li, Y.; Qiu, T.; Mu, X.; Ma, Y.; Zhao, Y.; Zhang, J.; Zhang, J.; Li, Y.; et al. 3D Covalent Polyoxovanadate-Organic Framework as an Anode for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2306598. [Google Scholar] [CrossRef]
- Schreiber, E.; Garwick, R.E.; Baran, M.J.; Baird, M.A.; Helms, B.A.; Matson, E.M. Molecular Engineering of Polyoxovanadate-Alkoxide Clusters and Microporous Polymer Membranes to Prevent Crossover in Redox-Flow Batteries. ACS Appl. Mater. Interfaces 2022, 14, 22965–22972. [Google Scholar] [CrossRef] [PubMed]
- Hartung, S.; Bucher, N.; Chen, H.Y.; Al-Oweini, R.; Sreejith, S.; Borah, P.; Yanli, Z.; Kortz, U.; Stimming, U.; Hoster, H.E.; et al. Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J. Power Sources 2015, 288, 270–277. [Google Scholar] [CrossRef]
- Chen, J.J.; Ye, J.C.; Zhang, X.G.; Symes, M.D.; Fan, S.-C.; Long, D.-L.; Zheng, M.-S.; Wu, D.-Y.; Cronin, L.; Dong, Q.-F. Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Li-Ion Batteries with Supercapacitor-Like Power Density Based upon Polyoxovanadates. Adv. Energy Mater. 2018, 8, 1701021. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Liu, C.; Wang, Y.; Ye, F.; Yan, W.; Liu, B. Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage. Nano Res. 2023, 16, 9267–9272. [Google Scholar] [CrossRef]
- Moors, M.; Warneke, J.; Lopez, X.; de Graaf, C.; Abel, B.; Monakhov, K.Y. Insights from adsorption and electron modification studies of polyoxometalates on surfaces for molecular memory applications. Acc. Chem. Res. 2021, 54, 3377–3389. [Google Scholar] [CrossRef]
- Chi, J.Q.; Fan, M.; Su, M.Z.; Li, X.; Sun, J.; Zhou, C.; Hu, X. Octamolybdate-based hybrid constructed by flexible bis-triazole ligands: Synthesis, photocatalytic and electrochemical properties. New J. Chem. 2020, 44, 13524–13528. [Google Scholar] [CrossRef]
- Xu, L.; Mu, X.; Chen, X.G.; Zhang, H.-Y.; Xiong, R.-G. Organic enantiomeric ferroelectrics with high piezoelectric performance: Imidazolium L-and D-camphorsulfonate. Chem. Mater. 2021, 33, 5769–5779. [Google Scholar] [CrossRef]
- Parkin, S.; Moezzi, B.; Hope, H. XABS2: An empirical absorption correction program. J. Appl. Crystallogr. 1995, 28, 53–56. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Lin, H.; Liu, G.; Xiang, W.; Bai, X. Different types of polyoxometalate-directed diverse architectures derived from the rigid ligand pyrazine-bis(triazole): Assembly, electrocatalysis, and dye adsorption. J. Coord. Chem. 2020, 73, 2546–2556. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Zhang, K.; Xu, J.; Wu, S.; Gong, J. Bendable and twistable crystals of flufenamic acid form III with bending mechanofluorochromism behavior. Cryst. Growth Des. 2022, 22, 1312–1318. [Google Scholar] [CrossRef]
- Jameson, G.B. The solution and refinement of structures with X-ray diffraction data from twinned crystals. Acta Cryst. Sect. A 1996, 52, 43–44. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
1 | 2 | |||
---|---|---|---|---|
Temperature/K | 100 K | 293 K | 100 K | 293 K |
Chemical formula | C6H10Mo4N4O13 | C6H10Mo4N4O13 | C15H20Mo4N10O15Zn | C15H20Mo4N10O15Zn |
Formula weight | 730.95 | 730.95 | 1033.57 | 1033.57 |
Crystal size (mm3) | 0.12 × 0.1 × 0.08 | 0.12 × 0.1 × 0.08 | 0.13 × 0.12 × 0.1 | 0.13 × 0.12 × 0.11 |
Crystal system | Triclinic | Triclinic | Triclinic | Triclinic |
Space group | P-1 | P-1 | P-1 | P-1 |
a/Å | 9.209 (7) | 9.348 (5) | 10.511 (6) | 10.626 (4) |
b/Å | 9.681 (7) | 9.756 (7) | 10.758 (4) | 10.822 (3) |
c/Å | 10.301 (5) | 10.367 (5) | 14.512 (8) | 14.581 (6) |
α/(°) | 84.321 (5) | 83.982 (5) | 69.058 (4) | 68.926 (3) |
β/(°) | 76.044 (5) | 75.700 (4) | 83.033 (5) | 83.110 (3) |
γ/(°) | 65.536 (7) | 64.871 (6) | 85.854 (4) | 86.091 (3) |
V/(Å3) | 811.23 (11) | 829.42 (9) | 1520.45 (14) | 1552.56 (10) |
Z | 2 | 2 | 2 | 2 |
Dc/(g cm−3) | 2.992 | 2.927 | 2.258 | 2.211 |
F(000) | 694 | 694 | 1004 | 1004 |
μ/mm−1 | 3.101 | 3.033 | 2.464 | 2.413 |
2θ range/(°) | 0.845–25.242 | 0.853–25.242 | 0.999–24.997 | 0.999–25.000 |
Rint | 0.034 | 0.031 | 0.059 | 0.029 |
R1 [I > 2σ(I)] a | 0.046 | 0.037 | 0.067 | 0.035 |
wR2 (all data) b | 0.084 | 0.077 | 0.154 | 0.066 |
GOF | 1.038 | 1.048 | 1.031 | 1.029 |
CCDC | 2,449,483 | 2,449,484 | 2,449,506 | 2,449,507 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Abuduheni, A.; Zhao, Y.; Lin, Y.; Liu, Y.; Liu, Z. Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials. Molecules 2025, 30, 3107. https://doi.org/10.3390/molecules30153107
Hu H, Abuduheni A, Zhao Y, Lin Y, Liu Y, Liu Z. Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials. Molecules. 2025; 30(15):3107. https://doi.org/10.3390/molecules30153107
Chicago/Turabian StyleHu, Hongzhi, Adila Abuduheni, Yujin Zhao, Yuhao Lin, Yang Liu, and Zunqi Liu. 2025. "Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials" Molecules 30, no. 15: 3107. https://doi.org/10.3390/molecules30153107
APA StyleHu, H., Abuduheni, A., Zhao, Y., Lin, Y., Liu, Y., & Liu, Z. (2025). Design, Synthesis, and Electrical Performance of Three-Dimensional Hydrogen-Bonded Imidazole-Octamolybdenum-Oxo Cluster Supramolecular Materials. Molecules, 30(15), 3107. https://doi.org/10.3390/molecules30153107